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Abstract 

Background: Gene fusion events are significant sources of somatic variation across 
adult and pediatric cancers and are some of the most clinically-effective therapeutic 
targets, yet low consensus of RNA-Seq fusion prediction algorithms makes therapeutic 
prioritization difficult. In addition, events such as polymerase read-throughs, mis-map-
ping due to gene homology, and fusions occurring in healthy normal tissue require 
informed filtering, making it difficult for researchers and clinicians to rapidly discern 
gene fusions that might be true underlying oncogenic drivers of a tumor and in some 
cases, appropriate targets for therapy.

Results: We developed annoFuse, an R package, and shinyFuse, a companion web 
application, to annotate, prioritize, and explore biologically-relevant expressed gene 
fusions, downstream of fusion calling. We validated annoFuse using a random cohort of 
TCGA RNA-Seq samples (N = 160) and achieved a 96% sensitivity for retention of high-
confidence fusions (N = 603). annoFuse uses FusionAnnotator annotations to filter non-
oncogenic and/or artifactual fusions. Then, fusions are prioritized if previously reported 
in TCGA and/or fusions containing gene partners that are known oncogenes, tumor 
suppressor genes, COSMIC genes, and/or transcription factors. We applied annoFuse to 
fusion calls from pediatric brain tumor RNA-Seq samples (N = 1028) provided as part 
of the Open Pediatric Brain Tumor Atlas (OpenPBTA) Project to determine recurrent 
fusions and recurrently-fused genes within different brain tumor histologies. annoFuse 
annotates protein domains using the PFAM database, assesses reciprocality, and anno-
tates gene partners for kinase domain retention. As a standard function, reportFuse 
enables generation of a reproducible R Markdown report to summarize filtered fusions, 
visualize breakpoints and protein domains by transcript, and plot recurrent fusions 
within cohorts. Finally, we created shinyFuse for algorithm-agnostic interactive explora-
tion and plotting of gene fusions.

Conclusions: annoFuse provides standardized filtering and annotation for gene 
fusion calls from STAR-Fusion and Arriba by merging, filtering, and prioritizing putative 
oncogenic fusions across large cancer datasets, as demonstrated here with data from 
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the OpenPBTA project. We are expanding the package to be widely-applicable to other 
fusion algorithms and expect annoFuse to provide researchers a method for rapidly 
evaluating, prioritizing, and translating fusion findings in patient tumors.

Keywords: RNA-seq, Gene fusions, Annotation tool, Oncogenes, Cancer, Shiny web 
application

Background
Gene fusions arise in cancer as a result of aberrant chromosomal rearrangements or 
defective splicing, bringing together two unrelated genes that are then expressed as a 
novel fusion transcript [1]. Detection of therapeutically-targetable fusion calls is of clini-
cal importance and computational methods are constantly being developed to detect 
these events in real-time. Recent comparative studies show low concordance of fusion 
predictions across methods [2], suggesting that many predictions may not represent 
true events. Additionally, transcriptional read-throughs [3], in which the polymerase 
machinery skips a stop codon and reads through a neighbouring gene, as well as fusions 
that involve non-canonical transcripts or gene-homologs, are prevalent in disease data-
sets, yet the biological relevance of such events is still unclear. This makes it difficult 
for both researchers and clinicians to prioritize disease-relevant fusions and discern the 
underlying biological mechanisms and thus, appropriate fusion-directed therapy. Gene 
fusion events leading to gain-of-function or loss-of-function in kinases and putative 
tumor suppressor genes, respectively, have been shown to be oncogenic drivers with 
therapeutic potential, especially in pediatric tumors [4–6]. For example, the recurrent 
fusion KIAA1549-BRAF is found across 66–80% of low grade gliomas and results in a 
fusion transcript that has constitutive BRAF kinase activity [7]. EWSR1-FLI1 is found in 
nearly 100% of Ewing’s sarcoma and forms an oncogenic RNA complex, driving tumori-
genesis [8]. To capture highly recurrent and validated fusions such as these, the fusion 
databases ChimerDB [9] and TumorFusions [10] were developed from RNA fusions 
called in The Cancer Genome Atlas (TCGA) [11, 12] samples. In such large-scale cancer 
studies, a single algorithm was routinely used to detect fusion calls because using multi-
ple callers often adds complexity of annotation and integration. However, it is now com-
mon practice to incorporate data from multiple algorithms to reliably define the fusion 
landscape of cancers. Recent efforts have reported the importance of using systematic 
filtering and aggregation of multiple fusion callers to expand the number of biologically-
relevant fusions in adult cancers [12, 13]. However, to our knowledge there are no tools 
or packages developed to filter, aggregate, and detect recurrent and putative oncogenic 
fusions in a systematic, flexible, and reproducible manner. Despite the existence of a few 
tools with working open-source code which can assist in fusion annotation or prioriti-
zation, only three are algorithm-agnostic with the remaining tools relying on outdated 
fusion algorithms, rendering them unusable on current gold standard tools to date, such 
as STAR-Fusion [14] and Arriba [15] (Table 1).

Here, we developed annoFuse for annotation, prioritization, and exploration of puta-
tive oncogenic gene fusions. We performed technical validation using two independ-
ent RNA-Sequencing datasets (TCGA and Pediatric Preclinical Testing Consortium), 
and finally, applied annoFuse to gene fusion calls from STAR-Fusion and Arriba for 
1028 pediatric brain tumor samples provided as part of the OpenPBTA Project [16]. To 
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achieve this, we used FusionAnnotator on raw fusion calls to identify and filter red flag 
fusions, that is, fusions found in healthy tissues or in gene homology databases. Using 
annoFuse, we remove fusions known or predicted to be artifactual and retain high-qual-
ity fusion calls. Second, fusions that pass quality checks are annotated (Additional file 2: 
Table  S1) as previously found within TCGA [10] and each gene partner is annotated 
as an oncogene, tumor suppressor [17, 18], kinase [19], transcription factor [20], and 
whether it has been reported in the Catalogue of Somatic Mutations in Cancer (COS-
MIC) Cancer Gene Census [21]. In addition, we added the following genes specific to 
pediatric cancer from literature review: MYBL1 [22], SNCAIP [23], FOXR2 [24], TTYH1 
[25], and TERT [26–29] as oncogenes and BCOR [30] and QKI [4] as tumor suppres-
sors. Finally, we determined the recurrence pattern for fusions across the cohort and 
also recurrently-fused genes within each cancer histology.

Implementation
We implemented annoFuse using the R programming language R version 4.0.2 (2020-
08-13). The R packages required to install and run annoFuse are reshape2, dplyr, tidyr, 
ggplot2, qdapRegex, ggpubr, tibble, ggthemes, EnsDb.Hsapiens.v86, grid, readr, grDe-
vices, stats, utils, stringr, shiny, shinydashboard, rintrojs, shinythemes, DT, rmarkdown, 
and methods, with the optional package: knitr. We also created an interactive web-based 
application of annoFuse called shinyFuse using the R/Shiny framework.

R package overview

The annoFuse package was developed to provide a standardized filtering and annotation 
method for fusion calls from Arriba and STAR-Fusion, first and second place winners of 
the 2017 DREAM SMC-RNA Challenge, respectively [31]. In a 2019 assessment of 23 
fusion algorithms for cancer biology, both Arriba and STAR-Fusion ranked in the top 
three fastest and most accurate tools [32]. annoFuse utilizes a four-step process (Fig. 1) 
that is available with flexible functions to perform downstream functions such as merg-
ing, filtering, and prioritization of fusion calls from multiple fusion calling algorithms on 
single or batch samples.

RNA expression and fusion calls

Currently, annoFuse is compatible with fusion calls generated from Arriba v1.1.0 [15] 
and/or STAR-Fusion 1.5.0 [14]. Both tools utilize aligned BAM and chimeric SAM files 
from STAR as inputs and STAR-Fusion calls are annotated with GRCh38_v27_CTAT_
lib_Feb092018.plug-n-play.tar.gz, which is provided in the STAR-fusion release. Arriba 
should be provided with strandedness information, or set to auto-detection for poly-A 
enriched libraries. Additionally, the blacklist file, blacklist_hg38_GRCh38_2018-11-04.
tsv.gz contained in the Arriba release tarballs, should be used to remove recurrent fusion 
artifacts and transcripts present in healthy tissue. An expression matrix with FPKM or 
TPM values is also required; the matrix should have a column “GeneSymbol” following 
the same gene naming convention as found in fusion calls.
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Fusion call preprocessing

We leveraged the fact that STAR-Fusion uses FusionAnnotator as its final step and thus, 
require all fusion calls be annotated with FusionAnnotator v. 0.2.0 to contain the addi-
tional column, “annots”. Fusion calls for all samples from both algorithms should be 
merged into a single TSV. Users will also provide a sample ID column (named “Sam-
ple” or other character vector specified by the user) for each merged file, which will be 
used to denote fusion calls per sample as well as identify recurrent fusions in cohorts of 
samples.

annoFuse steps

Step 1: fusion standardization

To obtain a standardized format for fusion calls from multiple fusion calls we use the 
fusion_standardization function to format caller specific output files to a standardized-
FusionCalls format defined in the package README. fusion_standardization allows 
users to standardize fusion calls from multiple callers.

Step 2: fusion filtering

Events such as polymerase read-throughs, mis-mapping due to gene homology, and 
fusions occurring in healthy normal tissue confound detection for true recurrent fusion 

Fig. 1 Graphical representation of the annoFuse pipeline. RNA-seq data processed through STAR-RSEM 
and fusion calls generated by Arriba v1.1.0 and/or STAR-Fusion 1.5.0 are inputs for the pipeline. The fusion_
standardization function standardizes calls from fusion callers to retain information regarding fused genes, 
breakpoints, reading frame information, as well as annotation from FusionAnnotator. Standardized fusion 
calls use fusion_filtering_QC to remove false positives such as fusions with low read support, annotated as 
read-throughs, found in normal and gene homolog databases and remove non-expressed fusions using 
expression_filter_fusion. Calls are annotated with annotate_fusion_calls to include useful biological features 
of interest (eg. Kinase, Tumor suppressor etc.) Project-specific filtering captures recurrent fused genes using 
functions to filter (shown in boxes) as well as putative driver fusion. Outputs available from annoFuse include 
TSV files of annotated and prioritized fusions, a PDF summary of fusions, recurrently-fused gene/fusion 
plots, and an HTML report. Finally, users can explore fusion data interactively using shinyFuse. (Created with 
BioRender.com)
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Table 2 Fusion filtering and annotation criteria

Order Description Filtering type Rationale Output type Filtering 
criteria

1 Artifact filtering for readthroughs 
(readthrough fusions in mittel-
man database are not filtered)

QC To filter arti-
facts

All General

2 Artifact filtering for fusions found 
in normal datasets and gene 
homologs (red flag database 
from FusionAnnotator)

QC To filter arti-
facts

All General

3 JunctionReadCount == 0 QC To filter out 
false calls

All General

4 SpanningFragCount-Junction-
ReadCount >= 100

QC To filter false 
calls from low 
mapping

All General

5 Both gene partners with 
FPKM < 1

QC To filter out not 
expressed 
fused genes

All General

6 Fused genes with either gene in 
TSGs,Cosmic,Oncogenic,TCGA 
fusion list

Gene-list To capture 
cancer-spe-
cific fusions

Putative-driver Project-specific

7 Local Rearrangement QC To remove local 
rearrange-
ment within 
neighbouring 
genes

Filtered-fusion Project-specific

8 Fusion is called by both callers QC To filter out 
calls from 
only 1 caller

Filtered-fusion Project-specific

9 Fusion is called in atleast 2 sam-
ples per histology

Recurrence To gather 
recurrent 
fusion calls

Filtered-fusion Project-specific

10 Fusion in Filtered-fusions found 
in more than 1 histology

QC To remove 
fusions from 
Filered-fusion 
list that are 
found in 
more than1 
histology

Filtered-fusion Project-specific

11 Fused genes in Filtered-fusion 
fusions found to be multi-fused 
more than 5 times in a sample

QC To remove 
fusions from 
Filtered-
fusion list 
that are 
found to be 
multi-fused

Filtered-fusion Project-specific

12 Add recurrent fusions that pass 
QC from steps 7–11

Recurrence To add non-
oncogenic 
fusions to 
putative-
driver fusion 
list

Putative-
driver + recur-
rent non-onco-
genic fusion

Project-specific

Description Annotation type Rationale Output type Annotation source

genelistreference.txt Gene-list To annotate filtered and 
unfiltered fusion calls 
with gene list of inter-
est saved in reference 
folder

All Oncogene, tsgs, kinase, 
cosmic census, 
curated tf and pre-
dicted tf

fusionreference.txt Gene-list To annotate filtered 
and unfiltered fusion 
calls with fusion list of 
interest saved in refer-
ence folder

All TCGA 
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calls and false positives for genes considered as oncogenic, tumor suppressor or kinases 
in some cases. In this step, we filter the standardized fusion calls to remove artifacts and 
false positives (Table 2) using the function fusion_filtering_QC. The parameters are flex-
ible to allow users to annotate and filter the fusions with a priori knowledge of their call 
set. For example, since the calls are pre-annotated with FusionAnnotator, the user can 
remove fusions known to be red-flags as annotated with any of the following databases 
GTEx_recurrent_STARF2019, HGNC_GENEFAM, DGD_PARALOGS, Greger_Nor-
mal, Babiceanu_Normal, BodyMap, and ConjoinG. This is done using the parameter, 
artifact_filter = "GTEx_recurrent_STARF2019|DGD_PARALOGS |Normal| BodyMap". 
Of note, we decided not to remove genes annotated in HGNC_GENEFAM, as this data-
base contains multiple oncogenes and their removal resulted in missed true fusions 
using our validation truth set. Likewise, we retained fusions annotated with ConjoinG, 
as these may represent true chimeric RNA and protein products from adjacent genes, 
but are a separate class from read-through events [33]. Read-throughs annotated by 
any algorithm can also be removed at this step by using the parameter “readthroughFil-
ter = TRUE”. During validation, we observed the real oncogenic fusion, P2RY8-CRLF2 
[34, 35], annotated as a read-through in acute lymphoblastic leukemia samples, there-
fore, we implemented a condition such that if a fusion is annotated as a read-through, 
but is present in the Mitelman cancer fusion database, we recover these fusions as true 
positive calls.

This function also allows users to flexibly filter out fusions predicted to be artifactual 
while retaining high-quality fusion calls using junction read support of ≥ 1 (default) and 
spanning fragment support of < 100 (default) reads compared to the junction read count, 
as disproportionate spanning fragment support indicates false positive calls [15]. Finally, 
if both genes of the fusion are deemed not expressed < 1 FPKM or TPM (default), the 
fusion transcript calls can be removed using function expression_filter_fusion.

Step 3: fusion annotation

The annotate_fusion_calls function annotates standardized fusion calls and performs 
customizable fusion annotation based on user gene lists as input. If checkRecipro-
cal == TRUE reciprocal status of fusions per sample_id is also provided. As a default 

Fusion filtering criteria were developed to gather high quality recurrent fusion calls while retaining fusions containing 
oncogenes and/or tumor suppressor genes. Filtering is divided into 3 types (1) QC: filters known causes of false positives. (2) 
Gene-list: retains additional fusions in genes and fusions of interest list. (3) Recurrence: filters out non-recurrent fusions in 
genes not annotated as putative oncogenic. Annotation lists are also described

Table 2 (continued)

Description Annotation type Rationale Output type Annotation source

GTEx zscored compari-
son

Expression To annotate filtered and 
unfiltered fusion calls 
zscore and compari-
son with GTEx

All GTEx

Cohort comparison Expression To annotate filtered and 
unfiltered fusion calls 
zscore and compari-
son with cohort level 
expression

All Cohort
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setting, we provide lists of, and annotate gene partners as, oncogenes, tumor suppressor 
genes, and oncogenic fusions (Additional file 2: Table S1).

The optional zscored_annotation function provides z-scored expression values from a 
user-supplied matrix such as GTEx or within cohort to compare samples with and with-
out the fusion to look for over or under expression of fused genes compared to normal 
using a zscoreFilter. A cutoff of 2 (default) is set to annotate any score > 2 standard devia-
tions away from the median as differentially-expressed. Researchers can then use this 
information to decide whether to perform additional downstream filtering.

Single sample run

For single samples, we developed the annoFuse_single_sample function which performs 
fusion standardization of Arriba and STAR-Fusion calls, fusion filtering, and fusion 
annotation with user-provided gene and fusion reference lists.

Project‑specific filtering

Each study often requires additional downstream analyses to be performed once high-
quality annotated fusion calls are obtained. We developed functions to enable analyses 
at a cohort (or project-level) and/or group-level (eg: histologies) designed to remove 
cohort-specific artifactual calls while retaining high-confidence fusion calls. The func-
tion called_by_n_callers annotates the number of algorithms that detected each fusion. 
We retained fusions with genes not annotated with the gene lists above (eg: oncogene, 
etc.) that were detected by both algorithms as inframe or frameshift but not annotated 
as LOCAL_INVERSION or LOCAL_REARRANGEMENT by FusionAnnotator, as 
these could represent novel fusions. Additionally, samplecount_fusion_call identifies 
fusions recurrently called in (default ≥ 2) samples within each group. At the group-level, 
we add groupcount_fusion_calls (default ≥ 1) to remove fusions that are present in more 
than one type of cancer. At the sample level, fusion_multifused detects fusions in which 
one gene partner is detected with multiple partners (default ≥ 5), and we remove these 
as potential false positives. This enables annoFuse to scavenge back potential oncogenic 
fusions which may have otherwise been filtered. Separately, the function fusion_driver 
retains only fusions in which a gene partner was annotated as a tumor suppressor 
gene, oncogene, kinase, transcription factor, and/or the fusion was previously found 
in TCGA. Domain retention status for Gene1A (5′ gene) and Gene1B (3′ gene) for the 
given pfamIDs is also annotated and by default, we assess kinase domain retention sta-
tus fusion-directed therapy often targets kinases. To further reduce the false positives 
and fusions containing pseudogenes from the cohort, we next filtered fusions using a 
cutoff of present in > 4 broad histologies after reviewing the fusion distributions within 
the OpenPBTA Project (Additional file 1: Figure S1). Finally, potential driver fusions and 
scavenged back recurrent fusion sets are merged into a final set of putative oncogenic 
fusions.

Fusion domain annotation

The get_Pfam_domain function in annoFuse provides domain annotation for each fused 
gene in standardized fusion calls. We used the UCSC pfamID Description database and 
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domain location database (Additional file 2: Table S1), along with bioMart [36, 37] gene 
coordinates to get genomic locations of each domain in a gene. By identifying the break-
point within the gene coordinate, we annotate each domain as described in (Additional 
file 3: Table S2). This annotation provides domain retention information which enables 
prioritization to generate new hypotheses, validate fusion transcript functional impact, 
and or identify targeted therapeutic options.

Visualization

Quick visualization of filtered and annotated fusion calls can provide information use-
ful for review and downstream analysis. We provide the function plot_summary, which 
provides distribution of intra-chromosomal and inter-chromosomal fusions, number of 
in-frame and frameshift calls per algorithm, and distribution of gene biotypes, kinase 
group, and oncogenic annotation. If project-specific filtering is utilized, barplots display-
ing recurrent fusion and recurrently-fused genes can be generated using plot_recurrent_
fusions and plot_recurrent_genes, respectively. Finally, plot_breakpoints can be used 
to generate all transcripts and breakpoints per gene to visualize the exon and domain 
retention resulting from the fusion (Fig. 4).

Interactive fusion exploration using shinyFuse

Depending on the size of the dataset, the prioritized fusions from annoFuse may still 
contain a considerable amount of information in need of further processing to efficiently 
extract biological insights. To facilitate this, we developed a web-based application, 
shinyFuse, in the R/Shiny framework, to assist users in performing drill-down operations 
while interacting with their fusion results. This feature is included in both the annoFuse 
package as well as a standalone server (http://shiny .imbei .uni-mainz .de:3838/shiny Fuse/) 
to explore the results table, PutativeDriverAnnoFuse.tsv. Within the web interface, users 
can easily upload fusion calls from annoFuse or format a file from any fusion algorithm 
that generates minimal breakpoint location information. Prior to upload, users can 
choose to append additional columns containing sample descriptors and group informa-
tion to take advantage of the interactive recurrence analysis feature. There are two major 
features of shinyFuse: FusionExplorer and FusionSummary.

FusionExplorer

FusionExplorer allows users to interactively search, filter, visualize, and export the out-
put of annoFuse through analysis of PutativeDriverAnnoFuse.tsv. Users can select spe-
cific fusion calls according to flexible combinations of filters (e.g. fusion type, caller 
count, spanning/junction fragments, spanning delta, confidence, and caller). Addition-
ally, selecting a single fusion event (row) in the FusionExplorer tab generates breakpoint, 
exon, and protein domain plots tailored to transcripts for a specific fusion, sample, or 
for all samples. Full or filtered data, as well as plots, can be quickly downloaded from the 
application.

FusionSummary

If a user has more than one cohort of samples and opts to utilize the project-specific fil-
tering (eg: multiple samples from different types of cancer) or has multiple samples with 

http://shiny.imbei.uni-mainz.de:3838/shinyFuse/
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factors by which they would like to group the data (eg: molecular subtype), these data 
can be explored using FusionSummary. The entire data table can be used for plotting, 
or it can first be filtered. The user can select a grouping column (factor), a counting col-
umn (usually patient-level), and the number of recurrent fusions to display in the plots. 
Recurrent fusions and recurrently-fused genes will be plotted and figures can be easily 
exported.

Reproducible fusion analysis with reportFuse

Making results accessible and easier to interpret can play an essential role in reducing 
time and iterations required to extract actionable knowledge of large datasets, empow-
ering a wide spectrum of collaboration partners. We acknowledge the importance of 
computational reproducibility [38, 39] when generating analyses, and thus have cre-
ated reportFuse with functionality to compile a full HTML report (using R Markdown). 
reportFuse is implemented using a template analysis containing multiple summary func-
tions side by side with the code used to generate them. The report can be a valuable 
means for persistent storage and sharing of results with colleagues.

Results and discussion
Technical validation of annoFuse

To assess our filtering strategy, we analyzed a subset of samples from TCGA and com-
pared fusions retained with annoFuse filtering and prioritization to those deemed the 
final call set in a previously published analysis by The Fusion Analysis Working Group 
[13]. A group of 160 samples were randomly selected BLCA (N = 10), BRCA (N = 11), 
CESC (N = 5), COAD (N = 11), ESCA (N = 5), GBM (N = 7), HNSC (N = 10), KIRP 
(N = 9), LGG (N = 9), LIHC (N = 9), LUAD (N = 5), LUSC (N = 11), OV (N = 9), PAAD 
(N = 8), PCPG (N = 2), PRAD (N = 14), SARC (N = 6), SKCM (N = 9), TGCT (N = 6), 
THCA (N = 4). We first ran STAR-Fusion, Arriba, and RSEM to generate fusion calls and 
gene expression values as described in OpenPBTA [16]. Next, we standardized STAR-
Fusion and Arriba fusion calls using fusion_standardization, then performed artifact 
and QC filtering using fusion_filtering_QC. Using a default spanningDelta (spanning-
FragCount–JunctionReadCount) of 10, annoFuse retained only 70% of the fusions in the 

Table 3 Sensitivity of TCGA fusion calls

Fusion standardization and fusion artifact filtering was conducted on a subset of TCGA samples and compared to published 
filtered fusion calls from The Fusion Analysis Working Group. SpannigFragCountFilter cutoffs of 10, 20, 30, 40, 50, 100, 150, 
and 200 were assessed to determine sensitivity of annoFuse prioritized fusion calls

spanningDelta cutoff annoFuse Sensitivity

10 0.709784411

20 0.807628524

30 0.870646766

40 0.893864013

50 0.922056385

100 0.963515755

150 0.973466003

200 0.983416252
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final call set (Table 3). Therefore, we visualized the distribution of spanningDelta (span-
ningFragCount–JunctionReadCount) across fusions called from the TCGA and PBTA 
cohorts to assess a cutoff for spanningDelta (Additional file  1: Figure S2). We found 
that sensitivity reaches 96% at cutoff of 100 (Additional file 1: Figure S3 and Table 3) for 
TCGA 50 to 76 bp read length RNAseq data. Therefore, we have implemented a default 
spanningDelta of 100 and made this a customizable input parameter.

Few gene fusion “truth” sets exist and those that do consist of simulated data or syn-
thetic fusions spiked into breast cancer cell lines or total RNA [31, 32, 40]. We there-
fore utilized a recent study in which high-confidence fusions were reported in 244 
patient-derived xenograft models from the Pediatric Preclinical Testing Consortium 
(PPTC) [41]. A set of 27 fusions were molecularly validated from acute lymphoblastic 
leukemia (ALL) models in the PPTC dataset and we deemed this our “truth” set. We 
first ran Arriba on the PPTC dataset and determined that 23 of the 27 truth fusions 
were detected using only STAR-Fusion and/or Arriba. Next, we used annoFuse to filter 
and prioritize putative oncogenic fusions. Table 4 shows the performance of annoFuse, 
which retained all 23 true positive ALL fusions (100%). Interestingly, only 114 of 166 
previously defined as high-confidence (putative oncogenic fusions) in [41] fusions were 
detected using STAR-Fusion and Arriba (23/27 within the “truth” set), implying gold 
standard algorithms alone still fail to capture the full landscape of gene fusions, reflect-
ing that additional algorithms should be integrated into our workflow. Of the 114 fusions 
we detected, 110 (96%) were retained as putative oncogenic fusions using annoFuse. The 
four fusions annoFuse did not retain were removed with default the “read-through” filter, 
which can be turned off as an option.

Table 4 Validation of annoFuse prioritization using PPTC PDX fusion calls

Retention of high-confidence, putative oncogenic calls averaged 96% across the entire PPTC PDX dataset and was 100% 
for the ALL truth set (ALL = acute lymphoblastic leukemia). Column 1 = PPTC histology, Column 2 = fusion calls from STAR-
Fusion, FusionCatcher, deFuse, and SOAPFuse which were filtered and reported as high-confidence in the PPTC dataset, 
Column 3 = PPTC reported fusions detected from STAR-Fusion and Arriba, Column 4 = Fusions retained following annoFuse 
filtering, Column 5 = Percent of fusions retained after applying annoFuse

Histology PPTC STAR‑Fusion/
FusionCatcher/
SOAPFuse/ deFuse (n 
detected)

PPTC STAR‑Fusion/
Arriba (n detected)

annoFuse STAR‑
Fusion/Arriba (n 
retained)

% Retained 
with annoFuse

ALL 117 75 72 96

CNS Embryonal 4 3 3 100

Ependymoma 2 0 0 NA

Ewing Sarcoma 11 10 10 100

Glioblastoma 1 1 0 0

Osteosarcoma 18 15 15 100

Other Brain 1 1 1 100

Other Sarcoma 4 3 3 100

Rhabdomyosarcoma 7 6 6 100

Wilms 1 0 0 NA

Total 166 114 110 96

ALL truth set 27 23 23 100
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Case study with annoFuse, shinyFuse, and reportFuse using OpenPBTA

As proof of concept, we utilized RNA expression generated by STAR-RSEM [42] and 
fusion calls generated by Arriba v1.1.0 [15] and/or STAR-Fusion 1.5.0 [14] which were 
released as part of the Pediatric Brain Tumor Atlas [43]. Briefly, RNA from fresh-frozen 
tissue was extracted and libraries were prepped and sequenced at 2 × 100 or 2 × 150 bp 
to an average of 200 M+ total reads, and at least 60% of reads were required to map to 
the human genome for fusion analysis to proceed. Additional details can be accessed in 
the OpenPBTA manuscript [16]. The algorithms were run as described in RNA Expres-
sion and Fusion Calls. The RNA expression and fusion workflows are publicly available 
within the Gabriella Miller KidsFirst GitHub repository [44].

Following fusion standardization, annotation, and filtration, we applied project-spe-
cific filtering to the OpenPBTA RNA-Seq cohort (n = 1028 biospecimens from n = 943 
patients). Figure 2 is a sample summary PDF designed to give the user an overall glance 
of the fusion annotations and fusion characteristics within the cohort. From the Open-
PBTA cohort, it is clear that there were predominantly more intra-chromosomal fusions 
called than inter-chromosomal fusions, even after filtering for read-through events 
(Fig. 2a). While a low-grade astrocytic tumors are the major pediatric brain tumor sub-
type known to be enriched for gene fusions, it was surprising to observe a large number 
of fusions in diffuse astrocytic and oligodendroglial tumors and the project-specific util-
ity of annoFuse allows researchers to further prioritize fusions. Histologies within the 
OpenPBTA project were classified according to broad WHO 2016 subtypes [45].

The number of in-frame and frameshift fusions per algorithm were roughly equivalent 
within each STAR-Fusion and Arriba fusion calls (Fig. 2b). Figure 2c depicts the density 
of genes categorized by gene biotype (biological type), and as expected, the filtered and 
annotated calls were enriched for biologically-functional fusions; the majority of gene 
partners are classified as protein-coding. The majority of gene partners were annotated 
as tyrosine kinase (TK) or tyrosine kinase-like (TKL) (Fig. 2d). In Fig. 2e, the user can 
explore the biological and oncogenic relevance of the fusions across histologies. Of the 
fusions harboring kinase domains, we found that the majority of 3′ partners retained 
kinase domains, supporting these fusions as functionally relevant (Additional file 1: Fig-
ure S4).

Following project-specific filtering, we observed KIAA1549-BRAF fusions as the most 
recurrent in-frame fusion in our cohort (n = 109/898), since KIAA1549-BRAF expressing 
low-grade astrocytic tumors comprise the largest representative histology in the Open-
PBTA cohort (n = 236/898). C11orf95-RELA was predominant in ependymal tumors 
(n = 25/80), as expected in supratentorial ependymomas [46]. Other expected recurrent 
oncogenic fusions obtained through annoFuse were EWSR1-FLI1 in CNS Ewing sarco-
mas [47], and KANK1-NTRK2, MYB-QKI, and FAM131B-BRAF in low-grade astrocytic 
tumors [4, 48] (Fig. 3a). In addition to recurrent fusions, we also detect recurrently-fused 
genes to account for partner promiscuity. This enables us to see a broader picture of 
gene fusions, specifically within diffuse astrocytic and oligodendroglial tumors, in which 
we see fusions prevalent in ST7, MET, FYN, REV3L, AUTS2, and ROS1, and meningi-
omas, in which NF2 fusions are common (Fig. 3b). Next, we added functionality to visu-
alize domain information (Fig. 4) to quickly scan for domains retained and lost across 
the dataset. The putative oncogenic fusion table from this analysis is both available in 
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Fig. 2 Fusion annotations generated by annoFuse a Distribution of intra- and inter-chromosomal 
fusions across histologies. b Transcript frame distribution of fusions detected by Arriba and STAR-Fusion 
algorithms. c Bubble plot of gene partner distribution with respect to ENSEMBL biotype annotation 
(Size of circle proportional to number of genes). d Barplots representing the distribution of kinase 
groups represented in the PBTA cohort annotated by gene partner. (Alpha_kinase = Alpha-kinase family, 
Hexokinase_2 = Hexokinase, PI3_PI4_kinase = Phosphatidylinositol 3- and 4-kinase, Pkinase = Protein kinase 
domain, Pkinase_C = Protein kinase C terminal domain, Pkinase_Tyr = Protein tyrosine kinase). e Bubble 
plot representing the distribution of fused genes as oncogenes, tumor suppressor genes, kinases, COSMIC, 
predicted and curated transcription factors (Size of circle proportional to number of genes). Genes belonging 
to more than one category are represented in each. In all panels except for B, fusion calls were merged from 
both STAR-Fusion and Arriba
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the vignette and on the standalone Shiny server as a demo dataset for shinyFuse, ena-
bling both free exploration of the data as well as reproducible generation of Figs. 3 and 
4. Finally, we use reportFuse to include a reproducible HTML report which generates all 
output tables and figures for this manuscript.

The few openly-available fusion annotation and/or prioritization tools summa-
rized in Table  1 perform only a subset of the functionalities provided in annoFuse 
and shinyFuse. In addition, the majority are no longer maintained, nor are directly 
compatible with Arriba, the tool that won the SMC-RNA DREAM challenge for 
speed and accuracy in 2019. For example, Oncofuse [49], Pegasus [50], chimera [51], 
and co-Fuse [52] have not been updated in two or more years, and as a result, these 
tools lack compatibility with newer and improved fusion algorithms. The chimer-
aviz R package [53] is well-maintained and compatible with nine fusion algorithms, 
but only performs visualizations of fusions, thus prioritization using database 
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Fig. 3 Recurrent fusion plots generated by annoFuse. Bar plots as representative of histology showing 
recurrent fusion calls by number of patients (a) and recurrently-fused genes by number of patients (b) after 
filtering and annotation
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annotation, readthrough and expression is not possible using this tool. Four tools are 
algorithm agnostic, yet perform only specific aspects of annotation and prioritiza-
tion. Oncofuse [49] and Pegasus [50] analyze oncogenicity of fusions, and chimera 
[51] and FusionHub [54] require Oncofuse [49] to be run as a first step. FusionHub 
[54] is a web-based tool which enables annotation of fusions with 28 databases, 
however, is not programmatically scalable. FusionAnnotator [55] determines the 
presence of fusions in 15 cancer-associated databases, oncogene lists, and seven 
databases for fusions not relevant in cancer, but does not perform prioritization. 
ConFuse performs filtering and prioritization, but is not algorithm-agnostic; it only 
works on fusion calls from deFuse [56]. AGFusion [57] annotates protein domains, 
and Fusion Pathway [58] utilizes fusion and protein domain annotations in gene set 
enrichment analysis (GSEA) to infer oncogenic pathway association. When used 
exclusively, none of these tools flexibly perform fusion annotation and prioritiza-
tion. Furthermore, none enable the interactive exploration and visualization capa-
bilities that we provide with shinyFuse. Instead, we leveraged the algorithm agnostic 
capabilities of FusionAnnotator to pre-annotate fusion input from STAR-Fusion 
and Arriba to create annoFuse, an all-in-one tool that performs fusion annotation, 
oncogenic prioritization, recurrence analysis, visualization, and exploratory fusion 
analysis.

By integrating FusionAnnotator with functionality of the current gold standard 
algorithms STAR-Fusion and Arriba, we were able to improve the aforementioned 
tools’ capabilities by meeting the current demands of the research community. We 
provide the user with flexible filtering parameters and envision annoFuse will be 
used to quickly filter sequencing artifacts and false positives, as well as further anno-
tate fusions for additional biological functionality (eg: kinases, transcription factors, 
oncogenes, tumor suppressor genes) to prioritize fusion calls in a cancer cohort. 
Additionally, users can opt to simply annotate and filter artifacts or use annoFuse to 
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functionally prioritize fusions as putative oncogenic drivers. During the prioritiza-
tion steps, we filter based on genes with cancer relevance (see biological functional-
ity list above) and perform analysis of fusion and fused-gene recurrence to create a 
stringently filtered, prioritized list of fusions likely to have oncogenic potential.

Limitations and future directions

It is worth noting that annoFuse cannot correct fusion calls derived from low-qual-
ity RNA-Seq data, thus onus is on the user to design the extraction, library prepara-
tion, and sequencing portions of the experiment to enable production of high-quality 
data. We prioritized Arriba and STAR-Fusion calls as input to annoFuse due to their 
performance in the SMC-RNA DREAM challenge and we recommend utilizing both 
algorithms prior to analysis with annoFuse. In addition, users can provide their own 
informed cutoffs for read support and annotation filters to enable appropriate prior-
itization of oncogenic fusions. We are actively adding compatibility with additional 
fusion algorithms currently used by the community, such as deFuse, FusionCatcher, 
SOAPfuse, and Jaffa to further increase the applicability of annoFuse. As an additional 
feature, we plan to add expression-based comparison of genes between fused samples, 
normal, and within a histology or cohort. Future features could link domain retention 
to drug databases to predict fusion-directed targeting strategies.

Conclusions
Gene fusions provide a unique mutational context in cancer in which two function-
ally-distinct genes could be combined to function as a new biological entity. Despite 
showing great promise as diagnostic, prognostic, and therapeutic targets, translation 
in the oncology clinic is not yet accelerated for gene fusions. This has been partly due 
to limited translation of the large number of computationally-derived fusion results 
into biologically meaningful information. In our efforts to address this, we introduce 
annoFuse, an R Package to annotate and prioritize putative oncogenic RNA fusions 
and shinyFuse, an algorithm-agnostic web application for interactive fusion explora-
tion and plotting. We include a cancer-specific workflow to find recurrent, oncogenic 
fusions from large cohorts containing multiple cancer histologies. The filtering and 
annotation steps within annoFuse enable users to integrate calls from multiple algo-
rithms to improve high-confidence, consensus fusion calling. The lack of concord-
ance among algorithms as well as variable accuracy with fusion truth sets [2, 32] adds 
analytical complexity for researchers and clinicians aiming to prioritize research or 
therapies based on fusion findings. Through annoFuse, we add algorithm flexibility 
and integration to identify recurrent fusions and/or recurrently-fused genes as novel 
oncogenic drivers. Within the package, shinyFuse and reportFuse deliver interactive 
and reproducible analysis options to efficiently extract knowledge from the outputs 
of the annoFuse workflow. We expect annoFuse to be broadly applicable to cancer 
datasets and empower researchers and clinicians to better inform preclinical studies 
targeting novel, putative oncogenic fusions and ultimately, aid in the rational design 
of therapeutic modulators of gene fusions in cancer.
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Availability and requirements

Project name: annoFuse: an R Package to annotate, prioritize, and interactively 
explore putative oncogenic RNA fusions
Project home page: https ://githu b.com/d3b-cente r/annoF use
Project web application (shinyFuse): http://shiny .imbei .uni-mainz .de:3838/shiny 
Fuse/
Operating system(s: Platform independent
Programming language: R (> = 4.0.0)
License: MIT
Any restrictions to use by non-academics: None
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Additional file 1: Figure S1. Fusions found in more than 1 histology. Barplots represent the number of histologies 
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