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Abstract

Background: Interactions between proteins and non-proteic small molecule ligands play important roles in the
biological processes of living systems. Thus, the development of computational methods to support our
understanding of the ligand-receptor recognition process is of fundamental importance since these methods are a
major step towards ligand prediction, target identification, lead discovery, and more. This article presents visGReMLIN,
a web server that couples a graph mining-based strategy to detect motifs at the protein-ligand interface with an
interactive platform to visually explore and interpret these motifs in the context of protein-ligand interfaces.

Results: To illustrate the potential of visGReMLIN, we conducted two cases in which our strategy was compared with
previous experimentally and computationally determined results. visGReMLIN allowed us to detect patterns
previously documented in the literature in a totally visual manner. In addition, we found some motifs that we believe
are relevant to protein-ligand interactions in the analyzed datasets.

Conclusions: We aimed to build a visual analytics-oriented web server to detect and visualize common motifs at the
protein-ligand interface. visGReMLIN motifs can support users in gaining insights on the key atoms/residues
responsible for protein-ligand interactions in a dataset of complexes.

Introduction

At the molecular level, protein receptors constantly inter-
act with small-molecule ligands, such as metabolites or
drugs. A variety of protein functions can be attributed to
or regulated by these interactions [1]. Understanding how
protein-ligand interactions take place has been the goal of
many research studies [2—-5], as molecular recognition is

*Correspondence: sabrina@ufv.br

"Department of Computer Science, Universidade Federal de Vicosa, 36570-900
Vigosa, Brazil

8European Molecular Biology Laboratory, European Bioinformatics Institute
(EMBL-EBI), CB10 1SD Hinxton, UK

Full list of author information is available at the end of the article

pivotal in biological processes, including signal transduc-
tion, catalysis and the regulation of biological function, to
name a few examples.

Identifying conserved interactions between proteins
and ligands that are reused across a protein family is a key
factor for understanding molecular recognition processes
and can contribute to rational drug design, target iden-
tification, lead discovery and ligand prediction. Interface
forming residues (IFR) are residues in the molecular inter-
face region between proteins. In accordance with Tuncbag
et al. [6], protein structures are more conserved than
their sequences, and IFRs are even more conserved than
whole protein structures. Therefore, IFR can be an invalu-
able source of information to support the identification of
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conserved interactions across a set of complexes. In this
paper, we are interested in the interface between proteins
and ligands. We consider ligands to be small non-protein
molecules. On one hand, proteins can be promiscuous, as
they interact with different ligands [7, 8]. On the other
hand, ligands can also be promiscuous, such as when one
ligand is recognized by different proteins [9]. Thus, it is
reasonable to expect that methods used to detect con-
served interactions between proteins and ligands should
be able to address both protein and ligand promiscuity.

Several methods have been proposed to identify three-
dimensional binding motifs. Here, we briefly review some
recent works that are representative examples of the
diverse techniques that have already been proposed.

Previous solutions for detecting structural binding
motifs for a set of diverse proteins and a common ligand
involved protein superimposition based on the ligand and
subsequent clustering of the conserved residues or atoms
interacting with this ligand. The methods developed by
Kuttner et al. [10] and Nebel et al. [11] are examples of this
kind of solution. These strategies work well for rigid lig-
ands as they result in structural alignments of good quality
due to ligand-induced superimposition. In general, classi-
cal methods, such as sequence/structural alignments, are
not appropriate for conservation detection when proteins
have dissimilar sequences and/or structures [12—14].

Gongalves-Almeida et al. [15] developed a method
based on hydrophobic patch centroids to predict cross-
inhibition, also known as inhibitor promiscuity, in ser-
ine proteases. IFRs were modeled as a graph in which
hydrophobic atoms were the nodes and the contacts
between them were the edges. Centroids were used to
summarize the connected components of this graph, and
conserved centroids, termed hydrophobic patches, were
used to characterize, detect and predict cross-inhibition.

In a similar manner, Pires et al. [16] used graphs that
consider physicochemical properties of atoms and their
contacts to represent protein pockets, generating a signa-
ture that perceives distance patterns from protein pock-
ets. Each binding site is represented by a feature vector
that encodes a cumulative edge count of contact graphs
defined for different cut-off distances, which are used as
input data for learning algorithms. This signature does not
require any ligand information, and it is independent of
molecular orientations.

The motifs computed by the methods designed by
Gongalves-Almeida et al. [15] and Pires et al. [16] can be
used to identify, compare, classify and even predict bind-
ing sites. However, these motifs include only information
on the protein side, and they do not represent the non-
covalent interactions established between the ligand and
the receptor.

Desaphy et al. [17] encoded structural protein-ligand
interactions in graphs and simplified this information in
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a generic fingerprint, which is a vector of 210 integers,
to encompass protein-ligand interaction patterns. To gen-
erate the fingerprint, each interaction is described by a
pseudoatom. Then, all possible pseudoatom triplets are
counted within six distance ranges. Finally, the full vector
is pruned to keep the most frequent triplets, resulting in
the definition of a frame-invariant fingerprint. In addition
to the fingerprint, the authors developed two computa-
tional methods to align protein-ligand complexes based
on their interaction patterns.

Nakadai et al. [18], in turn, introduced a method based
on the differences between residues that were superim-
posed on small molecule inhibitors and those that were
not superimposed to identify key residue pairs as poten-
tial targets of protein-protein interfaces. This method
addresses a set of structures composed by similar proteins
in a complex with different ligands and can support the
rational design of inhibitors that target these interfaces.
To find the superimposed residues, the authors performed
structural alignments.

Recently, a method has been proposed to extract three-
dimensional binding motifs that capture information on
the ligand and its surrounding residues in protein-ligand
complexes. Since molecular function is frequently carried
out by a limited number of residues that are reused in
functionally conserved proteins during evolution, LibME
[19] searches for pocket residues (conserved in terms of
chemical properties and spatial position) that surround
the ligand. Thus, the resulting motifs are composed of
only residues. Additionally, the computation of pocket
residue positions relative to the ligand avoids ligand-
induced alignment of the pockets. This method is specifi-
cally used for diverse proteins binding the same or similar
ligands.

In this paper, we propose visGReMLIN (visual Graph
Mining strategy to infer protein-Ligand INteraction pat-
terns), a user-friendly web server implementation of our
GReMLIN method [20], which uses a graph mining-based
strategy to detect conserved structural motifs in large-
scale datasets of protein-ligand interactions. visGReMLIN
is a visual interactive platform to support the detection
of trends and exceptions in protein-ligand interactions by
domain specialists, allowing them to explore and make
sense of the motifs.

To detect common substructures, which are here
called patterns or motifs, in protein-ligand interfaces,
we devised a graph mining-based strategy that models
the interface as bipartite graphs in which nodes repre-
sent atoms from the protein or ligand and edges rep-
resent non-covalent interactions between atoms. Nodes
are labeled according to their physicochemical proper-
ties, and edges are labeled according to the type of
interatomic interactions and distance criteria. Next, we
perform a clustering analysis on these graphs, which is
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followed by frequent subgraph mining on each cluster to
detect motifs.

In addition, we propose a visual interactive platform to
explore protein-ligand interactions and their motifs. The
input module automatically searches Protein Data Bank
(PDB) [21] for similar structures given an entry and a
similarity threshold; alternatively, the user can enter a list
of PDB entries. Additionally, visGReMLIN allows users
to upload their own structural files (files that have not
yet been deposited in PDB). visGReMLIN then starts the
computation and notifies the user when the analysis is
complete. In our visual representations of protein-ligand
interfaces, we use color as a pre-attentive attribute that
encodes the physicochemical properties of atoms (nodes)
and interactions (edges). Hence, users can see, at a glance,
general trends and exceptions regarding the properties of
atoms and interactions. Moreover, we provide a variety
of filters to explore interactions and their motifs and a
text search to help users find residues/atoms of interest.
After typing the residue/atom in the text box, our tool
highlights the corresponding nodes in the visualization.
visGReMLIN supports the selection of a specific motif
(frequent subgraph), highlighting it in the context of inter-
face graphs. These graphs are depicted as a 2D schematic
representation and in a 3D molecular viewer.

visGReMLIN is a large-scale, alignment-free strategy
and its results do not depend on molecular orientation.
Furthermore, our method does not specifically require a
dataset of different proteins with the same/similar ligands
or a dataset with the same/similar proteins and different
ligands; it can be used for both types of datasets. In other
words, visGReMLIN can be used with datasets containing
promiscuous proteins or ligands.

We implemented a whole new version of our strategy
from scratch, improving unsupervised learning, frequent
subgraph mining and the feature vectors that represent
protein-ligand interactions. In addition, the visualization
tool was reimplemented and new features added, for
instance: (i) visGReMLIN takes as input any protein-
ligand complex from PDB; (ii) specific ligands in which
users are interested can be selected to compute the motifs;
(iii) protein-ligand complexes that are not yet deposited
in PDB can be uploaded; (iv) each user can store projects
executed in his/her account, facilitating the reproducibil-
ity of the experiment; and (v) a user can share a project,
allowing multiple users to view, explore and collaborate on
the same project.

Methods
In this section, we explain the visGReMLIN workflow.
In addition, we describe the experimental design and
datasets used to test and evaluate our strategy.

Before starting to use visGReMLIN, the user needs to
register and subsequently log in. This login is useful for
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organizing projects in the same place without the need
to bookmark different submissions. Additionally, the user
receives results via email once a process finishes.

Figure 1 shows the visGReMLIN workflow. The web-
server has 3 main blocks, which are Creating a project,
GReMLIN strategy and Data analytics visualization. Next,
we refer to Fig. 1 in order to describe each step performed
by visGReMLIN.

Creating a project

When starting a new project in visGReMLIN, there are 3
options for the user to provide a dataset of protein-ligand
complexes (by complex, we mean a PDB id and chain) to
be analyzed (Fig.1a):

e Supply a PDB id and chain and let our tool
automatically search PDB for similar complexes by
selecting an alignment method and an identity
percentage;

e Manually enter a dataset of previously selected
complexes (type or copy and paste);

e Upload user’s own complexes in PDB format
(structures that are not deposited in PDB).

The visGReMLIN Input module is shown in Figure 1 of
the Supplementary Material. In addition to selecting the
input dataset, users can choose the cutoff they want to
use for the interaction computation (see Section Graph
dataset generation), the clustering algorithm and the eval-
uation metric (see Section Unsupervised learning).

GReMLIN strategy

From now on we use the term GReMLIN to refer to our
large-scale, graph-based strategy to detect motifs at the
protein-ligand interface. GReMLIN is composed of three
main blocks, which we describe in detail next.

Graph dataset generation

The first step of GReMLIN is to retrieve the input dataset
from PDB according to the information provided in Creat-
ing a project, which is composed of a set of protein-ligand
complexes (Fig.1b).

Then, the structures are processed to remove hydro-
gen atoms and experimental artifacts. In PDB, structures
have been solved using different experimental methods,
such as X-ray crystallography, nuclear magnetic reso-
nance (NMR) imaging and neutron diffraction. Although
Woiniska et al. [22] recently stated that hydrogen atoms
can be located by X-ray crystallography, the PDB files of
structures solved by NMR or neutron diffraction contain
the positions of hydrogens, whereas those from structures
solved by X-ray crystallography do not. Thus, to address
structures obtained by different experimental methods in
a fair manner, we remove hydrogens from PDB complexes
before contact computations. Ligands with less than 6
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Fig. 1 visGReMLIN workflow. The workflow is divided into three main blocks: Creating a project; GReMLIN strategy; and Data analytics and
visualization. The white circle represents the starting point; rectangles denote processing steps; ellipsoids represent output files; and hexagons are

atoms are considered to be experimental artifacts to solve
protein structures and are removed. We keep only those
complexes that contain at least one ligand.

To compute protein-ligand interactions (PLI), we use a
cutoff-dependent approach coupled with a distance cri-
terion. According to previous works [23, 24], a contact
is defined between a pair of atoms, (i, ), if the Euclidean
distance between them is less than or equal to a cutoff dis-
tance. Thus, we perform contact computations between
protein and ligand atoms and based on the physicochem-
ical types of atoms (6 types) and the distance between
them, we define the type of interaction established in a
similar manner to Silveira et al. [25]; Santana et al. [20] and
Fassio et al. [26]. Table 1 of the Additional file 1 presents
a list with atom types used in visGReMLIN, which was
derived from Fassio et al. [27]. Table 1 provides the stan-
dard distance criteria and physicochemical types of atoms
involved in each type of interaction. The physicochemical
types of atoms from ligands were computed using Pmap-
per from Chemaxon (http://www.chemaxon.com) at pH
7. It is important to point out that the user is allowed to
select his/her own distance criteria, as shown in Figure 1
of the Additional file 1.

Table 1 Distance criteria (in A) and physicochemical types of
atoms involved in each type of interaction

Type of interaction Atom types Minimum Maximum
distance distance
Aromatic stacking Two aromatic 15 35
atoms
Hydrogen bond An acceptor 20 30
and a donor
atom
Hydrophobic Two 20 38
hydrophobic
atoms
Repulsive Two atoms 20 6.0
with the same
charge
Salt bridges Two atoms 20 6.0
with opposite
charge

In a bipartite graph G = (P, L, E), nodes can be divided
into two disjoint sets, P and L, such that every edge in
E connects a vertex in P to one in L [28]. We model PLI
as bipartite graphs in which nodes depict atoms from a
protein (P) or ligand (L) and edges represent interactions
(E) among them. Nodes and edges are labeled according
to the physicochemical types of atoms and interactions.
Figure 2 shows an example of a PLI represented by a bipar-
tite graph. The block Graph dataset generation gives these
bipartite graphs as output.

Unsupervised learning

This block (Figure 1c) takes as input a set of graphs that
represent the interfaces between proteins and ligands and
segments them in similar groups through an unsupervised
learning strategy for motif prediction in the next block.

To summarize our dataset of graphs, we modeled the
dataset of PLI graphs as a matrix that contains infor-
mation from node and edge properties. For each graph,
we generate a feature vector in which each position
represents the presence of specific properties on a cer-
tain graph. Each vector position represents a pair of
node properties separated by the edge distance (num-
ber of edges between the pair of nodes). To calculate
this feature vector, we perform a breadth first search
on each graph to obtain each non-cyclic path between
all pairs of nodes. These paths are represented by their
end nodes with their respective node properties and
the distance between them. Figure 3 provides an exam-
ple of the proposed matrix and an example of a graph
and how it is represented by a feature vector in this
matrix. For instance, the attribute HP-4-HP means that
the graph has two hydrophobic atoms separated by
four edges.

To perform dimensionality and noise reduction in the
matrix that represents the PLI graphs, we used singular
value decomposition (SVD) [29], which is a preprocess-
ing step for the unsupervised learning task. SVD is widely
used in data mining for this purpose.

We provide 3 options of clustering algorithms to the
users, each of which is based on a different paradigm.
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K-medoids [30] is centroid based, Agglomerative is
hierarchical [31] and Spectral [32] consists of algorithms
that cluster data points using eigenvectors of matrices
derived from the input data. Additionally, we provide 2
metrics to evaluate the quality of clustering: average sil-
houette width (asw) [33] and Calinski-Harabaz index [34].
When used with the default parameters, visGReMLIN
automatically selects K-medoids and average silhouette
width. The output of the Unsupervised learning block is
clusters of similar PLI graphs.

Motif prediction
The Motif prediction block (Fig. 1d) takes as an input the
clusters of PLI graphs. Then, a frequent subgraph mining

(FSM) experiment is conducted to search for conserved
motifs in each cluster.

The algorithm selected for FSM was gSpan [35], which
is a highly cited FSM algorithm. In accordance with
Jiang et al. [36], considering a graph dataset D =
{Go, G1, ..., Gy}, support(g) denotes the number of graphs
in D that have g as a subgraph. The purpose of FSM is
finding any subgraph g whose support(g) > minSup (a
minimum support threshold).

By default, visGReMLIN runs FSM with support varying
from 0.1 to 1.0 with a step of 0.1 (the amount by which the
support varies) for each cluster. As support increases, we
obtain subgraphs that are in a high fraction of the graph
input dataset. Nonetheless, the number of total subgraphs
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Fig. 3 Example of graphs and their feature vectors in the matrix
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tends to decrease. Additionally, as the support increases,
the resulting subgraphs tend to become smaller, which is
expected as it is difficult to find bigger patterns in the
whole graph input dataset.

Subgraphs resulting from FSM algorithms can be struc-
turally repetitive, as a frequent subgraph can present
other frequent subgraphs within it [37]. In accordance
with Koyutiirk et al. [38], maximal frequent subgraphs are
the most interesting ones in many biological networks,
as those formed by protein-ligand interfaces. Hence, vis-
GReMLIN filters only the maximal subgraphs. There is
no loss of information, as maximal subgraphs contain the
discarded graphs.

The output of the FSM algorithm reveals frequent sub-
graphs and the graphs in the input dataset that they appear
in. However, FSM does not provide a direct mapping from
each node/edge of frequent subgraphs to the correspond-
ing node/edge in the graphs from the input dataset. This
mapping is interesting because it allows users to exactly
identify the patterns in the dataset analyzed. To overcome
this limitation of FSM, we map the maximal subgraphs to
the input graph dataset using the subgraph isomorphism
algorithm VF2 [39]. The block Motif prediction has as an
output the PLI motifs and their mappings to the graph
input dataset.

Data analytics and visualization

Data analytics and visualization block (Fig. le) is com-
prised of 4 visualization modules that deliver the results
of our strategy in a totally visual and interactive manner,
allowing domain specialists to explore and make sense of
conserved PLI motifs. visGReMLIN motifs can support
users in gaining insights on the key interactions responsi-
ble for molecular recognition in a specific dataset. Next,
we explain the functionalities of each module.

Dataset details

In this module, we present a table that summarizes the
unsupervised learning results, as shown in the Additional
file 1: Figure 2. The first column shows all the groups, and
the second column shows all the complexes of each group.
Moreover, column one presents a graph icon that displays
all the ligands of a specific group and a network icon that
shows all the input graphs for that group. Regarding the
second column, each complex (PDB id and chain) is a link
to the structure on the PDB website. This module also has
a text search functionality that displays only the lines that
contain the entered characters in the table.

Graph patterns table

A summary of the PLI motifs is provided in the Graph pat-
terns table. As shown in the Additional file 1: Figure 3, by
selecting Grouping columns, we see a table in which the
first column displays the Motif size (in number of nodes)
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segmented by the index of the group, and the second
column shows the occurrences of the respective motif seg-
mented by support value. By occurrences, we mean how
many motifs were found with a specific size and consid-
ering a specific support. By clicking on the column label
or on the group or support labels (colored lines inside
the table), data can be sorted. A set of filters are offered
in the panel Options to explore this table. One can Fil-
ter by group, Filter by minimum motif size, or Filter by
minimum occurrences. By selecting Simple table, we see a
heatmap table in which color is a pre-attentive attribute
that encodes the frequency of motifs, as provided in the
Additional file 1: Figure 4. The darker the shade of blue,
the higher the frequency. This table depicts the frequency
and size (in number of nodes) of resulting motifs for each
group (from unsupervised learning) and for each support
value (from FSM). As the choice of support is empirical,
we provide a panoramic view of the size, frequency, group
and support, to domain specialists to help them decide
which support value is appropriate to generate relevant
and interesting motifs. There is a compromise between
large and frequent motifs. The larger the motif, the smaller
its frequency.

Motif view

Users can visually explore and make sense of PLI motifs
through analytical interaction and navigation in the Motif
view module, as presented in Figure 4. Motifs can be ana-
lyzed alone or in the context of the protein structure,
which means that for given a motif, visGReMLIN high-
lights it in the graphs where it appears. Additionally, the
tool presents motifs in schematic 2D representations as
graphs or in the context of protein structures in a 3D
molecular viewer. This module has 4 main panels that we
describe in detail next.

Options: provides a variety of filters to interact with the
motifs. The common usage is selecting a support value
and exploring motifs using the filters below:

e View: displays PLI graphs without segmenting them
by choosing Free view or shows the PLI graphs in
boxes containing PDB id, graph index, ligand name
and group index by selecting Pattern view Free view.

e Color nodes by: nodes can be colored according to
the atom type or molecule to which they belong (blue
for protein and red for ligands).

e Filter by atom type: atoms of the selected type are
highlighted (possible types are acceptor, aromatic,
donor, hydrophobic, negative and positive).

e Filter by interaction type: interactions of the selected
type are highlighted (possible types are aromatic
stacking, hydrogen bond, hydrophobic, repulsive and
salt bridge).
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Fig. 4 Motif view. This module has 4 main panels: Options provides a set of filters to explore PLI motifs; Graphs legend displays the colors used to
depict atoms and edges; Motif graphs shows the set of PLI motifs according to selected filters; and Input PLI graphs depicts the PLI graphs that

e Filter by group: displays only graphs of the selected
groups from unsupervised learning.

e Filter by vertex number: shows the graphs that
contain the selected number of nodes.

e Remove pattern selection: in case a motif has been
selected in the panel Motif graphs, this option
removes the selection.

e Search for a residue, ligand, or atom: highlights nodes
from the graphs that contain the residue/ligand/atom
in the text search.

e Show node labels: enables or disables the display of
labels for the nodes.

Graphs legend: this panel presents the legends. Each
atom type is associated with a specific color. The same
holds for each interaction type.

Input PLI graphs: PLI graphs depicting protein-ligand
interfaces for a set of complexes are shown in this panel
in accordance with filters from panel Options and with
the motif chosen in Motif graphs. visGReMLIN shows, for
each graph, PDB id and chain, graph index, ligand name
and group index. By hovering the mouse over the graph,
we see some details on demand, depending on the part of
the graph:

® Protein nodes: residue name and number, atom name,
chain, atom type. An example is provided in Fig.5a

e Ligand nodes: ligand name and number, atom name,
chain, atom type as shown in Fig. 5b.

e Edges: information about connected atoms,
interaction type and distance between these atoms in
angstroms (A). Fig.5c.

Motif graphs: in this panel, users can navigate through
motifs, which are the frequent subgraphs from a dataset of
protein-ligand complexes represented as graphs. By click-
ing on a motif, only PLI graphs that contain that motif
are displayed on the panel Input PLI graphs. Additionally,
the motif is highlighted in the context of the PLI graph.
Figure 7a provides an example of pattern selection. Types
of atoms and interactions are displayed on demand by
hovering the mouse over nodes and edges, respectively.
Just the motifs from groups selected in Filter by group are
shown.

To support users in understanding and interpreting the
patterns in the context of protein structures, we provide
a 3D representation (Fig. 7c) of the protein-ligand inter-
action graphs in a molecule viewer (which we named
Interaction viewer) by clicking on the eye icon. Addi-
tionally, a general 2D visualization of ligands (Fig. 7b) is
provided by clicking on the ligand name in any graph from
the subsection Input PLI graphs. Only ligands from graphs
displayed in subsection Input PLI graphs are shown in the
set of ligands, and the ligand from the graph that the user
clicked on is highlighted in green.
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Graphical analysis

visGReMLIN delivers an interactive interface to show
a quantitative summary of motifs extracted from PLI
graphs, as shown in Figure 5 of the Additional file 1. The
common workflow in this panel is selecting the tab Atoms
type or Interactions type and then choosing a physico-
chemical type of atoms or interactions to be displayed
as histograms. In addition, histogram bars can be orga-
nized by Support value used in FSM or by Group from
unsupervised learning.

Results and discussion

Here, we illustrate how visGReMLIN supports users in
gaining insights on the key factors involved in protein-
ligand interactions.

Regarding the input parameters, we used the default val-
ues for distance criteria, clustering algorithm (K-medoids)
and evaluation metric (silhouette coefficient). The sup-
port value selected was 0.6, which means that each motif
was detected in at least 60% of the PLI input graphs of each
group. To show the generality and real-world applicabil-
ity of our strategy, we used 2 datasets of protein-ligand
complexes with different aims.

1. CDK: adapted from [40], this dataset consists in 73
protein-inhibitor complexes of an identical protein
with various ligands. This dataset is used to illustrate
that our strategy can be used in a scenario involving
protein promiscuity.

2. He: comprises 50 complexes involving ATP-binding
proteins; thus, it has ATP complexed with various
proteins. This dataset was proposed by [19], and it
helps us illustrate how our strategy can be used in a
scenario involving ligand promiscuity.

The PDB ids of the datasets used in both cases are
provided in the Additional file 1: Table 2.

CDK use case
Using the CDK dataset as an input, we created a project
named CDK (available for access on the visGReMLIN

website), which resulted in 276 PLI input graphs divided
into 14 groups, as shown in the Additional file 1: Figure 6.
Here, we present a qualitative analysis in which visGReM-
LIN motifs are compared to experimentally determined
binding site residues/atoms of CDK interacting with the
2 most potent sulfonamide analogue inhibitors obtained
in Schonbrunn et al. [40]. Residues/atoms determined as
relevant in the PLI in the mentioned work do not repre-
sent interactions between CDK and all its possible ligands
in our dataset of CDK complexes. Thus, it is expected
that the motifs found by visGReMLIN will not contain
residues/atoms identical to those that were experimen-
tally determined. Even so, we believe that the comparison
is interesting to show that our strategy is able to detect
the majority of relevant residues/atoms determined in
Schonbrunn et al. [40].

In Table 2, we show 26 relevant residues/atoms from
the CDK binding site. By searching each of these
residues/atoms in visGReMLIN motifs, we were able to
find 18, which represents approximately 69%. Residue
GLN85 was not considered here as it is involved in a
water-mediated interaction with the ligand and our strat-
egy does not consider this type of interaction. Residues in
bold in Table 2 (LEU83; PHE 82; and GLUS81) are well-
known relevant residues for CDK as they are in the hinge
region of this protein. It is important to point out that
our strategy was able to detect all residues/atoms from the
CDK hinge region. In Fig. 6, we show an example of atoms
from the hinge region detected in a visGReMLIN motif
(PHE82:CE2 and PHE82:CZ).

Next, we present one interesting motif detected by visu-
ally inspecting the visGReMLIN results. Figure 7a depicts
a motif (highlighted in green on the left-hand side) with
5 nodes, 4 of which (in blue) are hydrophobic atoms and
the other (in purple) of which is aromatic/hydrophobic.
This motif was found in 3 different complexes (3QRT.A,
3R8L.A, and 3R9H.A) with different ligands (X14, Z30,
and Z67) of group 9 (which has 3 PLI graphs). These
complexes are shown in Fig. 7a on the right-hand side.
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Table 2 CDK binding site

Residue

Atom

VisGReMLIN

ASP145

LYS33

ASP86

LYS89

HIS84

LEU83

PHE82

GLU81
PHE8O
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Residues from CDK that interact with the 2 most potent sulfonamide analogue

inhibitors

v’ Residues/atoms found in patterns;
e Found but not in patterns;

x Not found
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Figure 7b displays the 3 different ligands from the PLI
input graphs with ligand Z67 from complex 3R9H.A high-
lighted. Figure 7c presents the motif in the context of the
protein structure in a 3D molecular viewer for complex
3R9H.A.

ATP use case

We created a project called ATP (available for access on
visGReMLIN website) in which we use data from [19]
as an input. It resulted in 293 PLI graphs segmented in
2 groups, as shown in the Additional file 1: Figure 7.
Here, we present a qualitative analysis in which we discuss
some interesting motifs detected by visually inspecting the
visGReMLIN results.

visGReMLIN found 2 motifs; one motif contains three
acceptor/negative nodes connected by 2 repulsive inter-
actions and appears in 17 input graphs. The ATP atom
from this motif that interacts most often with the protein
is O1G (20 interactions in a total of 10 input graphs), fol-
lowed by O2B (14 interactions in a total of 8 input graphs)
and O1A (11 interactions in a total of 8 input graphs).
Figure 8a shows this 3-node motif highlighted in green on
the left-hand side and the mapping of such motif to input
graph 1JI0.A, which contains O1G interacting with pro-
tein atoms, on the right-hand side. In Fig. 8b, we observe
this motif in the context of the protein structure, and in
Fig. 8c, we add the surface to the molecular view. In the
Additional file 1: Table 3, we present the frequency at
which each ATP atom of this motif interacts with protein
atoms.

The other motif for ATP consists of two nodes, one
donor/positive and the other acceptor/negative, which are
connected by a salt bridge and were found in 19 input
graphs. In this motif, the ATP atom that interacts most
often with the protein is O1G (18 interactions in a total
of 12 input graphs), followed by O1B (9 interactions in

Pattern graphs

°

Yilter...

i

(A)

Input graphs
Number of showed graphs: 5

3QRUA ® -
Graph: 29

Ligand: X19

Group: 5

Interaction viewer

Interaction viewer

B)

Fig. 6 Atoms from the hinge region (PHE82:CE2 and PHE82:CZ) in a visGReMLIN motif. a depicts the motif (on the left-hand side) and one of the PLI
input graphs that contains the motif (on the right-hand side). b shows the motif in the context of CDK structure, and ¢ displays exact the same
structure in the same position as (b) but now visualized as a surface in Interaction viewer
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Pattern graphs Input graphs
Number of showed

\\\\\

. cucor e -
S s =
ol
- ™ g Ligand: X14

PDB id: 3R9H

(A)

Ligand: Z30
PDB id: 3R9H

Interaction viewer

Ligand: Z67
PDBid: 3R9H

(B)

Fig. 7 5-node motif from the CDK dataset. The motif is displayed in (a) and is highlighted in green on the left-hand side. PLI input graphs from group
9 (where the motif was detected) are shown on the right-hand side of (a). b provides images of the ligands from the PLI input graphs in group 9
(X14, Z30, and Z67) with ligand Z67 from complex 3R9H.A highlighted in green. € shows the motif in complex 3R9H.A in a 3D molecular viewer

a total of 8 input graphs) and O2G, O2B and O1A (all
establish 8 interactions). Fig. 9a shows this 2-node motif
highlighted in green on the left-hand side, and the map-
ping of such motif to input graph 2W00.A, which contains
O2B interacting with protein atoms, on the right-hand
side. In Fig. 9b, we observe this motif in the protein struc-
ture, and in Fig. 9¢c, we add the surface to the molecular
view.

Of the 9 residues that He et al. [19] computationally
calculate as the motif for the ATP dataset (3FVQ.THR4,
2R6G.GLY39, 3EPS.VAL334, 1UA2.GLY19, 4DIN.THR51,
3MN7.TYR306, 2WO00.LEU315, 4J7C.ALA57, and
3EPS.LYS461), visGReMLIN was able to detect 1 (LYS)
using its default parameters. It was expected that the vis-
GReMLIN motifs would differ from the mentioned work
as they are computed in a totally different manner and
with different purposes. While He et al. [19] is focused
on finding a unique motif (composed of residues) that
summarizes the binding for a specific dataset (no matter

the size of the dataset), our strategy aims at delivering
frequent substructures (common arrangements of atoms)
in PLL

Conclusion

In this paper, we present visGReMLIN, a user-friendly
web-server that brings together a computational strategy
to detect motifs at the protein-ligand interface and a visual
interactive platform to explore and interpret such pat-
terns. By motifs, we mean frequent subgraphs detected at
the interfaces between proteins and ligands. visGReMLIN
motifs can support users in gaining insights on the key
atoms/residues responsible for protein-ligand interactions
in a dataset of complexes.

To illustrate the ability of our strategy to support users
in the detection and understanding of motifs, we con-
ducted 2 use cases. In the first one, we used a dataset of 73
identical CDKs in a complex with a varied set of ligands.
We compared our motifs to experimental results to show

Motif graphs Input graphs

Number of showed graphs: 10
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Group: 2

0:A @ -
Graph: 10

Ligand: ATP

(“. Group: 2

Y Filter =
Group:2

(A)

Interaction viewer Interaction viewer
L artoon & e bsieded artoon &

(B)
Fig. 8 3-node motif from the ATP dataset. The motif is displayed in (a) and highlighted in green on the left-hand side. One of the PLI input graphs

(1J10.A) from group 2 in which the motif was detected is shown on the right-hand side of (a), and the ATP atom from this motif that interacts most
often with the protein, O1G, is shown in a larger size. (b) shows the motif in the protein structure. (€) adds the protein surface to the previous structure

(C)
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Fig. 9 2-node motif from the ATP dataset. a displays the motif highlighted in green on the left-hand side. One of the PLI input graphs (2WO00.A) from
group 2 in which the motif was detected is shown on the right-hand side of (a), and the ATP atom from this motif, 028, is shown in a larger size. b
shows this motif in the protein structure. (€) adds the protein surface to the previous structure

Interaction viewer

@Surface

Cartoon $
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that visGReMLIN is able to find relevant atoms/residues
that have been experimentally determined. In the second
use case, we used a dataset of 50 complexes that involve
the ATP ligand in a complex with different proteins. We
performed a qualitative analysis to illustrate the visGReM-
LIN motifs for ATP, and we also compared our motifs to
those found in a computational study. visGReMLIN found
approximately 10% of these patterns. We believe that the
visGReMLIN motifs differ because while the previous
study aimed to find a unique motif composed of residues
that summarize the binding for a specific dataset regard-
less of its size, visGReMLIN focuses on finding frequent
structural arrangements of atoms (from the protein and
from the ligand) at the interface between proteins and
ligands.

In addition, these use cases show that visGReMLIN
can be used with a dataset of the same/similar proteins
in complex with different ligands and with a dataset of
the same/similar ligands in a complex with different pro-
teins, which means that the tool can be used in scenarios
involving protein promiscuity and ligand promiscuity. We
believe that this functionality is an important result of our
work, as many available methods are limited to one of
these scenarios.

As future work, we would like to investigate whether the
motifs detected by visGReMLIN can be used to predict
protein-ligand interactions. Considering that our strat-
egy is able to characterize the interface motifs between a
dataset of proteins and ligands, we are interested in using
these motifs to help us to choose potential ligands for a
specific protein. Additionally, we plan to systematically
measure user insights and impressions about motif detec-
tion and the proposed visualization to help us improve
visGReMLIN.
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