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Background
Population growth rates are a core property of cell lines, and can be influenced by many 
factors. As such, in controlled experiments, cell growth rates, i.e. how quickly the popu-
lation size changes over time, may correlate with the presence of drugs or toxins [1], 
temperature [2], or particular genetic changes in the cells [3], and other factors. The cell 
growth rate is an especially useful variable to feed into models of how a culture will pro-
gress [4–6]. Whereas well established mathematical definitions of the growth rate exist 
[7], it is not obvious how to estimate the growth rate from measurements of cell cul-
tures. Suspension cells follow logistic growth to a decent approximation, and in that case 
growth rate could be derived via some form of logistic fitting.
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The most common measurement for cell culture growth rate is the so-called popula-
tion doubling time (PDT), i.e. the time it takes for a population to double its size [8]. 
The doubling time can be estimated from the population size at two points [8]. For cells 
growing exponentially this value is well-defined. However, the more a cell culture strays 
from exponential growth, the more inaccurate the PDT becomes a measure of popula-
tion cell growth. It is no longer consistently applicable starting from any time. Exponen-
tial growth is a consequence of growth laws in individual cells causing regular division 
[9, 10]; the addition of factors such as cooperation or competition for resources creates a 
non-exponential population growth.

Under a different model of population growth, such as logistic growth, it is possible 
to separate the idea of growth rate from the decrease as the population approaches its 
carrying capacity. There are other approaches towards finding these growth parameters 
based on various methods, e.g. steepest descent optimization [11], and different means 
of Bayesian inference [12, 13]. Some models use highly detailed representations of the 
cell cycle [14]. However, these models generally do not consider a changing growth rate, 
and focus on inferring a static growth rate and carrying capacity. In reality, the growth 
rate sometimes changes over time, either because of density-dependent effects or 
because the cells are evolving. Examples of processes that result in modifications to the 
growth rate include adaptation to the presence of drugs [15, 16] and to lack of nutrients 
[17]. In general, any change in the evolutionary landscape might lead to a modification 
the growth rate.

Almost all available cell counting methods require fairly large sample sizes ( > 105 cells 
or > 1 mL) [18]. Haemocytometer counting with some vital stain stands out as an excep-
tion, as it requires only a very minimal sample (5–10 µL , typically < 104 cells). For mon-
itoring a culture, especially in small volumes, requiring a large sample can be a limiting 
factor. Owing to its low cost and availability, haemocytometer counting has become the 
de facto standard in many applications. That, coupled with being measurable without 
significantly affecting an ongoing culture, makes it a prime choice for estimating the 
population growth rate.

The population size, i.e., the number of living cells, is inextricably tied to the growth 
rates, as the growth rate describes the positive component of the rate of change in popu-
lation size. There is typically some basal death rate as well, although it is often difficult to 
separate apparent growth rate into the true growth rate and death rate. Unlike the popu-
lation size, growth rate is not an observable variable and has to be inferred. By assuming 
a model of how cells grow, the growth rate can be deduced from the population size, 
which can be measured in ways that hardly affect the cell culture. Thus, it should be pos-
sible to track the (time dependent) growth rate in a cell culture over longer periods of 
time.

We developed a method to calculate the growth rates in a suspended cell lines. To use 
our approach, it is necessary to know the carrying capacity beforehand, but in return the 
growth rate is allowed to change over time. Our program is in principle agnostic to the 
type of measurement chosen, so long as it is proportional to the number of viable cells. 
However, it is structured primarily to work with cell counts (collected manually or by 
machine). Given the generality of the approach, it is possible to work with other meas-
ures as well, including optical densities, measurements of metabolites, etc.
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Implementation
Cells in suspension culture typically follow logistic growth to a reasonable approxima-
tion. Logistic growth can be broken down into two elements: a given rate of division per 
cell, and a death rate that depends linearly on the population size [19]. Such a death-
rate is equivalent to pairwise negative interactions between all cells in the population. 
Any genetic change or response in the cells might modify either of these parameters. We 
limit our model to changes in the growth rate, since death rates and the carrying capac-
ity are coupled to nutrient availability, and are hence assumed to stay rather constant in 
any cell line.

The growth rate r(t) is represented as a piecewise linear function with evenly dis-
tributed segment lengths. This simple representation was chosen to reduce the risk of 
overfitting, as it requires as few as two (or even one, for a constant growth rate) param-
eters. The number of cells at any particular time, N(t), with carrying capacity K, can be 
obtained from

which we arrive at by substituting a time-dependent growth rate into a standard logistic 
growth model [7]. Solving this Bernoulli differential equation [20] yields

Alternatively, the population curve can be obtained by simulating a logistic branch-
ing process [19], which is slower but likely more realistic, especially when the popula-
tion size is low. In such a process, cells are modelled as individual particles that divide 
after some randomly distributed length of time. It is a type of model that very obviously 
connects to the reality of the situation. So, by extending the model in [19] with a time-
dependent growth rate, in the stochastic simulations, the growth rate is given by

and the death rate by

which is then simulated using the next reaction method [21]. Both simulation methods 
have been implemented; the stochastic simulator is recommended only for population 
sizes below 2 · 106 , as it is significantly slower for large populations since division and 
death events for all cells are simulated individually.

Experimental cell counting produces noisy and sparse timelines of the population size 
over time (e.g. Additional file 1: Figure S1). The piecewise linear growth rate cannot eas-
ily be obtained analytically from such data. To overcome this problem, we complete the 
population curve model above with imitation experimental noise. Approximate Bayesian 
computation (ABC) can thereafter be used to numerically estimate the growth rate.

The experimental noise consists of two parts: 
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1 Sampling noise—the error caused by counting cells in a small sample of the cell cul-
ture.

2 Counting noise—the errors induced by inaccurate counting.

The sampling noise is modelled by asserting that for well dispersed cells a sample con-
tains a Poisson–distributed number of cells, thus sampling multiple times involves a 
nested series of Poisson random variables. This alone is known to underestimate the 
actual noise [22] as the counting noise is not included. Thus, to estimate the counting 
noise, we implemented a customizable set of filters, as disparate experimental set-ups 
may warrant different forms of noise. An easily motivated choice is a normally distrib-
uted counting noise, which is (approximately) consistent with each individual count hav-
ing a certain chance of being incorrect. Dividing the noise into two parts is a pragmatic 
choice to make changing between counting methods easier, as the manual error rate is 
approximately known [23], whereas manufacturers of automatic counters commonly 
provide estimates.

This set-up enables simulation from a piecewise linear growth rate over time using 
samples taken at discrete time points (Fig. 1). This forward model is inverted numeri-
cally using pyABC [24] and a sequential Monte-Carlo (SMC) approach. Uniform priors 
over a user-defined range are used for the growth rate control points. Importantly, the 
deterministic simulator is well-behaved also for negative growth rates. The output from 
ABC is samples from the posterior distribution, visualized using connected raincloud 
plots. We use raincloud plots as they combine a kernel density approximation, a box-
plot and raw data plotting into a single figure [25], making it easy to interpret the results.

To summarize, the time-dependent growth rate can be calculated numerically from 
the following: 

1 a series of cell counts.
2 the dilution steps taken for each count.

Fig. 1 Forward model simulating data that is comparable to experiments. Cell counting is done on a small 
sample of the total population, hence a small proportional fraction of the total number of cells is expected
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3 the time when each of the counts was done.
4 an estimate of the carrying capacity.

1–3 are used to estimate the number of cells at a certain time taking measurement error 
into account, whereas 4 is a fundamental parameter of a certain cell type that has to be 
provided. This data is processed in a number of steps, which are automatically managed 
by a workflow system. See the “Usage and practical details” section for a more in depth 
explanation.

Results and discussion
Simulated data example

For an initial demonstration of the software capabilities, where the correct result is 
known, simulated data was created using the forward model assuming three different 
growth rate curves: a constant rate, an increasing rate, and a decreasing one. The growth 
rates for these simulated example data were then inferred using the program. All three 
were reproduced with sufficient accuracy to be qualitatively easily identifiable (Fig. 2). 
Quantitatively, some degree of inaccuracy is induced by sampling noise. Note for 
instance how all of the simulated samples in the constant growth rate case had a greater 
number of cells than they would on average, leading to a slightly overestimated growth 
rate. These sources of noise are however to a large degree captured by the width of the 
posterior distribution. Moreover, this type of error is expected from experiments as well.

Cell line tests

Two different experiments with cell lines were carried out to test viability in practice. 
First, KCL-22 cells were cultured at two different concentrations of imatinib. KCL-22 is 
a chronic myeloid leukaemia cell line reliant on the onco-protein Bcr-Abl1 for survival, 
while imatinib is a Bcr-Abl1 inhibitor that effectively inhibits their growth [16]. With 
that in mind, the imatinib concentrations were selected such that the cells would grow, 
albeit slowly. The difference in growth rate can be clearly distinguished between the two 
concentrations (Fig.  3). Under normal conditions KCL-22 cells have a growth rate of 
about 1 division per day (i.e. population size doubling per day). Imatinib has an inhibi-
tory coefficient, IC50, of 240 nM (as measured by us). Thus, we expect to see growth 
rates of about 0.8 and 0.5 divisions per day, which is reasonably accurately represented 
given that IC50 measurements are typically not perfectly reproducible [26].

For the second cell line test, A batch of K562 cells was allowed to overgrow signif-
icantly. Each day, a subculture was taken and reseeded down to 1e5 cells/mL (a con-
centration at which they would normally grow well). These reseeded cultures were then 

(See figure on next page.) 
Fig. 2 Predicted growth rates from three simulated examples. Cell counting data (black dots, top panels) were 
generated from population size curves (red lines, top panels) simulated from three different piecewise linear 
growth rate curves (red lines, bottom panels) using the forward model (Fig. 1). We then then reconstructed the 
most likely growth rates from the sampled data (black), but, since sampling is inherently noisy, the posterior 
distribution is fairly wide (grey). The dashed black lines in the bottom panels and the shaded grey section in 
the top panels indicate the 89% highest posterior density interval (HPDI), i.e. the smallest continuous interval 
containing 89% of the samples
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counted every day. Allowing cells to overgrow typically damages their ability to repro-
duce, thus we expected that the reseeded cultures taken later on would grow slower ini-
tially. This was indeed observed; it could be seen that the longer cells had overgrown for, 
the worse their initial growth had become (Fig. 4). Additionally, the best growth occurred 
in the second subculture, which is consistent with the standard culturing procedure of 
splitting every other day. The observed decrease in growth rate in culture number two 
may have several explanations. First, in practice, as nutrient availability decreases with 
the increased number of living cells, we may expect a natural decrease in growth rate not 
accounted for by a simple logistic model of growth. Second, a slight overestimation of 
the carrying capacity parameter may cause such an artefact as the growing culture does 
not reach the expected population on time. During the four days for which they were 
tracked, all the subcultures recovered to grow at similar rates.

The endpoint posterior distributions are generally wider than the starting point. This 
occurs since when the population size approaches the carrying capacity, changes in the 
growth rate have an ever smaller effect on the relative change in population size. This is 
most evident in the extreme example of the final steady state at the carrying capacity, 
where changes in growth rate have no effects whatsoever. There is essentially less infor-
mation about the growth rate as the population size approaches the carrying capacity. 
Note however that measurements of small population sizes are more noisy, which some-
what balances the qualitative effect on the size of the posterior distribution.

Given the width of the posterior distributions in Figs. 3 and 4 the magnitude of changes 
required to be clearly distinguishable is on the order of a 20% change in growth rate. This 
should be taken into account when designing experiments intended to use this method. 
For instance, to observe drug resistance, the drug dose used should inhibit growth of 
non-resistant cells by at least that much, so as to create an observable difference.

Conclusions
There are many tools which infer cell-growth parameters from data, but we are not 
aware of any other tools for inferring a changing growth rate. The methodology is capa-
ble of distinguishing both absolute changes in growth rate, and differences specific to 
initial growth. The magnitude of the effects which could be identified is about a 20% 
change in growth rate or greater, though this depends on the specifics of the experiment. 
We did not test a decreasing growth rate on cells, as adaptation is normally positive for 
evolutionary reasons. Yet, since tracking decreasing rates worked for simulated data, this 
might be possible as well.

This work enables experiments wherein intentional or spontaneous changes to growth 
rate are of interest. For instance, it is possible to produce drug resistant cancer cells by 
culturing them with an inhibitor [16]. In cases where the adaptation happens quickly 
[15], this method could be used to follow the adaptation process. Another experiment 
made possible could be to examine the breakdown of some inhibitor, by observing how 
the growth changes as the concentration drops. This may be of use if the inhibitor is 
potent enough that the low concentrations are hard to measure directly.
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Materials and methods
KCL-22 and K562 cells were kindly provided by Prof. Leif Stenke (Karolinska Institutet, 
Solna, Sweden). They were cultured in 37◦C , 5% CO2 in RPMI1640 (Gibco, with Glu-
tamax) with 10% HI-FBS (Gibco) and 1% PenStrep (Gibco). Cell counting was performed 
using trypan blue exclusion on a LUNA-2 cell counter (Logos Biosystems).

KCL‑22 with inhibitors

KCL-22 cells were grown in under either 240 or 160 nM of imatinib, each in quadru-
plicate, in a 24 well plate. Cultures were initiated at 1e5 cells/mL in 1 mL medium, and 
were counted every day for 6 days.

K562 overgrowth

K562 cells were seeded to 1e5 cells/mL. Subcultures, diluted to 1e5 cells/mL, were taken 
daily for 8 days. All cultures were counted daily, as above.

Usage and practical details
The program runs on linux and has a simple command line usage powered by a snake-
make [27] workflow that automatically processes input data, runs simulations and com-
piles an output report. It is also possible to manually run all intermediate steps if desired. 
As ABC is a computationally heavy approach, the deterministic simulator works on a 
regular laptop, but the stochastic simulator may require a more powerful machine to 
finish in a timely manner. Data input is prepared as two files, the first of which is a .csv 
featuring names, live cell counts, data collection times, and optionally information about 
the steps undertaken during sampling and possible subsequent dilution of the culture. 
These sampling and dilutions steps are used for simulating sampling noise. The sec-
ond input file is a .toml file (a common human–readable config–file format) detail-
ing simulation parameters. This file typically only requires a few parameters tuned from 
defaults. Most importantly: (1) The carrying capacity, i.e. the greatest population size 
the culture will reach if left alone. (2) How the named data should be grouped; grouping 
can be relevant if either several measurements are carried out on the same population, 
or if several populations are expected to behave similarly and one intends to elucidate 
the overall trend. Detailed annotated examples using the data from the tests below are 
available in the github repository. Figures 2, 3 and 4 were produced by the program, with 
minor additions made for clarity.

Usage example

Consider the following minimal example of cells growing logistically. Suppose we have 
cells growing in 1 mL of medium, which, if left alone, would reach a total of 3e6 cells 
(i.e. the carrying capacity). Suppose further we then recorded the following observations 
(Table 1) which, while presented here as a table for ease of reading, would be provided 
to the program as a regular .csv file. The measurements were done by first taking a 10 µL 
sample, mixing it with an equal volume of trypan blue dye, transferring the mixture to 
a haemocytometer, and finally counting the number of living cells in a 0.4 µL volume. 
In Table 1 the name column indicates that we are following one particular cell culture. 
The time is the time, in days, when the count was made (relative to the first one). count 
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is self-explanatory, whereas sample1 is the fraction of the total population taken in the 
first sampling step (i.e. the 10 µL sample), and sample2 is the fraction of the first sample 
counted in the second step, ignoring the dilution (as it does not change the number of 
cells in the sample). Note that 0.4 µL in a 1:1 dilution is 0.2 µL without dilution, and 
10 µL · 0.02 = 0.2 µL

We run the program using the .toml file with parameters in Listing 1. Note that any-
thing following a “#” are comments with no effect. We are assuming that the growth rate 
is somewhere between 0.01 and 3.0 divisions per cell and day, and that the growth rate 
function can be described as a piecewise linear function with either one (constant), two 
(linearly changing with time) or three (linearly changing with a central breakpoint) con-
trol points. Furthermore, we are running four simulations in parallel using the determin-
istic bernoulli equation simulator (Eq. 2). Finally, each individual count is assumed to 
be wrong 5% of the time (under a normal distribution approximation of the underlying 
binomial distribution).

Using data/minimal.csv and data/minimal.toml as input, the snakemake 
workflow automatically is used to run all simulation steps by calling snakemake 
results/minimal.pdf results/minimal.fit.csv which yields plots and a 
table of the inferred growth rates.

Availability and requirements

Project name: ratrack
Project home page: https ://githu b.com/Sanda lmoth /ratra ck
Operating system: Linux

Table 1 Table of observations for the minimal example

The units in brackets would not be part of the input .csv

Name Time [days] Count Sample1 Sample2

Minimal 0.0 19 0.01 0.02

Minimal 2.0 105 0.01 0.02

Minimal 4.0 403 0.01 0.02

Minimal 6.0 529 0.01 0.02

Minimal 8.0 591 0.01 0.02

https://github.com/Sandalmoth/ratrack
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Programming language: Python3 and C++
Other requirements: Python 3.6 or higher, pyABC 9.14 or higher, snakemake 4.4 or 
higher. A complete list is provided as a conda environment file available on the pro-
ject homepage.
License: zlib (permissive open source)
Any restrictions to use by non-academics: Not applicable.

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9-020-03887 -7.

Additional file 1: Figure S1. Cell count timelines collected from K562 cells.
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PDT: Population doubling time; HPDI: Highest posterior density interval; HI-FBS: Heat-inactivated fetal bovine serum; ABC: 
Approximate bayesian computation; SMC: Sequential Monte-Carlo; IC50: 50% inhibitory coefficient.
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