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Abstract

Background: Disease gene prediction is a critical and challenging task. Many computational methods have been
developed to predict disease genes, which can reduce the money and time used in the experimental validation. Since
proteins (products of genes) usually work together to achieve a specific function, biomolecular networks, such as the
protein-protein interaction (PPI) network and gene co-expression networks, are widely used to predict disease genes
by analyzing the relationships between known disease genes and other genes in the networks. However, existing
methods commonly use a universal static PPI network, which ignore the fact that PPIs are dynamic, and PPIs in various
patients should also be different.
Results: To address these issues, we develop an ensemble algorithm to predict disease genes from clinical
sample-based networks (EdgCSN). The algorithm first constructs single sample-based networks for each case sample
of the disease under study. Then, these single sample-based networks are merged to several fused networks based on
the clustering results of the samples. After that, logistic models are trained with centrality features extracted from the
fused networks, and an ensemble strategy is used to predict the finial probability of each gene being
disease-associated. EdgCSN is evaluated on breast cancer (BC), thyroid cancer (TC) and Alzheimer’s disease (AD) and
obtains AUC values of 0.970, 0.971 and 0.966, respectively, which are much better than the competing algorithms.
Subsequent de novo validations also demonstrate the ability of EdgCSN in predicting new disease genes.
Conclusions: In this study, we propose EdgCSN, which is an ensemble learning algorithm for predicting disease
genes with models trained by centrality features extracted from clinical sample-based networks. Results of the
leave-one-out cross validation show that our EdgCSN performs much better than the competing algorithms in
predicting BC-associated, TC-associated and AD-associated genes. de novo validations also show that EdgCSN is
valuable for identifying new disease genes.
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Background
Disease gene prediction is a critical yet challenging
task. It helps us understand the mechanisms of dis-
eases, find therapeutic targets, and develop novel treat-
ment strategies [1]. During the past decades, disease
gene prediction has gained great development. Many
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computational algorithms have been developed to pre-
dict disease genes so that the cost and time for in-depth
validation could be maximumly reduced.

Among the various types of data that have been used to
predict disease genes, protein-protein interactions (PPIs)
are the most widely used evidence. On the one hand,
interacting proteins (genes) usually have similar functions,
which means algorithms can predict new disease genes
based on their relationships with known disease genes in
the PPI network. On the other hand, due to the network
property of PPIs, most network analysis algorithms can
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be used to predict disease genes from PPI networks. For
example, earlier methods, such as RWR, performed the
random walk on PPI networks to predict disease genes
[2]. Gillis et al. used degree centralities to rank all the
genes [3].

However, PPIs are dynamic during the life time of cells,
and not all PPIs exist in all the tissues. Static PPI net-
works downloaded from online databases contain lots
of false positives which limit the performance of the
methods that directly use them [4]. Thus, many studies
integrate static PPI networks with disease-related data,
such as GWAS and gene expression data, to improve
the prediction accuracy [5–7]. This leads to two types of
approaches. The first type of approaches weights PPI net-
works with disease-related data, and predicts candidate
genes from the weighted networks. For instance, Wang et
al. searched dense modules from a PPI network weighted
by gene expression and GWAS data [6]. Our previous
study trained a regression model with features extracted
from a PPI network weighted by differential co-expression
[8]. The second type of approaches constructs heteroge-
neous networks and combines them with PPI networks
to enhance the prediction. For example, Chen et al. com-
bined gene co-expression networks and pathway coexist
networks with PPI networks to predict disease genes [9,
10]. Singh-Blom et al. trained a biased SVM with fea-
tures extracted from phenotype-phenotype networks and
PPI networks [11] to predict disease genes. Despite their
success, the discussed approaches still use PPI networks
with false positive interactions, which contain inaccurate
topological structures. PPI networks downloaded from
different databases might affect the prediction results.

To solve these issues, in our previous study, gene expres-
sion data of clinical samples have been used to construct
sample-specific PPI networks [12]. Each single sample-
based network only contains the significant PPIs associ-
ated with the disease under consideration, which reduces
the false positive interactions. A network that fuses all
the single sample-based networks was used to predict the
disease-associated genes, so that disease genes that func-
tion in different patients could all be identified. In this
study, to further extend our research, an ensemble algo-
rithm that predicts disease genes from clinical sample-
based networks (EdgCSN) is proposed. Meanwhile, Katz
centrality is used instead of edge clustering coefficient
to better extract local structural information from the
sample-based networks.

Methods
Figure 1 depicts the work flow of EdgCSN which is
explained as follows. (a)-(b). A single sample-based net-
work is constructed for each case sample by combining
clinical samples and the universal static PPI network. (c).
The case samples are clustered into a few groups and

single sample-based networks of the samples in the same
group are fused to one network. (d). A logistic model
is trained by the centrality features extracted from each
fused network, and the probability of each gene being
disease-associated is predicted. (e). The maximum prob-
ability of a gene calculated from all the logistic models is
regarded as its probability of being disease-associated. In
the following subsections, details of the five steps in Fig. 1
are first discussed. Then, the data sources and evaluation
metrics are explained.

Sample-based networks
To obtain the most informative PPIs and remove the false
positive ones, sample-based networks are used in this
study instead of the universal static PPI networks. In addi-
tion, since the real caustic genes of different patients may
not be the same, case samples are divided into different
clusters so that patients with distinct conditions are ana-
lyzed separately. Specifically, three steps are performed to
obtain the sample-based networks.

1 A single sample-based network is constructed for
each case sample;

2 Case samples are classified into different clusters;
3 Networks of the samples in the same cluster are

fused together.

For the first step, we assume that a PPI exists in a single
sample-based network Ns only if the two interacted pro-
teins are both activated in sample s. Concretely, a gene i in
a case sample s is considered being activated if

mcase[ i, s] ≥ λ ∗ mean(mcntl[ i] ) (1)

where mcase[ i, s] is the expression value of gene i in sam-
ple s, and mean(mcntl[ i] ) is the mean expression value
of gene i over all control samples. To construct Ns, every
edge (i, j) in the static PPI network is validated and only
the one with both i and j being activated is added to Ns.
Then, S single sample-based networks are constructed for
the S case samples.

For the second step, hierarchical clustering is used to
classify case samples into different clusters. Given two
samples s1 and s2, their pairwise distance is calculated by

dist(s1, s2) = 1 − (s1 − s̄1) · (s2 − s̄2)

‖s1 − s̄1‖2‖s2 − s̄2‖2
(2)

where s1 (s2) is a vector of expression values of genes in
sample s1 (s2), and s̄1 (s̄2) is the corresponding average
expression value. During the bottom-up process, distance
between two newly formed clusters u and v is computed
as follows

Distance(u, v) = max
p∈u,q∈v

(dist(p, q)) (3)
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Fig. 1 Work flow of the algorithm. (a) Obtain gene expression data of case samples; (b) Construct single sample-based networks; (c) Fuse
sample-based networks based on the clustering results; (d) Perform prediction on each fused network; (e) Combine the prediction results in (d) to
generate the final prediction

which is the maximum distance between samples in u and
v. Let dmax denote the maximum distance among clus-
ters, 0.7 ∗ dmax is used as the threshold to select clusters
from the resulted dendrogram.

For the third step, assuming all the S samples are classi-
fied into l clusters and the t-th cluster contains St samples,
we have S = ∑l

t=1 St . The objective is to fuse the net-
works of the samples in the same cluster into one network.
Although many network fusion methods have been pub-
lished [13], most of them cannot efficiently fuse complex
PPI networks, especially when the number of networks to
be fused is more than 1,000. Thus, we propose a simple
strategy which uses a threshold ε to determine whether
an edge exists in the fused networks. An edge (i, j) is con-
sidered as significant only if it appears in at least ε single

sample-based networks. Precisely, given a cluster with St
samples, let fij be the number of times edge (i, j) appears
in the St single sample-based networks. When fij < ε, (i, j)
is not included in the fused network, and when fij ≥ ε,
(i, j) is in the fused network. Finally, l fused networks are
obtained for the l clusters, respectively.

Model design
Given a biomolecular network, if disease genes are labeled
as 1 and non-disease genes are labeled as 0, the disease
gene prediction problem can then be formulated as a
network labeling problem [14]. Let x = (x1, x2, . . . , xH)

denote a set of binary labels of all the H genes in the
biomolecular network. x is known as the configuration of
the network, and the set X of all possible configurations is
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a random field. Based on our previous studies [8, 10, 15], a
generalized model was proposed in [12] which predicted
the probability of a gene i being labeled as 1 by

P(xi = 1|x[−i], θ) = exp(θφi)

1 + exp(θφi)
(4)

where θ is a parameter vector and φi is the feature vector
of gene i extracted from the biomolecular network labeled
by a prior configuration x.

In [12], φi is a 7-dimensional feature vector which con-
sists of a dummy feature (1) and three pairs of 0–1
centrality features: 0–1 degree centrality, 0–1 closeness
centrality and 0–1 edge clustering coefficient. These three
0–1 centrality indices have shown their ability in charac-
terizing discriminative features for classifying disease and
non-disease genes. However, edge clustering coefficient
can only capture the structural information between genes
and their direct neighbors, and the relations between
genes and their k-th order (k ≥ 2) neighbors cannot be
obtained. Since proteins usually form a complex or func-
tional module to achieve a specific function [4], the k-th
order neighbors should also be considered when the local
structural information is extracted. Previous study also
showed that the indirect neighbors were useful for disease
gene prediction [16]. Thus, we replace edge clustering
coefficient by Katz centrality in this study to leverage
the local structure information between nodes and their
higher order neighbors.

Given a labeled network N = (V , E), V is the set of
nodes and E is the set of edges, the 0–1 degree centrality
denoted by Cd

i0 and Cd
i1 are defined as follows

Cd
i0 =

∑

(i,j)∈E
(1 − xj), Cd

i1 =
∑

(i,j)∈E
xj (5)

The 0–1 closeness centrality denoted by Cc
i0 and Cc

i1 are
defined as

Cc
i0 = 1

n0 − 1
∑

j∈V ,j �=i

1
dsp(i, j)

(1 − xj),

Cc
i1 = 1

n1 − 1
∑

j∈V ,j �=i

1
dsp(i, j)

xj

(6)

where dsp(i, j) is the length of the shortest path between
node i and j, n0 and n1 are the number of nodes labeled as
0 and 1, respectively

Katz centrality measures the relative influence of a node
in the network [17]. It is defined by

Ck
i =

∞∑

k=0

n∑

j=1
αk

(
Ak

)

ji
(7)

where A is the adjacency matrix of the network, k is the
length of the path between i and j, α is a damping factor
penalizes the impact node j on i. The longer the path, the
smaller the impact node j is on i.

When α is properly chosen, Eq. (7) will converge as k →
∞. However, when Katz centrality is used in this study,
we care more about the information conveyed by paths
with short distance (less than 5). Study in link prediction
also showed that k = 3 or k = 4 can yield satisfactory
performance [18]. Thus, α and k are chosen by grid search
without the proof of convergence.

In previous studies, Katz centrality calculated from het-
erogeneous networks had been used to prioritize disease
genes [11]. However, results of directly using Katz cen-
trality were not better than existing methods, such as
RWR [2]. To make Katz centrality suitable for disease gene
prediction, we define the 0–1 Katz centrality as follows:

Ck
i0 =

∞∑

k=0

n∑

j=1
αk

(
Ak

)

ji
(1 − xj),

Ck
i1 =

∞∑

k=0

n∑

j=1
αk

(
Ak

)

ji
xj

(8)

Similar to 0–1 degree and 0–1 closeness centrality, the 0–1
Katz centrality measures the importance of a gene among
disease genes and non-disease genes, respectively, which
is more appropriate for disease gene prediction. The new
feature vector of each gene is then defined as

φi =
(

1, Cd
i0, Cd

i1, Cc
i0, Cc

i1, Ck
i0, Ck

i1

)
(9)

Network labeling and benchmark selection
As discussed in the previous section, biomolecular net-
works are needed to be labeled by a prior configuration
so that disease genes can be predicted. In this study, we
use the l fused networks to predict disease genes, which
means the known disease genes in these networks are
labeled as 1 while other genes are labeled as 0. Then, the
feature vectors of all genes can be extracted by Eq. (9).

In addition, to train the logistic models used for predic-
tion, we also need a set of non-disease genes, which are
used as negative instances. Unfortunately, no databases
contain non-disease genes. Therefore, our previous strat-
egy proposed in [19] is used to select the non-disease
genes used in the training.

In [19], a disease gene network (DGN) was constructed
with the disease-gene association data downloaded from
OMIM [20]. In the DGN, each node is either a disease
or a disease-associated gene. Diseases are connected with
their associated genes, and two diseases are connected
if they share one or more associated genes. Thus, dis-
eases that are close to each other in the DGN have more
chances to share similar disease genes, which means they
are more likely to have similar mechanisms. If the length
of the shortest path between two diseases is larger than
a threshold η, they might not have similar mechanisms,
and the disease genes of one disease could be regarded as
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non-disease genes of the other disease. With this strategy,
a group of non-disease genes are obtained for the disease
under study, and only non-disease genes that exist in all
the l fused networks are selected. η = 5 is chosen based
on our previous experience.

Assuming m disease genes are known to be associated
with the disease under study, we randomly select m genes
from the set of non-disease genes, and these 2m genes
form a set of gold standard genes. This process is per-
formed 50 times and finally we obtain 50 sets of gold
standard genes and regarded them as benchmarks.

Ensemble prediction
Given m disease genes and m non-disease genes, features
of these genes extracted from the l fused networks are
used to train l logistic models, respectively. Equation (4)
is then used to predict the probability of each gene being
disease-associated in each fused network.

For each gene, l′(1 ≤ l′ ≤ l) probabilities are calculated.
Considering that the caustic genes of different samples
might be different, the obtained probabilities only reveal
the potential of the gene being disease-associated in the
corresponding clusters. Thus, for each gene, the ensemble
strategy chooses the maximum value of the l′ probabilities
as its probability of being disease-associated.

Datasets
In this study, datasets of breast cancer (BC), thyroid
cancer (TC) and Alzheimer’s disease (AD) are used to
evaluate the algorithm. The BC-associated genes and TC-
associated genes are obtained from the Cancer Gene Cen-
sus category (http://cancer.sanger.ac.uk/census) [21]. In
total, 35 BC-associated genes and 33 TC-associated genes
are used as the benchmarks. The AD-associated genes are
obtained from MalaCards: The human disease database
(http://www.malacards.org/). The database contains 182
potential AD associated genes ranked by their probabil-
ity of being AD-associated in descending order. 39 of the
first 50 genes exist in the static PPI network are used as
benchmarks.

The gene expression data of BC and TC are downloaded
from NCI Genomic Data Commons (GDC) [22], which
measures the data by RNA-Seq. We download the data
normalized by FPKM (Fragments Per Kilobase Million)
and transform them to TPM (Transcripts Per Kilobase
Million) by the strategy proposed in [23]. The expres-
sion data of Alzheimer’s disease (AD) are downloaded
from Gene Expression Omnibus (GSE53697) [24], which
are also measured by RNA-seq. The data normalized by
RPKM (Reads Per Kilobase Million) are downloaded and
transformed to TPM with the same strategy used for the
data downloaded from GDC. TPM is chosen because
it facilitates the comparison of the proportion of reads
that are mapped to a gene in each sample and is usually

better than FPKM and RPKM in cross-sample compar-
ison, which helps us properly cluster all the samples.
In total, the dataset of BC contains 1102 case samples
and 113 control samples; the dataset of TC contains 502
case samples and 58 control samples; the dataset of AD
contains 9 case samples and 8 control samples.

After downloading the gene expression data, four steps
are performed to control the genes used in our study. (1).
TPM values less than 1 are replaced by 0 because of the
unreliability. (2). log2(TPM + 1) is used instead of the
original TPM values. (3). Genes expressed in less than
10% of samples (case and control) are removed. (4). Genes
not existing in the PPI network are removed. In total,
14436 genes, 13959 genes and 13370 genes are left for BC
dataset, TC dataset and AD dataset, respectively.

The static PPI network is downloaded from the
InWeb_InB-ioMap database (version 2016_09_12) [25].
The database consists of more than 600,000 protein inter-
actions collected from eight source databases, which
insures that valuable protein interactions are not missed
during the construction of the sample-based PPI net-
works. In this study, the proteins in the PPI network are
mapped to their corresponding genes to form a gene-gene
interaction network. In the paper, the term “PPI network”
is used to represent the gene-gene interaction network
because of simplicity.

Evaluation metrics
In this study, a disease gene is regarded as positive while a
non-disease gene is regarded as negative. Given a thresh-
old �, a gene i with a probability pi ≥ � is predicted as
positive, and otherwise it is predicted as negative. For all
genes in the benchmark, the true positives (TP), false pos-
itives (FP), true negatives (TN), and false negatives (FN)
are defined as follows

1 TP: a disease gene is predicted as a disease gene
2 FP: a non-disease gene is predicted as a disease gene
3 TN: a non-disease gene is predicted as a non-disease

gene
4 FN: a disease gene is predicted as a non-disease gene

Then, we can calculate the true positive rate (TPR) and
the false positive rate (FPR) of the prediction results by the
following equations

TPR = TP
TP + FN

, FPR = FP
TN + FP

(10)

To evaluate the algorithm, the receiver operating charac-
teristic (ROC) curve is created by plotting the TPR against
FPR with various �. The area under the ROC curve (AUC)
is also used to evaluate the overall performance of the
algorithm.

Since the number of genes used as benchmark is small,
leave-one-out cross validation (LOOCV) is performed

http://cancer.sanger.ac.uk/census
http://www.malacards.org/
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Fig. 2 Hierarchical clustering dendrogram for BC

to calculate the probabilities of genes in the benchmark
being disease-associated. With the 50 sets of gold stan-
dard genes, LOOCV is performed 50 times. In each
round, the probabilities of the 2m genes being disease-
associated are calculated, as well as the AUC value.

The average AUC value is then used to evaluate the
algorithm.

In addition, de novo validation is performed by rank-
ing all the unknown genes in descending order by their
average probabilities calculated by the models trained

Fig. 3 Hierarchical clustering dendrogram for TC
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Fig. 4 Hierarchical clustering dendrogram for AD

with the 50 sets of gold standard genes. The top 10
unknown genes are analyzed from published literature to
illustrate the ability of EdgCSN in predicting new disease
genes.

Results
Clustering
Figures 2, 3 and 4 show the dendrograms of the hier-
archical clustering. BC and TC samples are divided to
three clusters and AD samples are divided to two clusters.
Thus, three fused networks are constructed for BC and

Table 1 Sensitivity analysis

k

λ α 1 2 3 4

1.0 0.1 0.867 0.961 0.873 0.878

1.0 0.2 0.869 0.966 0.889 0.870

1.1 0.1 0.883 0.967 0.890 0.903

1.1 0.2 0.881 0.970 0.909 0.896

1.2 0.1 0.845 0.957 0.877 0.898

1.2 0.2 0.846 0.958 0.892 0.894

1.3 0.1 0.787 0.938 0.819 0.842

1.3 0.2 0.787 0.940 0.841 0.842

1.5 0.1 0.777 0.938 0.813 0.775

1.5 0.2 0.777 0.938 0.786 0.816

The resulted AUC values obtained with different combinations of hyperparameters
for BC
The highest AUC value is marked in boldface

TC, respectively, and two fused networks are constructed
for AD.

Sensitivity analysis
The performance of our algorithm is affected by four
hyperparameters: λ, ε, α and k. The first two control the
resulted fused networks. Based on our previous study,
edges that exist in more than three networks were sig-
nificant [12]. Thus, ε = 3 is empirically chosen in this
study. As for λ, since the RNA-seq data are normalized
by TPM rather than DESeq2 [26], λ is searched from a

Table 2 Sensitivity analysis

k

λ α 1 2 3 4

1.0 0.1 0.716 0.966 0.839 0.790

1.0 0.2 0.713 0.967 0.795 0.802

1.1 0.1 0.729 0.971 0.800 0.746

1.1 0.2 0.728 0.969 0.744 0.779

1.2 0.1 0.809 0.954 0.748 0.776

1.2 0.2 0.808 0.953 0.652 0.792

1.3 0.1 0.621 0.962 0.779 0.786

1.3 0.2 0.620 0.960 0.662 0.794

1.5 0.1 0.412 0.965 0.809 0.720

1.5 0.2 0.411 0.963 0.645 0.679

The resulted AUC values obtained with different combinations of hyperparameters
for TC
The highest AUC value is marked in boldface
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Table 3 Sensitivity analysis

k

λ α 1 2 3 4

1.0 0.1 0.808 0.964 0.809 0.763

1.0 0.2 0.809 0.966 0.764 0.705

1.1 0.1 0.665 0.956 0.757 0.685

1.1 0.2 0.665 0.957 0.596 0.636

1.2 0.1 0.564 0.938 0.809 0.605

1.2 0.2 0.563 0.939 0.608 0.596

1.3 0.1 0.508 0.914 0.810 0.674

1.3 0.2 0.508 0.914 0.608 0.614

The resulted AUC values obtained with different combinations of hyperparameters
for AD
The highest AUC value is marked in boldface

new set {1.0, 1.1, 1.2, 1.3, 1.5}, which is different from the
one obtained in our previous study. The other two hyper-
parameters control the information extracted by Katz
centrality. To obtain the appropriate hyperparameters, α is
searched from {0.1, 0.2}, and k is searched from {1, 2, 3, 4},
respectively.

Tables 1, 2 and 3 show the results of the grid search
for BC, TC and AD, respectively. EdgCSN performs best
for BC when λ = 1.1, α = 0.2, k = 2 with an AUC =
0.970; for TC when λ = 1.11, α = 0.1, k = 2 with an
AUC = 0.971; for AD when λ = 1.0, α = 0.2, k = 2 with
an AUC = 0.966. ‘-’ denotes that more than 10% known
disease genes are not contained in the fused networks
constructed by the corresponding hyperparameters.

All the three experiments obtain their best AUC values
when k = 2, and a smaller or higher k would significantly

affect the performance of the algorithm. These results
indicate that local structural information contained within
the second order neighborhood is valuable for disease
gene prediction. Other disease gene prediction algorithms
that use topological structure of biomolecular networks
could also further include these information to improve
their prediction.

Comparison
EdgCSN is compared with three algorithms: the Re-
balanced algorithm of Chen et al. [10], the AIDG algo-
rithm of Tang et al. [27], and our previous algorithm
dgCSN [12]. Re-balanced method combined multiple
types of biomolecular networks to predict cancer-related
genes, and AIDG used sub-cellular localization to purify
universal PPI networks. These algorithms have been
shown better than many classical methods, such as the
RWR method [2], the DIR method [28] and the Topp-
Net [29].

The resulted ROC curves for BC, TC, and AD are
depicted in Figs. 5, 6, 7, respectively. The AUC values of
EdgCSN for BC, TC and AD are 0.970, 0.971 and 0.966,
respectively, which are much better than those of the
competing algorithms. For BC, our EdgCSN is 7% more
accurate than the competing algorithms, and for TC and
AD, EdgCSN is 20% more accurate than the other three
algorithms.

de novo validation
To validate the performance of EdgCSN in predict-
ing new disease genes, unknown genes are ranked in
descending order by their average probabilities of being

Fig. 5 ROC curves for BC
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Fig. 6 ROC curves for TC

disease-associated predicted by the 50 sets of genes in the
benchmark. The top 10 predictions are further searched
in existing literature to find out if they are associated with
the disease under study.

Table 4 shows the top 10 predictions of the three dis-
eases. Functions of the genes that have not been studied
in existing literature are left blank. Most of the genes
have been analyzed as disease-associated in existing stud-
ies, especially for BC, where all the 10 genes have been
studied in the existing literature. For TC, although only 5
of the 10 genes have been studied, 3 of the 5 genes that

have not been studied (‘CEP72’, ‘CEP131’ and ‘GPR83’)
belong to the Centrosomal Protein family and G Protein-
coupled Receptor respectively. Many proteins belong to
these families are closely related to cancers [30], which
means ‘CEP72’, ‘CEP131’ and ‘GPR83’ might be predicted
as being TC-associated in the future.

Discussion
Many algorithms have been proposed to predict disease
genes, and most of them rely on PPI networks to achieve
the prediction. However, PPI is dynamic and tissue-

Fig. 7 ROC curves for AD
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Table 4 Top 10 unknown genes

Gene Name Function Reference

BC
CREBBP Potential disease gene [31]
NBN Potential disease gene [32]
PARP1 Potential biomarker [33, 34]
NCOR2 Potential biomarker [35]
RXRA Potential therapeutic target [36]
WRN Potential disease gene [37]
EXO1 Potential disease gene [38]
NCOA3 Potential disease gene [39]
RMI2 Potential disease gene [40]
TOPBP1 Potential therapeutic target [41]

TC
HRAS Potential disease gene [42]
HAUS7
CEP72
GTF2I Potential disease gene [43]
BCLAF1 Potential disease gene [44]
HAUS3
FGFR1OP Potential disease gene [45, 46]
CEP131
GPR83
ALMS1 Potential disease gene [47]

AD
MAP2 Potential disease gene [48]
DPYSL3
ERRFI1 Potential disease gene [49]
DAB2 Potential disease gene [50]
AMPH Potential disease gene [51]
SYN1 Potential disease gene [52]
SYT9 Potential disease gene [53]
AXIN1
PRNP Potential disease gene [54]
AAK1 Potential disease gene [55]

specific, static PPI networks downloaded from online
databases contain many false positives, and directly using
them would limit the accuracy of disease gene prediction.
Moreover, for patients with a specific disease, their dis-
ease states might be driven by different subset of disease
genes, and analyzing their data together might affect the
identification of rarely mutated disease genes .

Therefore, in this study, an ensemble algorithm is pro-
posed to predict disease genes from clinical sample-based
networks. The algorithm first constructs single sample-
based networks by combining clinical samples and a uni-
versal static PPI network. A group of networks which
contain disease-related PPIs are generated. Then, case
samples are divided into different clusters and networks
belong to the samples in the same cluster are merged
together. This step allows patients with similar causing
genes to be analyzed together. After that, 0–1 central-
ity features extracted from the fused networks are used
to train the logistic models that calculate the probability
of each genes being disease-associated in each fused

network. Finally, an ensemble strategy is performed by
choosing the maximum probability obtained from differ-
ent fused networks as the final probability of a gene being
disease-associated.

In the experiments conducted on BC, TC and AD, our
EdgCSN is much better than the competing algorithms
in terms of AUC scores. Further analysis of the top 10
unknown genes also illustrate that EdgCSN is capable of
predicting novel disease genes. Our study has provided
insight into how clustering patient samples might improve
the prediction of disease genes.

Conclusions
Our EdgCSN use ensemble learning to predict disease
genes from clustered sample-based networks. In the
future, the strategies used for clustering can be further
improved. For instance, Eq. (2) uses the expression data
of all the genes to calculate the pairwise distances, and
the results might be dominated by non-disease genes. We
could reduce the number of genes used for clustering
and choose those differentially expressed genes or marker
genes that are associated with a specific subtype. These
subsets of genes should improve the clustering results as
well as the final prediction.
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