
Fostier BMC Bioinformatics 2020, 21(Suppl 2):81
https://doi.org/10.1186/s12859-020-3348-6

SOFTWARE Open Access

BLAMM: BLAS-based algorithm for
finding position weight matrix occurrences
in DNA sequences on CPUs and GPUs
Jan Fostier

From 6th International Work-Conference on Bioinformatics and Biomedical Engineering
Granada, Spain. 25–27 April 2018

Abstract

Background: The identification of all matches of a large set of position weight matrices (PWMs) in long DNA
sequences requires significant computational resources for which a number of efficient yet complex algorithms have
been proposed.

Results: We propose BLAMM, a simple and efficient tool inspired by high performance computing techniques. The
workload is expressed in terms of matrix-matrix products that are evaluated with high efficiency using optimized BLAS
library implementations. The algorithm is easy to parallelize and implement on CPUs and GPUs and has a runtime that
is independent of the selected p-value. In terms of single-core performance, it is competitive with state-of-the-art
software for PWM matching while being much more efficient when using multithreading. Additionally, BLAMM
requires negligible memory. For example, both strands of the entire human genome can be scanned for 1404 PWMs
in the JASPAR database in 13 min with a p-value of 10−4 using a 36-core machine. On a dual GPU system, the same
task can be performed in under 5 min.

Conclusions: BLAMM is an efficient tool for identifying PWM matches in large DNA sequences. Its C++ source code
is available under the GNU General Public License Version 3 at https://github.com/biointec/blamm.

Keywords: Position weight matrix (PWM), High performance computing (HPC), Basic linear algebra subprograms
(BLAS), Graphics processing units (GPUs)

Background
Position weight matrices (PWM), also referred to as a
position-specific scoring matrices (PSSM), are used to
model short, biologically relevant sequence patterns such
as transcription factor binding sites [1]. PWMs offer more
flexibility than consensus patterns as they can allow vari-
ation at each position in the pattern. Databases such as
JASPAR [2], UniPROBE [3] and TRANSFAC [4] host large
collections of curated PWMs.

Position weight matrices are generated from an align-
ment of functionally related sequences. In this work
we focus on DNA sequences. Assuming independence

Correspondence: jan.fostier@ugent.be
Department of Information Technology - IDLab, Ghent University - imec,
Technologiepark 126, B-9052 Ghent (Zwijnaarde), Belgium

between positions, these alignments can be summarized
in a 4 × m position frequency matrix (PFM), with m
the length of the alignment, where each matrix element
PFM(i, j) represents the frequency of character i (0=‘A’;
1=‘C’; 2=‘G’; 3=‘T’) at position j in the alignment. By
computing, at each position, the relative occurrence of
each nucleotide, the position probability matrix (PPM) is
derived:

PPM(i, j) = PFM(i, j) + α
∑

i(PFM(i, j) + α)
(1)

where α ≥ 0 is a pseudocount that acts as a smooth-
ing parameter to avoid zero probabilities [5]. Finally, when
computing the logarithm (base-2) of the ratio of the PPM
elements and the corresponding background nucleotide
probability bi, the PWM is obtained:

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-3348-6&domain=pdf
https://github.com/biointec/blamm
mailto: jan.fostier@ugent.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 2 of 13

PWM(i, j) = log2

(
PPM(i, j)

bi

)

(2)

Each element PWM(i, j) thus represents the log-likelihood
ratio of observing character i at position j in a functional
site compared with a random sequence. Figure 1 shows an
example of a PFM, PPM and PWM and its corresponding
sequence logo visualization [6].

Given a sequence of length m, the PWM score is
obtained by summing over the PWM log-likelihood ratios
at m positions, each time selecting the appropriate PWM
element, i.e., the one that corresponds to the nucleotide
in the sequence. Higher PWM scores express a better
correspondence to the PWM model and thus a higher
likelihood that the sequence represents a functional site.

In this work, we focus on the PWM matching prob-
lem: given an input sequence of length n (with typically
n � m), identify all matches or occurrences of a PWM,
i.e. all subsequences for which the PWM score exceeds
a user-defined threshold. These matches are then puta-
tive functional sites. The problem can be generalized to
the case where the matches of multiple PWMs need to

be identified, referred to as the multiple PWM matching
problem. For long input sequences and/or a large number
of PWMs, PWM matching is a compute-intensive prob-
lem that may require a large runtime. We briefly review
the most important algorithmic approaches and refer to
[7] for a more detailed overview.

A simple brute-force algorithm evaluates the PWM
score at each possible starting position of the input
sequence(s) and has a time complexity of O(nm). A simple
improvement, called lookahead scoring, is to stop the com-
putation of the PWM score as soon as it has been deter-
mined that the score threshold can no longer possibly
be reached [8]. In permuted lookahead scoring, the PWM
score is evaluated in such order that potential early termi-
nation is established as soon as possible. More advanced
techniques for PWM matching usually involve generaliza-
tions of algorithms developed for exact pattern matching.
They can be categorized as either online algorithms, that
rely on the preprocessing of the PWM search matrices, or
algorithms based on index structures, that rely on the pre-
processing of the input sequence(s). In [9], PWM matches
are identified using a depth-first traversal up to depth m

Fig. 1 Position frequency matrix (PFM), position probability matrix (PPM), position weight matrix (PWM) and sequence logo of the MYB.Ph3
transcription factor. The PFM was obtained from the JASPAR database [2]. The PPM/PWM were computed using a pseudocount α = 1 and
assuming a uniform background nucleotide composition (bi = 0.25). The sequence logo was generated using WebLogo [32]. a Position Frequency
Matrix (PFM). b Position Probability Matrix (PPM). c Position Weight Matrix (PWM). d Sequence Logo

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 3 of 13

of a suffix tree representation of the input sequence(s).
This means that PWM score computations of repeated
subsequences only need to be performed once and that
computations can be partly reused between subsequences
that share the same prefix. The use of lookahead scoring
allows for the identification of subtrees that contain no
PWM matches and that can be discarded from the search
procedure. Similarly, the more space-efficient enhanced
suffix array (ESA) [10] index structure is used in PoSSuM-
search [11, 12]. As index structures require O(n) memory,
which can be costly in practice, much research has been
devoted to online algorithms as well. In [13], index tables
are constructed that contain precomputed (partial) PWM
scores for all possible words or a short, fixed length. Addi-
tionally, potential similarity between multiple PWMs is
exploited to accelerate the multiple PWM matching prob-
lem. In [14], the shift-add algorithm has been adopted
for PWM matching. Similarly, in [15], the Morris-Pratt
and Knuth-Morris-Pratt algorithms [16] are generalized
to PWM matching. Finally, in [17], the Aho-Corasick, fil-
tration and super-alphabet techniques developed for exact
string matching are generalized to PWM matching, and
further extended to the multiple PWM matching prob-
lem [18] and to higher-order PWM matching [19]. These
algorithms are collectively implemented in the MOODS
software package [20]. The use of graphics processing unit
(GPU) architectures is investigated in [21]. The brute-
force algorithm is parallelized over the different starting
positions of the input sequence, as well as over the differ-
ent PWMs, thus realizing important performance gains.
Additionally, similarly to [13], index tables with precom-
puted partial PWM scores are used for further accelerate
the search process.

These more complex PWM matching methods accel-
erate the (multiple) PWM matching problem by using
various algorithmic techniques to avoid redundant com-
putations and/or eliminate parts of the search space that
are guaranteed not to contain PWM matches. The degree
to which they can be successful largely depends on the
PWM score threshold that is selected. When a high
threshold is selected, the PWM matching problem resem-
bles exact pattern matching for which efficient algorithms
with O(n + m) time complexity exist. In contrast, for
relaxed PWM score thresholds, the fraction of the search
space that can be eliminated is small, and the time com-
plexity eventually approaches the O(nm) complexity of
the brute-force algorithm. As m takes a value between
5 and 15 for most practical applications, complex PWM
matching algorithms may attain a speedup of approxi-
mately one order of magnitude over implementations of
the brute-force algorithm.

In this work, we propose an alternative methodology to
accelerate the PWM matching problem that is inspired
by High Performance Computing techniques [22]. Rather

than reducing the search space, we adopt the brute-force
algorithm and reduce its runtime by expressing the PWM
matching problem in terms of matrix-matrix products
(MMP). MMPs can be evaluated with very high efficiency
on modern CPUs for two reasons. First, they leverage
SIMD (Single Instruction, Multiple Data) instructions that
allow the same operation (multiplication, addition) to be
performed on multiple data elements simultaneously. Sec-
ond, MMPs can be implemented such that they maximally
exploit spatial and temporal locality of reference, thus
ensuring that most data accesses are satisfied from the
CPU’s cache memory. As such, MMPs are among a select
class of algorithms that can be evaluated with a perfor-
mance that approaches the theoretical peak performance
of the CPU. The latter is typically two orders of magni-
tude higher than what is effectively obtained by scalar (i.e.,
non-SIMD), compiler-generated code. High performance
MMPs are provided through Basic Linear Algebra Sub-
routines (BLAS) [23] library implementations, for which
most CPU vendors offer highly optimized implementa-
tions. Alternatively, open-source implementations such as
ATLAS [24] or GotoBLAS [25] can be considered. The
proposed method, named BLAMM (BLAS-Accelerated
Motif Matching) inherits the advantages of the brute-
force algorithm: it requires very little RAM, has a runtime
that is independent of the selected PWM threshold(s)
and is easy to implement and parallelize. We evaluated
BLAMM on three recent generations of Intel CPU archi-
tectures and compared its performance with a naive
implementation of the brute-force algorithm, MOODS
(state-of-the-art online algorithm) and PoSSuMsearch
(state-of-the-art index structure based algorithm) for dif-
ferent data sets and PWM threshold settings. Finally, we
demonstrate BLAMM can easily leverage the computing
power of graphics processing unit (GPU) architectures.
To this end, we use the cuBLAS library [26] to effi-
ciently perform the MMPs on the GPU rather than on the
GPU. The performance of the GPU version of BLAMM
is compared with TFM-CUDA, a state-of-the-art GPU
implementation.

This paper is an extended version of the proceedings
paper [27]. When comparing current benchmark results
with the ones initially presented in [27], it should be
understood that the performance of BLAMM in between
both publications has improved significantly through var-
ious algorithmic and implementation improvements.

Implementation
We consider the multiple PWM matching problem over
a DNA alphabet. Starting from the brute-force algorithm,
we express the evaluation of the PWM score at each pos-
sible starting position of the input sequence(s) in terms of
matrix-matrix products (MMP). The procedure involves
three matrices:

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 4 of 13

• A pattern matrix P that contains all of the PWMs.
• A sequence matrix S that encodes (part of) the DNA

input sequence(s) using only elements 0 and 1.
• A result matrix R that is computed as R = sub(S) ∗ P

and that contains the PWM scores of all PWMs at
some positions in the input sequence(s). The routine
sub(.) denotes that a submatrix of S is used.

We now describe each matrix in detail. Figure 2 provides
an overview of the algorithm.

Pattern matrix P
The pattern matrix P is built once and remains constant
during the execution of the algorithm. It has dimensions
4m × c where c denotes the total number of PWMs and
m = maxj(mj) refers to the maximum PWM length
with mj the length of PWMj. Every column of P corre-
sponds to a single PWM. The values in a column of P
are obtained by unrolling the values of the correspond-
ing PWM. For PWMs shorter than m characters, trailing
zeros are appended to the corresponding column in P.
Formally:

P(i, j) =
{

PWMj(i mod 4, �i/4�) 0 ≤ i < 4mj

0 i ≥ 4mj (3)

for all 0 ≤ j < c.
In case PWM occurrences on both strands of the input

sequence(s) need to be identified, c additional columns are
added to matrix P that represent the reverse-complement
of each PWM.

Sequence matrix S
The sequence matrix S has dimensions h × 4(w + m − 1)

where h and w can be arbitrarily chosen ≥ 1 and where m
again represents the maximum PWM length. The matrix
S is used to encode (part of) the input sequence(s) SDNA

of exactly hw + m − 1 nucleotides. First, the string SDNA

is converted into an array Senc of 4(hw + m − 1) zeros and
ones by simply replacing character A by 1000; C by 0100;
G by 0010; and T by 0001. Formally:

Senc(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 SDNA(�i/4�) = A ∧ i mod 4 = 0
1 SDNA(�i/4�) = C ∧ i mod 4 = 1
1 SDNA(�i/4�) = G ∧ i mod 4 = 2
1 SDNA(�i/4�) = T ∧ i mod 4 = 3
0 otherwise

(4)

for all 0 ≤ i < 4(hw + m − 1). The matrix S is constructed
from this temporary array as follows:

S(i, j) = Senc(4iw + j) (5)

for all 0 ≤ i < h and 0 ≤ j < 4(w + m − 1).
Every row in S contains a contiguous subarray of Senc

and thus encodes a substring of SDNA. The rightmost
4(m − 1) elements of row i are identical to the leftmost
4(m−1) elements of row i+1. In other words, subsequent
rows of S encode overlapping substrings of SDNA with an
overlap of m − 1 characters.

Result matrix R
The result matrix R has dimensions h × c and is com-
puted as the matrix-matrix product of a submatrix of S
and matrix P. Given an offset o with 0 ≤ o < w, Ro is
computed as follows:

Fig. 2 The result matrix R is computed as the matrix-matrix product of a submatrix of sequence matrix S and pattern matrix P. Each column of P
represents a single PWM. Matrix S represents (part of) the input sequence. Each element in R contains a PWM score at some position in the input
sequence

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 5 of 13

Ro = S(:, [4o, 4(o + m)[) ∗ P (6)

where the notation S(:, [4o, 4(o+m)[) refers to the h×4m
submatrix of S where the first column of the submatrix
corresponds to the column with index 4o in S. Every ele-
ment in Ro is thus computed as the dot product of (part
of) a row in S and a column in P. The elements of S (zeros
and ones) are multiplied with the elements of the PWM
and thus generate the terms that, when added, correspond
to the PWM score. As such, element Ro(i, j) contains the
score for PWMj at position iw + o in SDNA.

Algorithm 1 provides pseudocode for the entire work-
flow. In the outer for-loop, a portion of the input
sequence(s) of length hw + m − 1 is read into SDNA. In
the inner for-loop, the PWM scores are exhaustively com-
puted for all c PWMs at the hw first positions of SDNA.
Therefore, the SDNA strings at consecutive outer for-loop
iterations overlap by m − 1 nucleotides.

The time complexity of Algorithm 1 is given by:

T(n, m, c) =
n/(hw)∑

i=1

[

O(hw) +
w−1∑

o=0

[
O(hmc) + O(no,i

occ)
]
]

(7)

=
n/(hw)∑

i=1

[
O(hw) + O(hwmc) + O(ni

occ)
]

(8)

= O(n) + O(nmc) + O(nocc) (9)

where nocc denotes the total number of motif occurrences
identified. This further simplifies to O(nmc) which is the
same time complexity as the brute-force algorithm. Note
that the time complexity is indeed independent of the
choice of parameters h and w.

The space complexity is given by O(mc + h(w + m) +
hc + nbuf

occ), i.e. the space to store the three matrices and

Algorithm 1 PWM matching using matrix-
matrix products

Input: Sequence Sinput 	 DNA input
sequence(s)

Input: PWMs = {PWMi} 	 Set of PWMs
Input: thresholds = {thresholdi} 	 Set of

thresholds
1: P ← createPatternMatrix(PWMs)

2: for pos = 0 to length(Sinput) − 1 step hw do
3: SDNA ← Sinput[pos, pos+ hw+ m− 1[
4: Senc ← encodeString(SDNA)
5: S ← createSequenceMatrix(Senc)
6: for o = 0 to w− 1 step 1 do
7: Ro ← S(:, [4o,4(o+ m)[) ∗ P
8: reportOccurrences(Ro,o,thresholds)

9: end for
10: end for

where nbuf
occ denotes the maximum number of occurrences

that are buffered in memory before they are spilled to disk
(user-defined).

Note that in case the input data consists of multiple
DNA sequences, these sequences can be concatenated
when generating SDNA. With minimal extra bookkeeping,
one can prevent the reporting of occurrences that span
adjacent DNA sequences.

Implementation details and performance considerations
The algorithm was implemented in C++ with support
for multithreading using C++11 threads. The workload is
easily split in independent subtasks by parallelizing the
outer for-loop in Algorithm 1. Under the EREW-PRAM
(Exclusive Read, Exclusive Write, Parallel Random-Access
Machine) model, the time complexity using p parallel
processes is given by:

Tp(n, m, c) ≤ O(n) + O(nmc)/p + O(nocc) (10)

where the O(n) term refers to data input and the O(nocc)
term refers to data output. Concurrent disk access is
indeed prohibited through the use of a mutual-exclusion
(mutex) synchronization primitive. The ≤ sign in (10)
reflects the fact that disk access and computations can
overlap. As all datastructures involved are duplicated per
thread, the memory complexity is given by pO(mc+h(w+
m) + hc + nbuf

occ). This seems reasonable as the matri-
ces require little memory in practice. The thread-local
duplication of the read-only matrix P is done to avoid per-
formance issues on non-uniform memory access (NUMA)
architectures.

The BLAS sgemm routine [23] is used to evaluate the
MMPs using single-precision computations. The runtime
of BLAMM is largely governed by the time required to
evaluate these MMPs and hence the quality of the BLAS
library implementation.

Even though parameters h and w that govern the dimen-
sions of matrix S can be arbitrarily chosen, for perfor-
mance reasons, they should not be too small (as evaluating
MMPs with small matrices is not very efficient) nor too
large (to avoid excessive memory requirements). In our
implementation, we set h = 1000 and w = 250 such that
matrix S corresponds to a 1000×[1000+4(m−1)] matrix.

Note that BLAS routines have full support to specify
submatrix ranges without any need to explicitly copy these
submatrices onto separate data structures.

Finally, note that in [27], we described the algorithm
in using the transpose matrices R, P and S. Even though
both approaches are mathematically equivalent, we found
that current representation has a higher performance in
practice. This is likely due to the fact that, when using
a column-major matrix layout (as is natural in BLAS),
matrix subo(S) is represented as a linear array and strided-
memory access is avoided.

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 6 of 13

GPU version
Graphics processing units (GPUs) contain massively par-
allel processors able to perform certain tasks with higher
efficiency than general-purpose CPUs. Using the cuBLAS
[26] library, one can evaluate the MMPs on a GPU thus
boosting the performance of BLAMM. To this end, the
matrices P and S must be copied to the GPU memory.
The constant pattern matrix P is copied only once, while
a new sequence matrix S is copied during each outer for-
loop iteration in Algorithm 1. To avoid having to copy
the entire result matrix Ro from GPU memory to regu-
lar RAM after each MMP in the inner for-loop iteration,
a kernel was developed in the CUDA programming lan-
guage to identify the matrix indices (i, j) for which Ro(i, j)
exceeds the threshold score for PWMj. This task, known
as stream compaction, is also executed on the GPU itself.
Only the set of indices (i, j) that correspond to actual
PWM matches is copied from GPU to system RAM, thus
minimizing the volume of the data that has to be trans-
ferred. The CPU itself is only responsible for preparing the
S matrices and converting the indices (i, j) to formatted
output that is written to disk. Again, by parallelizing over
the outer for-loop in Algorithm 1, BLAMM supports the
use of multiple GPU devices simultaneously.

The programming efforts required to enable GPU sup-
port are minimal as most tasks are handled by CUDA
library calls (copying data between CPU and GPU, call-
ing cublasSgemm, ...). The only exception is the stream
compaction kernel itself which consists of 7 lines of
CUDA code.

Partitioning of the P-matrix
The total number of floating point operations in BLAMM
depends on the size of the input sequence(s) n, the total
number of PWMs c and the length of the longest PWM
m. Indeed, recall that PWMs with a length shorter than m
are represented as a column in P by adding trailing zeros.
In case many PWMs have a length that is substantially
shorter than m, matrix P may contain a large fraction of
zero elements. In turn, this may create significant over-
head during the evaluation of the MMPs.

This overhead can easily be reduced by sorting the
columns in P according to length of the PWM they rep-
resent and subsequently partitioning P into a number of
tiles. The evaluation of Ro = subo(S) ∗ P can then be
computed as a number of smaller MMPs as follows:.

Ro(:, [ci, ci+1[)=S(:, [4o, 4(o+mi)[)∗P([0, 4mi[, [ci, ci+1[)

(11)

where the interval [ci, ci+1[corresponds to a subset of the
columns in R and P and where mi denotes the maximum
PWM length in that range. When mi < m overhead is
reduced.

The idea is illustrated in Fig. 3 for the JASPAR dataset
(see description below). The pattern matrix P represents
1404 PWMs with lengths between 5 and 30 and initially
contains 62% zero elements (Fig. 3a). This means that
more than half of the floating point operations executed
during the MMP are redundant. Matrix P is divided into
two tiles along some column index ci (Fig. 3b). The left-
most tile then contains, at the bottom, a submatrix with
only zero elements that can be discarded when evalu-
ating the MMP. The column index ci is selected such
that the area of this zero submatrix is maximal. The pro-
cess of matrix subdividing is applied recursively to the
two tiles individually. The procedure is stopped when
the area of the zero submatrix that can be discarded is
smaller than a user-defined parameter. After two rounds
of subdividing, four tiles are obtained (Fig. 3c) and 90%
of the zero elements are discarded from P. Figure 3d
shows the relative performance gains obtained by subdi-
viding matrix P. Different CPU architectures (discussed
further) benefit to varying degrees (40% to 18% reduc-
tion in runtime). The GPU architecture did not benefit
from partitioning P (6% increase in runtime). The rea-
son is that even though the total number of floating
point operations is reduced, the process of tiling also
yields smaller matrices for which the evaluation of the
MMPs is less efficient. Current tiling algorithm appears
to provide a good trade-off between reduction of zero fill
while maintaining fairly large tiles. Note that this tiling
algorithm is more efficient than the one we originally
described in [27] where P was partitioned in slices with
uniform width.

Benchmark results
The performance of BLAMM was benchmarked against
i) a naive implementation of the brute-force algorithm,
ii) MOODS [20] as a state-of-the-art online algorithm,
iii) PoSSuMsearch [11] as a state-of-the-art index struc-
ture based implementation and iv) TFM-CUDA [21],
a state-of-the-art GPU-accelerated implementation. The
naive implementation simply scans for PWM occurrences
using three nested for-loops: one for-loop over the input
sequence(s), a second for-loop over the different PWMs
and a third for-loop to compute the PWM score. It has the
same code quality standards as BLAMM to ensure a fair
comparison.

A total of 1404 position frequency matrices with length
between 5 and 30 were downloaded from the JAS-
PAR CORE database [28]. The human genome reference
genome (HG38) was retrieved from the GATK Resource
Bundle [29]. Part of the benchmarks were run only on
chromosome 1 (230 Mbp). For all tools, both strands of
the DNA sequences were scanned for PWM occurrences.
In the case of BLAMM, this is achieved by including the
reverse complements of the PWM matrices as columns in

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 7 of 13

Fig. 3 Example of a pattern matrix P containing 1404 JASPAR PWMs where many columns contain trailing zeros because of differences in length of
the corresponding PWMs (panel a). Matrix P subdivided into two (panel b) and four (panel c) tiles. Relative performance gain/loss from tiling for
different CPU and GPU architectures (panel d)

matrix P. Thus effectively, 2808 PWM matrices were used
in total.

Each tool computes the PWM score thresholds from a
user-defined p-value. Smaller p-values give rise to higher
thresholds and vice versa. Like MOODS, PoSSuMsearch
and TFM-CUDA, BLAMM implements a dynamic pro-
gramming algorithm to convert p-values to PWM score
thresholds [30, 31]. Note that all tools use exact algorithms

and should, in principle, produce identical results. Minor
differences in output are due to i) slight differences in
the process of converting p-values to PWM thresholds,
ii) slight differences in the way pseudocounts are imple-
mented, iii) differences in the way non-ACGT characters
in the input sequences are handled. BLAMM’s CPU and
GPU versions produce results identical to the naive brute-
force implementation, regardless of the number of threads

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 8 of 13

used. The exact command line arguments for each tool are
listed in Additional file 1: Section S1.

The benchmarks were run on three generations of Intel
CPU architectures, referred to as node A, B and C, respec-
tively (see Table 1 for details). With each generation, the
number of CPU cores increases (16, 24, 36, resp.) while
the clock frequency shows a slight decrease (2.6, 2.5 and
2.3 GHz, resp.). Particularly relevant for BLAMM, how-
ever, are the SIMD capabilities of the different CPUs.
Node A contains CPUs that support Advanced Vector
Extensions (AVX) that operate on 256-bit AVX registers
and that can thus contain 8 single precision (SP) float-
ing point numbers. Each core is able to generate 16 single
precision (SP) floating point operations (FLOPs) per CPU
cycle: one 8-wide AVX addition and one 8-wide AVX mul-
tiplication. The CPUs in node B support AVX2 instruc-
tions which include fused multiply-add (FMA) operations
that effectively perform a multiplication and addition in
a single instruction. Hence, these CPU cores are able to
generate 32 SP FLOPs per CPU cycle: two 8-wide FMA
instructions. Finally, the CPU in node C has support for
AVX-512 instructions which operate on 512-bit AVX reg-
isters that can hold 32 SP numbers again doubling the
theoretical peak performance to 64 SP FLOPs per cycle.
Table 1 also contains the specifications of a node with two
nVidia 1080 Ti GPUs. In this case, as most of the workload
is performed by the GPUs, the other system specifications
(no. of CPU cores, SIMD capabilities) have only a marginal
influence on the runtime.

The C++ source code of BLAMM was compiled against
the Intel Math Kernel Library (MKL) version 2018.1.163
which implements optimized BLAS routines for Intel
CPUs. Depending on the CPU’s capabilities (AVX, AVX2,
AVX-512), it automatically selects the most appropriate
implementation. In all cases, multi-threading within the
MKL was disabled. In other words, individual calls to
sgemm were always executed in a single-threaded man-
ner but multiple calls to sgemm are issued by different
threads concurrently. The CUDA code was compiled with

the nvcc compiler and linked against cuBLAS from the
CUDA SDK version 8.0.

When performing the benchmarks with fewer threads
than CPU cores, the remaining CPU cores were idle. Run-
time (wall clock time) and peak resident memory use were
measured using the Linux /usr/bin/time -v tool.

Table 2 shows the benchmark results of the brute-force,
MOODS, PoSSuMsearch, TFM-CUDA and BLAMM
algorithm on node C (36 CPU cores with AVX-512 sup-
port) when searching the occurrences of 1404 JASPAR
PWMs on both strands of human chromosome 1 for
two different p-values: 10−5 and 10−4. The brute-force
algorithm, PoSSuMsearch (PWM matching module) and
BLAMM support multithreading and were run using 1,
4, 16 and 36 CPU cores respectively. For those cases,
the parallel speedup (acceleration factor w.r.t. the single-
threaded run) and parallel efficiency (ratio of the parallel
speedup and the no. of CPU cores used) are provided.
PoSSuM requires an enhanced suffix array (ESA) to be
constructed prior to the actual PWM matching; this run-
time is reported separately and needs to be performed
only once, independent of the p-value. The PoSSuM ESA
construction step as well as MOODS do not have multi-
threading support. A more extensive version of this table
is provided in Additional file 1: Table S3. Similar tables for
node A and B are provided in Additional file 1: Tables S1
and S2, respectively.

Despite being the slowest, the naive implementation of
the brute-force algorithm has only negligible memory use
and shows nearly perfect scaling behavior. Additionally, its
runtime is nearly independent of the p-value that is used.
The minor differences can be attributed to the larger vol-
ume of output that has to be written to disk when more
relaxed p-values are used. MOODS shows excellent run-
time performance, taking into account that the software
uses only a single CPU-core. However, its memory use
is high, exceeding 50 GByte for a p-value of 10−4. Addi-
tionally, both the runtime and memory use depend on
the selection of the p-value: more relaxed (i.e., higher)

Table 1 Configuration details of three generations of CPU nodes with AVX, AVX2 and AVX-512 SIMD support and one node with a dual
GPU

node A node B node C GPU node

CPU
2 x Intel Xeon 2 x Intel Xeon 2 x Intel Xeon 2 x Intel Xeon

E5-2670 E5-2680v3 Gold 6140 E5-2630v4

No. CPU cores 2 x 8 = 16 2 x 12 = 24 2 x 18 = 36 2 x 10 = 20

Clock freq. 2.6 GHz 2.5 GHz 2.3 GHz 2.2 GHz

Architecture Sandy Bridge Haswell-EP Skylake Broadwell

RAM 64 GB 64 GB 192 GB 128 GB

SIMD AVX AVX2 AVX-512 AVX2

GPU - - - 2 x nVidia 1080 Ti

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 9 of 13

Table 2 Benchmark results of the brute-force, MOODS, PoSSuMsearch and the proposed BLAMM algorithm on a 36-core Intel Skylake
architecture (node C) and on a dual GPU system for TFM-CUDA and BLAMM (GPU mode)

In all cases, the occurrences of 1404 JASPAR PWMs were searched on both strands of human chromosome 1 for two different p-values (10−5 and 10−4)

p-value settings result in additional resource require-
ments. The same is true for PoSSuMsearch: more relaxed
p-value settings render it more difficult to eliminate parts
of the search space that are guaranteed not to contain
PWM occurrences. PoSSuMsearch has a runtime that is
comparable to MOODS, albeit with a lower memory use.
The software does not benefit much from multithreading
with a parallel speedup of at most 2 despite the availability
of 36 CPU cores. BLAMM shares the benefits of the brute-
force algorithm: a low memory footprint, a runtime that is
largely independent of the selected p-value, and very good
multithreading scaling behavior with a parallel speedup
exceeding 27 using 36 CPU cores. When comparing the
single-core performance of BLAMM with MOODS and
PoSSuMsearch, BLAMM is somewhat slower: it requires
2 to 4 CPU cores to achieve the same runtime. However,
when allowed to make use of all available CPU cores, it
is 6.2× to 13.7× faster than MOODS, while using only
a fraction of the memory. When run on the dual GPU

system, runtime is further reduced and PWM occurrences
are identified in only 25s. Compared with TFM-CUDA,
the GPU version of BLAMM is more than four times
faster (single-GPU results). This again illustrates the high
performance one can obtain when evaluating MMPs.

Table 3 shows the benchmark results when apply-
ing the algorithms to the entire human genome. Again,
Additional file 1: Tables S4 and S5 contain the bench-
mark results on nodes A and B, respectively. The runtime
of MOODS ranges from 36 min to over 3 h, depending
on the p-value while the memory use ranges from 17.5
GB to 79 GB. Because of these high memory require-
ments, MOODS cannot be run on nodes A and B for this
configuration. Due to the much larger size of the input
sequence, memory requirements of PoSSuM also increase
significantly. It takes over three hours to construct the
ESA index structure and an additional 11 min to over
three hours to identify the PWM matches. In contrast,
BLAMM has a runtime that is nearly constant (13 min)

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 10 of 13

Table 3 Benchmark results of the naive, MOODS, PoSSuMsearch and the proposed BLAMM algorithm on a 36-core Intel Skylake
architecture (node C) and on a dual GPU system for BLAMM (GPU mode)

In all cases, the occurrences of 1404 JASPAR PWMs were searched on both strands of the entire human genome for three different p-values (10−6, 10−5 and 10−4)

and requires very little memory. On the GPU system, the
runtimes of BLAMM are further reduced to under 5 min.
Note that we were unable to run TFM-CUDA on this
dataset, likely due to GPU memory restrictions.

Figure 4 shows the relative performance gains of the
individual tools from newer CPU architectures. For each
tool individually, we normalized its runtime (using chr. 1
and a p-value = 10−5) to the runtime obtained on the
oldest CPU architecture (node A). Despite the decrease

in CPU clock frequency, all tools benefit from newer
architectures, albeit to varying degrees. Due to the intro-
duction of AVX2 and AVX-512 in nodes B and C,
respectively, BLAMM is able to benefit the most in
terms of single-core performance. The availability of more
powerful SIMD instructions in newer architectures auto-
matically translates to faster MMPs and hence, lower
runtimes. Also when considering the multithreaded case,
BLAMM benefits the most. In that case, we observe that

Fig. 4 Relative performance gains from newer CPU architectures. For each tool, runtime was normalized to its runtime on node type A. Both
single-threaded and multi-threaded results are shown. For the multi-threaded case, all available CPU cores were used on each node type (16, 24 and
36 for node type A, B and C, respectively)

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 11 of 13

performance benefits not only from newer SIMD instruc-
tions, but also from an increasing number of CPU cores.

Discussion
The PWM matching problem is a form of imprecise
string matching. Under stringent settings (low p-value
and hence, a high PWM score threshold), the problem
approaches that of exact string matching for which effi-
cient algorithms have been developed, both online and
based on index structures. They reduce the complex-
ity from O(nm) for a brute-force search to O(n + m).
These ideas have been extended to PWM matching and
implemented in tools such as MOODS and PoSSuM-
search. Nevertheless, for more relaxed p-values, these
algorithms lose their ability to a-priori eliminate large
parts of the search space and thus require more compu-
tational resources. In that respect, the proposed BLAMM
algorithm has certain advantages:

• The runtime does not depend on the selected
p-value. A small increase in runtime can be observed
when relaxing the p-value, however, this is due to a
higher number of PWM occurrences that have to be
written to disk.

• The memory use of BLAMM is negligible and again
independent of the selected p-value. Per CPU core,
memory is required for the (relatively small) S, P and
R matrices and to buffer occurrences before spilling
them to disk. All data structures involved are
thread-local and hence, BLAMM makes efficient use
of multithreading up to a high number of CPU cores,
even on non-uniform memory architectures
(NUMA).

• The runtime of BLAMM is governed largely by the
time required to evaluate the MMPs and hence, the
quality of the BLAS implementation. Optimized
BLAS libraries are provided by almost all CPU
vendors. This enables BLAMM to make full use of
current and future SIMD capabilities of CPUs,
without needing to modify the source code of
BLAMM itself. We have demonstrated this for AVX,
AVX2 and AVX-512. As many applications in High
Performance Computing and Artificial Intelligence
benefit from improved BLAS performance, CPU
vendors will surely continue along this path of
developments in the future. For example,
half-precision floating point computations are
increasingly supported and might further improve
BLAMM’s performance.

• The algorithm and its implementation are very
simple.

• The algorithm is easily portable to GPUs and/or
other co-processors or hardware accelerators. For
GPUs, this achieved using the cuBLAS library to

enable MMPs to be evaluated on massively parallel
processors such as GPUs, thus offloading the CPU
and boosting performance.

Conclusions
We proposed and described BLAMM as a simple yet
effective algorithm to identify position weight matrix
occurrences in DNA sequences. The BLAMM algorithm
is based on the brute-force algorithm in the sense that it
exhaustively computes all PWM scores for all PWMs at
each starting position of the input sequence(s). However,
it does so with much higher efficiency by expressing all
computations through matrix-matrix products (MMPs).
It is well-known that MMPs are among a select class of
algorithms that can be evaluated on modern, cache-based
CPUs with a performance that approaches the theoreti-
cal peak performance of the CPU. Highly optimized MMP
implementations are provided by CPU vendors through
the BLAS library. BLAMM outperforms a naive imple-
mentation of the brute-force algorithm by a factor of
13 to 17. Additionally, it inherits the advantages of the
brute-force algorithm, namely its simplicity, its negligi-
ble memory use, its ability to make very efficient use of
multithreading and the fact that runtime and memory
use are (largely) independent of the selected p-value or
PWM score thresholds. Compared with state-of-the-art
software package such as MOODS and PoSSuMsearch
which implement more sophisticated search algorithms,
BLAMM is a factor 2 to 4 slower when considering single-
core performance. When using multithreading, BLAMM
can be an order of magnitude faster than MOODS and
PoSSuMsearch, while requiring only a fraction of their
memory use. Finally, we presented an implementation of
BLAMM on a GPU system that outperforms all CPU-
based algorithms, as well as an existing GPU implementa-
tion by a large margin.

Availability and requirements
Project name: BLAMM – BLAS-Accelerated Motif
Matching
Project home page: https://github.com/biointec/blamm
Operating system: Platform independent
Programming language: C++11
Other requirements: BLAS library, CUDA optional
License: GNU GPL v3
Any restrictions to use by non-academics: none

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3348-6.

Additional file 1: BLAMM: BLAS-based Algorithm for Finding Position
Weight Matrix Occurrences in DNA sequences on CPUs and GPUs.

https://github.com/biointec/blamm
https://doi.org/10.1186/s12859-020-3348-6

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 12 of 13

Abbreviations
ATLAS: Automatically tuned linear algebra software; AVX: Advanced vector
extensions; BLAMM: BLAS-accelerated motif matching; BLAS: Basic linear
algebra subroutines; CUDA: Compute unified device architecture;
EREW-PRAM: Exclusive read exclusive write parallel random-access machine;
FLOPs: Floating point operations; FMA: Fused multiply-add; GPU: Graphics
processing unit; HPC: High performance computing; MKL: Math kernel library;
MMP: Matrix-matrix product; MOODS: Motif occurrence detection suite; PFM:
Position frequency matrix; PPM: Position probability matrix; PSSM: Position
specific scoring matrix; PWM: Position weight matrix; SIMD: Single instruction
multiple data

Acknowledgements
The computational resources (Stevin Supercomputer Infrastructure) and
services used in this work were provided by the VSC (Flemish Supercomputer
Center), funded by Ghent University, FWO and the Flemish Government –
department EWI. JF would like to acknowledge Klaas Vandepoele and
Subhada Kulkarni for testing the software and providing useful suggestions.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 21
Supplement 2, 2020: Selected articles from the 6th International Work-Conference
on Bioinformatics and Biomedical Engineering. The full contents of the
supplement are available online at URL.

Authors’ contributions
JF conceived the method, implemented the software, performed benchmarks
and wrote the manuscript. The author read and approved the final manuscript.

Funding
JF was supported by Ghent University - imec. Publication costs are funded by
Ghent University.

Availability of data and materials
The motifs from the JASPAR database are publicly available [2]. The human
genome reference genome (HG38) was retrieved from the GATK Resource
Bundle [29].

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The author declares that he has no competing interests.

Published: 13 March 2020

References
1. Stormo GD. DNA binding sites: representation and discovery.

Bioinformatics. 2000;16(1):16–23. https://doi.org/10.1093/bioinformatics/
16.1.16.

2. Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA,
van der Lee R, Bessy A, Chèneby J, Kulkarni SR, Tan G, Baranasic D,
Arenillas DJ, Sandelin A, Vandepoele K, Lenhard B, Ballester B,
Wasserman WW, Parcy F, Mathelier A. JASPAR 2018: update of the
open-access database of transcription factor binding profiles and its web
framework. Nucleic Acids Res. 2018;46(D1):260–6. https://doi.org/10.
1093/nar/gkx1126.

3. Newburger DE, Bulyk ML. UniPROBE: an online database of protein
binding microarray data on protein-DNA interactions. Nucleic Acids Res.
2009;37(Database issue):77–82. https://doi.org/10.1093/nar/gkn660.

4. Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: A database on
transcription factors and their DNA binding sites. Nucleic Acids Res.
1996;24(1):238–41. https://doi.org/10.1093/nar/24.1.238.

5. Nishida K, Frith MC, Nakai K. Pseudocounts for transcription factor
binding sites. Nucleic Acids Res. 2009;37(3):939–44. https://doi.org/10.
1093/nar/gkn1019.

6. Schneider TD, Stephens RM. Sequence logos: A new way to display
consensus sequences. Nucleic Acids Res. 1990;18:6097–6100.

7. Pizzi C, Ukkonen E. Fast profile matching algorithms – A survey. Theor
Comput Sci. 2008;395(2–3):137–57. https://doi.org/10.1016/j.tcs.2008.01.
015.

8. Wu TD, Nevill-Manning CG, Brutlag DL. Fast probabilistic analysis of
sequence function using scoring matrices. Bioinformatics. 2000;16(3):
233–44. https://doi.org/10.1093/bioinformatics/16.3.233.

9. Dorohonceanu B, Nevill-Manning CG. Accelerating protein classification
using suffix trees. In: Proceedings of the Eighth International Conference
on Intelligent Systems for Molecular Biology, August 19-23, 2000, La Jolla
/ San Diego, CA, USA; 2000. p. 128–33. http://www.aaai.org/Library/ISMB/
2000/ismb00-013.php. Accessed July 2018.

10. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. J Discret Algoritm. 2004;2(1):53–86. https://doi.
org/10.1016/S1570-8667(03)00065-0. The 9th International Symposium
on String Processing and Information Retrieval.

11. Beckstette M, Strothmann D, Homann R, Giegerich R, Kurtz S.
PoSSuMsearch: Fast and sensitive matching of position specific scoring
matrices using enhanced suffix arrays. In: Proc. of the German Conference
on Bioinformatics, Volume P-53, GI Lecture Notes in Informatics. 2004. p.
53–64.

12. Beckstette M, Homann R, Giegerich R, Kurtz S. Fast index based
algorithms and software for matching position specific scoring matrices.
BMC Bioinformatics. 2006;7(1):389. https://doi.org/10.1186/1471-2105-7-
389.

13. Liefooghe A, Touzet H, Varré J-S. Large scale matching for position
weight matrices. In: Lewenstein M, Valiente G, editors. Combinatorial
Pattern Matching. Berlin: Springer; 2006. p. 401–412.

14. Salmela L, Tarhio J. Algorithms for weighted matching. In: Ziviani N,
Baeza-Yates R, editors. String Processing and Information Retrieval. Berlin:
Springer; 2007. p. 276–286.

15. Liefooghe A, Touzet H, Varré J-S. Self-overlapping occurrences and
Knuth-Morris-Pratt algorithm for weighted matching. In: 3rd International
Conference on Language and Automata Theory and Applications, vol.
5457. Tarragona; 2009. p. 481–92. https://hal.inria.fr/inria-00365411.

16. Knuth D, Morris JJr, Pratt V. Fast pattern matching in strings. SIAM J
Comput. 1977;6(2):323–50. https://doi.org/10.1137/0206024.
https://doi.org/10.1137/0206024.

17. Pizzi C, Rastas P, Ukkonen E. Fast search algorithms for position specific
scoring matrices. In: Proceedings of the 1st International Conference on
Bioinformatics Research and Development, BIRD’07. Berlin: Springer;
2007. p. 239–50. http://dl.acm.org/citation.cfm?id=1762370.1762395.

18. Pizzi C, Rastas P, Ukkonen E. Finding significant matches of position
weight matrices in linear time. IEEE/ACM Trans Comput Biol Bioinforma.
2011;8(1):69–79. https://doi.org/10.1109/TCBB.2009.35.

19. Korhonen JH, Palin K, Taipale J, Ukkonen E. Fast motif matching
revisited: high-order PWMs, SNPs and indels. Bioinforma (Oxf Engl). 2016.
https://doi.org/10.1093/bioinformatics/btw683.

20. Korhonen J, Martinmäki P, Pizzi C, Rastas P, Ukkonen E. MOODS: fast
search for position weight matrix matches in DNA sequences.
Bioinformatics. 2009;25(23):3181–2. https://doi.org/10.1093/
bioinformatics/btp554.

21. Giraud M, Varré J-S. Parallel position weight matrices algorithms. Parallel
Comput. 2011;37(8):466–78. https://doi.org/10.1016/j.parco.2010.10.001.

22. Schmidt B, Hildebrandt A. Next-generation sequencing: Big Data meets
High Performance Computing. Drug Disc Today. 2017;22(4):712–7.
https://doi.org/10.1016/j.drudis.2017.01.014.

23. Dongarra JJ, Du Croz J, Hammarling S, Duff IS. A set of level 3 basic linear
algebra subprograms. ACM Trans Math Softw. 1990;16(1):1–17. https://
doi.org/10.1145/77626.79170.

24. Whaley RC, Dongarra JJ. Automatically tuned linear algebra software. In:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC
’98. Washington, DC: IEEE Comput Soc; 1998. p. 1–27. http://dl.acm.org/
citation.cfm?id=509058.509096.

25. Goto K, Geijn RAvd. Anatomy of high-performance matrix multiplication.
ACM Trans Math Softw. 2008;34(3):12–11225. https://doi.org/10.1145/
1356052.1356053.

26. Cook S. CUDA Programming: A Developer’s Guide to Parallel Computing
with GPUs, 1st edn. San Francisco: Morgan Kaufmann Publishers Inc.; 2013.

27. Fostier J. A BLAS-based algorithm for finding position weight matrix
occurrences in DNA sequences on CPUs and GPUs. In: Bioinformatics and

https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1093/nar/gkx1126
https://doi.org/10.1093/nar/gkx1126
https://doi.org/10.1093/nar/gkn660
https://doi.org/10.1093/nar/24.1.238
https://doi.org/10.1093/nar/gkn1019
https://doi.org/10.1093/nar/gkn1019
https://doi.org/10.1016/j.tcs.2008.01.015
https://doi.org/10.1016/j.tcs.2008.01.015
https://doi.org/10.1093/bioinformatics/16.3.233
http://www.aaai.org/Library/ISMB/2000/ismb00-013.php
http://www.aaai.org/Library/ISMB/2000/ismb00-013.php
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1186/1471-2105-7-389
https://doi.org/10.1186/1471-2105-7-389
https://hal.inria.fr/inria-00365411
https://doi.org/10.1137/0206024
http://arxiv.org/abs/https://doi.org/10.1137/0206024
http://dl.acm.org/citation.cfm?id=1762370.1762395
https://doi.org/10.1109/TCBB.2009.35
https://doi.org/10.1093/bioinformatics/btw683
https://doi.org/10.1093/bioinformatics/btp554
https://doi.org/10.1093/bioinformatics/btp554
https://doi.org/10.1016/j.parco.2010.10.001
https://doi.org/10.1016/j.drudis.2017.01.014
https://doi.org/10.1145/77626.79170
https://doi.org/10.1145/77626.79170
http://dl.acm.org/citation.cfm?id=509058.509096
http://dl.acm.org/citation.cfm?id=509058.509096
https://doi.org/10.1145/1356052.1356053
https://doi.org/10.1145/1356052.1356053

Fostier BMC Bioinformatics 2020, 21(Suppl 2):81 Page 13 of 13

Biomedical Engineering, Lecture Notes in Bioinformatics. Cham: Springer;
2018. p. 439–49.

28. Mathelier A, Fornes O, Arenillas DJ, Chen C-YY, Denay G, Lee J, Shi W,
Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B, Sandelin
A, Wasserman WW. JASPAR 2016: a major expansion and update of the
open-access database of transcription factor binding profiles. Nucleic
Acids Res. 2016;44(D1):. https://doi.org/10.1093/nar/gkv1176.

29. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation
DNA sequencing data. Genome Res. 2010;20(9):1297–303.

30. Touzet H, Varre JS. Efficient and accurate P-value computation for
Position Weight Matrices. Algoritm Mol Biol. 2007;2(1):. https://doi.org/10.
1186/1748-7188-2-15.

31. Zhang J, Jiang B, Li M, Tromp J, Zhang X, Zhang MQ. Computing exact
P-values for DNA motifs. Bioinformatics. 2007;23(5):531–537. https://doi.
org/10.1093/bioinformatics/btl662.

32. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence
logo generator. Genome Res. 2004;14:1188–90. https://doi.org/10.1101/
gr.849004.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1093/nar/gkv1176
https://doi.org/10.1186/1748-7188-2-15
https://doi.org/10.1186/1748-7188-2-15
https://doi.org/10.1093/bioinformatics/btl662
https://doi.org/10.1093/bioinformatics/btl662
https://doi.org/10.1101/gr.849004
https://doi.org/10.1101/gr.849004

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Pattern matrix P
	Sequence matrix S
	Result matrix R
	Implementation details and performance considerations
	GPU version
	Partitioning of the P-matrix

	Benchmark results
	Discussion
	Conclusions
	Availability and requirements
	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3348-6.
	Additional file 1

	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

