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Abstract

Background: Various methods for differential expression analysis have been widely used to identify features which
best distinguish between different categories of samples. Multiple hypothesis testing may leave out explanatory
features, each of which may be composed of individually insignificant variables. Multivariate hypothesis testing holds
a non-mainstream position, considering the large computation overhead of large-scale matrix operation. Random
forest provides a classification strategy for calculation of variable importance. However, it may be unsuitable for
different distributions of samples.

Results: Based on the thought of using an ensemble classifier, we develop a feature selection tool for differential
expression analysis on expression profiles (i.e., ECFS-DEA for short). Considering the differences in sample distribution,
a graphical user interface is designed to allow the selection of different base classifiers. Inspired by random forest, a
common measure which is applicable to any base classifier is proposed for calculation of variable importance. After an
interactive selection of a feature on sorted individual variables, a projection heatmap is presented using k-means
clustering. ROC curve is also provided, both of which can intuitively demonstrate the effectiveness of the selected
feature.

Conclusions: Feature selection through ensemble classifiers helps to select important variables and thus is
applicable for different sample distributions. Experiments on simulation and realistic data demonstrate the
effectiveness of ECFS-DEA for differential expression analysis on expression profiles. The software is available at
http://bio-nefu.com/resource/ecfs-dea.
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Background
Differential expression analysis (DEA) is widely adopted
to identify a feature for best characterizing the expres-
sion difference between groups of individuals (e.g., healthy
ones and those affected with a disease) [1]. Multi-
ple hypothesis testing, which evaluates more than one
hypothesis simultaneously, plays an important role in
DEA. Corresponding tools such as SAM [2], limma [3],
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multtest [4], etc. have been produced for detecting differ-
entially expressed variables. As a matter of fact, multiple
hypothesis testing may leave out an explanatory signature.
A selected feature expressed differently may not be com-
posed of individually significant variables [5]. Although
multivariate hypothesis testing may choose a proper fea-
ture, it still holds a non-mainstream position [6], con-
sidering the need for a large computation overhead of
large-scale matrix operation.
Unlike statistical hypothesis testing, classification-based

feature selection concentrates on better classification
results of a certain subspace in many aspects such as
sequence analysis [7, 8], site identification [9–12], pro-
tein classification [13, 14], protein identification [15, 16],
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protein fold recognition [17–19], protease substrate pre-
diction [20, 21] and protein backbone torsion angle
prediction [22]. Thus, predictive variables [23–25] are
selected according to classification results of a certain
classifier. Random forest [26, 27] is a case in point. It
utilizes decision trees as the base classifier, which may
be unsuitable for different distributions of samples. We
have developed JCD-DEA [28], which is a feature selection
tool combining hypothesis testing with classification strat-
egy. However, JCD-DEA employs a bottom-up feature
enumeration strategy, which is time consuming.
In this paper, we develop a top-down classification-

based feature selection tool, i.e. ECFS-DEA, for differ-
ential expression analysis. In addition to random for-
est (RF), one of the other three classifiers, i.e., Fisher’s
linear discriminant analysis (LDA), k-nearest-neighbor
(kNN) and support vector machine (SVM), can be inter-
actively selected to be the base classifier in accordance
with different sample distributions. Under the develop-
ment environment of Python 3.5, ECFS-DEA applicable
to various execution environments such as a personal

computer, a workstation or a large-scale cluster in Win-
dows, Linux or Mac, can be used to identify the feature
which best distinguishes between different categories of
samples on expression profiles such as RNA-seq data,
microarrays, etc.

Method
ECFS-DEA offers two main functions, i.e. feature selec-
tion and feature validation. Feature selection part contains
five steps, as illustrated in Fig. 1. Firstly, the category of
the base classifier is to be interactively appointed. RF,
LDA, kNN and SVM are the alternative base classifier.
The base classifier number r is also to be set. Mean-
while, the path of the input file, the data format and
the execution environment are to be selected. Secondly,
samples are randomly divided into training and test-
ing groups in balance. Thirdly, a resampling procedure
is constructed for the accumulation of variable impor-
tance. The resampling round is equivalent to the number
of the base classifiers. In each round j, 70% of training
samples are randomly selected in the entire feature space

Fig. 1 Schematic of feature selection part in ECFS-DEA
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for training each classifier; while, the remaining 30% of
training samples are the out-of-bag data for calculating
the classification error rate Errj. As to each variable i,
only one time permutation of its expression levels on the
out-of-bag data is made, and the corresponding classifi-
cation error rate is presented as Err0j (i). After r rounds
of resampling, the importance of variable i is achieved as
∑n

j=1

(
Err0j (i) − Errj

)
/r. Fourthly, a feature can bemanu-

ally selected in a table with the individual variables sorted
in descending order according to achieved variable impor-
tance or in a 2-D scatter plot with its horizontal and
vertical coordinates corresponding to the variable indices
and the accumulated importance, respectively. Fifthly, an
ensemble classifier composed of r same base classifiers is
to be trained using the expression levels of the training
samples on the selected feature.
As to feature validation part, the testing samples are

needed. Aiming at the expression levels of the testing
set on the selected feature, a scatter plot in 1-D, 2-D
or 3-D subspace can be illustrated. The correspond-
ing ROC curve is also provided. Besides, a projection
heatmap which displays discrete projection values (i.e.,
classification results) from the expression levels of the
selected feature, is presented. Using the trained classi-
fier, the classification results of the testing set on the
selected feature are reordered based on k-means clus-
tering. Accompanied with the expression levels and the
labels, the reordered classification results are shown in the
projection heatmap.

Implementation
ECFS-DEA is written mainly in Python 3.5, dis-
tributed under GNU GPLv3. Considering the existence
of repeating steps in ECFS-DEA, we make a two-step
implementation: a client part in Client.zip for executing

GUI, and a server part in Server.zip which is designed
to run on the cluster server that using Portable Batch
System(PBS) as scheduling program. The client part
also contains codes for analyzing expression profiles, if
ECFS-DEA can only run on a personal computer or a
workstation.
The parameter setting step of feature selection part is

illustrated in Fig. 2. The file path, data format, execution
environment, etc. are set. Besides, the category of the base
classifier is interactively assigned. The number of the base
classifier which is also the resampling round needs to be
appointed. Sample splitting is performed after parameter
setting. Once the accumulation of variable importance is
fulfilled, the obtained scores can be listed in a table or
a scatter plot form for manual selection, as illustrated in
Figs. 3 and 4 respectively.
In a table form as shown in Fig. 3, one can click the

checkbox of the fourth column called “select or not” for
fulfilling feature selection. The third column header can
be clicked to rank. In a scatter plot form as shown in Fig. 4,
one can double click the scatter to select the variable to
be a part of a feature with its color changed red and vice
versa. When users move the mouse around the scatter, the
variable information can be displayed.
Figures 5, 6 and 7 together illustrate the panel for feature

validation part of ECFS-DEA in Windows. Correspond-
ing panels in Linux or Mac are almost the same. After
pressing button “Scatter plot”, a 1-D, 2-D or 3-D scat-
ter plot of the selected feature is shown in Fig. 5. Scatter
plots with different colors denote samples from differ-
ent groups. After pressing button “ROC curve”, the ROC
curve of the selected feature is provided, as shown in
Fig. 6. After pressing button “Projection heatmp”, the pro-
jection heatmap of the selected feature is presented, as
shown in Fig. 7. A discrete projection from the expression

Fig. 2 The parameter setting step of feature selection part in ECFS-DEA
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Fig. 3 Feature selection step using a table form in ECFS-DEA

Fig. 4 Feature selection step using a scatter plot in ECFS-DEA



Zhao et al. BMC Bioinformatics           (2020) 21:43 Page 5 of 14

Fig. 5 Feature validation step using a scatter plot in ECFS-DEA

Fig. 6 Feature validation step using a ROC curve in ECFS-DEA
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Fig. 7 Feature validation step using a projection heatmap in ECFS-DEA

levels of the selected feature (i.e., the classification results)
is made. Samples are reordered according to the k-means
clustering results of the projection values.
Detailed software documentation and tutorial are pre-

sented on http://bio-nefu.com/resource/ecfs-dea.

Results
Feature selection on the simulated data
In order to demonstrate the effectiveness of our ECFS-
DEA, a simulated data consisting of 250 positive and 250
negative samples in a 40 dimensional space is constructed.

Fig. 8 Feature selection and validation on the simulated data using LDA. a Feature selection in a scatter plot form. b The 2-D scatter plot. c The ROC
curve. d The projection heatmap

http://bio-nefu.com/resource/ecfs-dea


Zhao et al. BMC Bioinformatics           (2020) 21:43 Page 7 of 14

Fig. 9 Feature selection and validation on the simulated data using kNN (k=5). a Feature selection in a scatter plot form. b The 2-D scatter plot. c The
ROC curve. d The projection heatmap

Fig. 10 Feature selection and validation on the simulated data using RF. a Feature selection in a scatter plot form. b The 1-D scatter plot of the
selected feature with x and y coordinates to be sample indices and expression values. c The ROC curve of the selected feature. d The projection
heatmap of the selected feature. e The 2-D scatter plot of the significant pair. f The ROC curve of the significant pair. g The projection heatmap of
the significant pair
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38 variables of them follow 38 normal distributions, each
of which is independently and identically distributed and
keeps a random mean value in range from 10 to 30 and a
common standard deviation 0.01. The additional variable
pair, i.e., miRNA-alternative 1 and miRNA-alternative 2,
follows a bivariate normal distribution and has a clear
category distinction. The mean vectors corresponding to
positive and negative samples are (1, 1)T and (1.11, 0.89)T ,
respectively. Correspondingly, a same covariance matrix,

which is expressed as
(

1 0.999
0.999 1

)

, is kept.

We made this simulated data in order to show the effec-
tiveness of using LDA compared to RF. Considering the
comparability with real data, we made the sample size to
be 500. This data can be downloaded at http://bio-nefu.
com/resource/ecfs-dea.
Using ECFS-DEA with LDA assigned as the base clas-

sifier, the significant variable pair is properly selected on
the training set according to the accumulation of variable

importance after 500 rounds of resampling, as shown in
Fig. 8a. Meanwhile, the corresponding 2-D scatter plot,
the ROC curve and the projection heatmap of the testing
group are illustrated in turn, as shown in Fig. 8b, c and
d. It can be seen in Fig. 8b that the testing set is 2-D but
not 1-D linearly separable. The corresponding ROC curve
is shown in Fig. 8c. As to Fig. 8d, a discrete projection
from the expression levels of the selected variable pair (i.e.,
the classification results) is made. Samples are reordered
according to the k-means cluster results of the projection
values. It can be seen in Fig. 8d that a sample labeled 0 is
misclassified, which corresponds to the blue point within
the points labeled red in Fig. 8b.
Figure 9 illustrates the variable selection results using

kNN (k=5) on the simulated data after 500 rounds of
resampling. In Fig. 9a, miRNA-alternative 1 and miRNA-
alternative 2 are also intuitively selected. Correspond-
ingly, the scatter plot, the ROC curve and the projection
heatmap are listed in Fig. 9b, c and d, which show the

Fig. 11 Feature selection and validation on the simulated data using SVM. a Feature selection in a scatter plot form. b The 1-D scatter plot of the
selected feature with x and y coordinates to be sample indices and expression values. c The ROC curve of the selected feature. d The projection
heatmap of the selected feature. e The 2-D scatter plot of the significant pair. f The ROC curve of the significant pair. g The projection heatmap of
the significant pair

http://bio-nefu.com/resource/ecfs-dea
http://bio-nefu.com/resource/ecfs-dea
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effectiveness of choosing kNN as the base classifier on the
simulated data.
Figure 10 illustrates the variable selection results using

RF on the simulated data after 500 rounds of resam-
pling. As shown Fig. 10a, it is miRNA-null 35 but not
miRNA-alternative 1 and miRNA-alternative 2 that is
selected. And it is considered as a false selection. This
directly demonstrates that RF is not applicable to any
data with different sample distributions. Correspond-
ingly, the scatter plot, the ROC curve and the projec-
tion heatmap of miRNA-null 35 are listed in Fig. 10b, c
and d. All these results further demonstrate the above
phenomenon.
Figure 10b illustrates a 1-D scatter plot of the selected

miRNA-null 35 using RF. The horizontal and vertical
coordinates correspond to sample indices and expression
levels, respectively. It can be seen that samples from two
categories of the testing data are indivisible according to
the vertical coordinate values. Figure 10c illustrates a poor
ROC curve. As to Fig. 10d, it can be seen that the two
clusters derived from the projection results contain many
wrong labels.
Correspondingly, we also make the scatter plot, the

ROC curve and the projection heatmap using RF on
miRNA-alternative 1 and miRNA-alternative 2, which are
listed in Fig. 10e, f and g, respectively. The experimen-
tal results of RF have improved; however, its ROC curve

and projection heatmap are inferior to those of kNN
and LDA.
As to SVM which is assigned as the base classifier,

it is only miRNA-alternative 1 but not the significant
pair that is selected, as illustrated in Fig. 11a. It indi-
cates that SVM is not applicable to the simulated data
for feature selection. Correspondingly, the scatter plot,
the ROC curve and the projection heatmap of miRNA-
alternative 1 are listed in Fig. 11b, c and d. On the
contrary, we also make the scatter plot, the ROC curve
and the projection heatmap using SVM on miRNA-
alternative 1 and miRNA-alternative 2, as shown in
Fig. 11e, f and g.
The quantitative results on the simulated data with

measures such as confusion matrix, precision, recall and
F1-measure are listed in Table 1. In fact, it can be seen that
RF and SVM achieve poor results, for they correspond to
lower scores of accumulated importance compared with
those of LDA and kNN, as shown in Figs. 8a, 9a, 10a
and 11a, respectively. All the experimental results indi-
cate that LDA is a more appropriate classifier for feature
selection on the simulated data.

Feature selection on GSE22058
We also performed experiments on GSE22058 [29] which
is a public dataset containing 96 samples associated with
liver tumor and 96 samples corresponded to adjacent liver

Table 1 Quantitative results on the simulation data

Base classifier Variable number Confusion matrix Positive class Precision Recall F1-measure

LDA [ 0, 1]T classified as a b a 0.992 0.984 0.988

label a 123 2 b 0.984 0.992 0.988

label b 1 124 weighted average 0.988 0.988 0.988

kNN [ 0, 1]T classified as a b a 0.906 0.928 0.917

label a 116 9 b 0.926 0.904 0.915

label b 12 113 weighted average 0.916 0.916 0.916

RF 34 classified as a b a 0.528 0.448 0.485

label a 56 69 b 0.521 0.600 0.558

label b 50 75 weighted average 0.524 0.524 0.522

[ 0, 1]T classified as a b a 0.897 0.904 0.900

label a 113 12 b 0.903 0.896 0.899

label b 13 112 weighted average 0.900 0.900 0.899

SVM 0 classified as a b a 0.467 0.400 0.431

label a 50 75 b 0.476 0.544 0.508

label b 57 68 weighted average 0.472 0.472 0.470

[ 0, 1]T classified as a b a 0.909 0.960 0.934

label a 120 5 b 0.958 0.904 0.930

label b 12 113 weighted average 0.933 0.932 0.932
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Fig. 12 Feature selection and validation on GSE22058 using LDA. a Feature selection in a scatter plot form. b The 2-D scatter plot. c The ROC curve.
d The projection heatmap

non-tumor. In order to achieve a predictive feature from
the 220 miRNAs, we utilized ECFS-DEA on GSE22058,
with the base classifier to be LDA, kNN, RF and SVM.
Figures 12, 13, 14 and 15 illustrate qualitative results

for feature selection using LDA, kNN (k=5), RF and SVM
on GSE22058 after 500 rounds of resampling, respec-
tively. In order to exhibit the scatter plots at the fea-
ture validation step, we restricted feature dimension less

than four. Besides, quantitative results on GSE22058 with
measures such as confusion matrix, precision, recall and
F1-measure are listed in Table 2, with all possible variables
intuitively selected. All the experimental results indicate
that RF is a more appropriate classifier to feature selection
on GSE22058.
In addition, we searched the selected miRNAs using

ECFS-DEA with RF to be the classifier, i.e., miR-188,

Fig. 13 Feature selection and validation on GSE22058 using kNN (k=5). a Feature selection in a scatter plot form. b The 3-D scatter plot. c The ROC
curve. d The projection heatmap



Zhao et al. BMC Bioinformatics           (2020) 21:43 Page 11 of 14

Fig. 14 Feature selection and validation on GSE22058 using RF. a Feature selection in a scatter plot form. b The 3-D scatter plot. c The ROC curve.
d The projection heatmap

miR-450 and miR-93, on Web of Science with keywords
to be such as liver tumor, hepatocellular carcinoma and
HCC. Both miR-188 and miR-93 have been reported to
be relevant to liver tumor. In fact, miR-188 achieved
higher scores than other miRNAs, as shown in Fig. 14a.
The retrieved results of miR-188 [30, 31] have indirectly
demonstrated the effectiveness of ECFS-DEA.

Conclusions
ECFS-DEA is a top-down classification-based tool for
seeking predictive variables associated with different cat-
egories of samples on expression profiles. Other than pre-
vailing differential expression analysis for class prediction,
an ensemble classifier-based thought is proposed in this
paper. According to accumulated scores of variable impor-

Fig. 15 Feature selection and validation on GSE22058 using SVM. a Feature selection in a scatter plot form. b The 3-D scatter plot. c The ROC curve.
d The projection heatmap
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Table 2 Quantitative results on GSE22058

Base classifier Variable number Confusion matrix Positive class Precision Recall F1-measure

LDA 207 classified as a b a 0.885 0.958 0.920
label a 46 2 b 0.955 0.875 0.913
label b 6 42 weighted average 0.920 0.916 0.917

[ 207, 38]T classified as a b a 0.852 0.958 0.902

label a 46 2 b 0.952 0.833 0.889
label b 8 40 weighted average 0.902 0.895 0.895

[ 207, 38, 198]T classified as a b a 0.887 0.979 0.931

label a 47 1 b 0.977 0.875 0.923
label b 6 42 weighted average 0.932 0.927 0.927

[ 207, 38, 198, 160]T classified as a b a 0.922 0.979 0.950

label a 47 1 b 0.978 0.917 0.947
label b 4 44 weighted average 0.950 0.948 0.948

[ 207, 38, 198, classified as a b a 0.922 0.979 0.950

label a 47 1 b 0.978 0.917 0.947
160, 164]T label b 4 44 weighted average 0.950 0.948 0.948
[ 207, 38, 198, classified as a b a 0.904 0.979 0.940

label a 47 1 b 0.977 0.896 0.935
160, 164, 75]T label b 5 43 weighted average 0.941 0.938 0.938

kNN 94 classified as a b a 0.730 0.958 0.829

label a 46 2 b 0.939 0.646 0.765
label b 17 31 weighted average 0.835 0.802 0.797

[ 94, 118]T classified as a b a 0.800 1.000 0.889

label a 48 0 b 1.000 0.750 0.857
label b 12 36 weighted average 0.900 0.875 0.873

[ 94, 118, 183]T classified as a b a 0.828 1.000 0.906

label a 48 0 b 1.000 0.792 0.884
label b 10 38 weighted average 0.914 0.896 0.895

[ 94, 118, 183, 93]T classified as a b a 0.787 1.000 0.881

label a 48 0 b 1.000 0.729 0.843
label b 13 35 weighted average 0.893 0.865 0.862

RF 75 classified as a b a 0.904 0.979 0.940

label a 47 1 b 0.977 0.896 0.935
label b 5 43 weighted average 0.941 0.938 0.938

[ 75, 207]T classified as a b a 0.979 0.979 0.979

label a 47 1 b 0.979 0.979 0.979
label b 1 47 weighted average 0.979 0.979 0.979

[ 75, 207, 214]T classified as a b a 0.979 0.979 0.979

label a 47 1 b 0.979 0.979 0.979
label b 1 47 weighted average 0.979 0.979 0.979

[ 75, 207, 214, 16]T classified as a b a 0.980 1.000 0.990

label a 48 0 b 1.000 0.979 0.989
label b 1 47 weighted average 0.990 0.990 0.990

SVM 94 classified as a b a 0.746 0.979 0.847

label a 47 1 b 0.970 0.667 0.790
label b 16 32 weighted average 0.858 0.823 0.819

[ 94, 118]T classified as a b a 0.787 1.000 0.881

label a 48 0 b 1.000 0.729 0.843
label b 13 35 weighted average 0.893 0.865 0.862

[ 94, 118, 93]T classified as a b a 0.774 1.000 0.873

label a 48 0 b 1.000 0.708 0.829
label b 14 34 weighted average 0.887 0.854 0.851
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tance, LDA, kNN, RF or SVM can be rightly assigned and
is suitable for different sample distributions. Qualitative
and quantitative experimental results have demonstrated
the effectiveness of ECFS-DEA.
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