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SPECS: a non-parametric method to
identify tissue-specific molecular features
for unbalanced sample groups
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Abstract

Background: To understand biology and differences among various tissues or cell types, one typically searches for
molecular features that display characteristic abundance patterns. Several specificity metrics have been introduced
to identify tissue-specific molecular features, but these either require an equal number of replicates per tissue or
they can’t handle replicates at all.

Results: We describe a non-parametric specificity score that is compatible with unequal sample group sizes. To
demonstrate its usefulness, the specificity score was calculated on all GTEx samples, detecting known and novel
tissue-specific genes. A webtool was developed to browse these results for genes or tissues of interest. An example
python implementation of SPECS is available at https://github.com/celineeveraert/SPECS. The precalculated SPECS
results on the GTEx data are available through a user-friendly browser at specs.cmgg.be.

Conclusions: SPECS is a non-parametric method that identifies known and novel specific-expressed genes. In
addition, SPECS could be adopted for other features and applications.
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Background
To understand biology and differences among various
tissues or cell types, one typically searches for molecular
features (i.e. RNA, protein, metabolites) that display
characteristic abundance patterns. In the most extreme
case, these features display tissue- or cell-type restricted
abundance profiles. Such specific features can provide
insights in functional, development or disease mecha-
nisms [1] or serve as biomarkers [2, 3]. Various
consortium-based efforts have generated vast amounts
of molecular data that can be exploited for this purpose.
The Genotype-Tissue Expression (GTEx) project
(https://gtexportal.org) and The Cancer Genome Atlas
(TCGA) (https://www.cancer.gov/tcga) are examples of
such rich resources containing RNA-sequencing based
molecular features for thousands of samples derived

from various individuals and tissue types [4]. To identify
tissue-specific molecular features, several specificity met-
rics have been introduced, but these can suffer from data
loss introduced by the requirement to collapse data from
biological replicates. By introducing summary statistics,
replicate data points are typically reduced to a single
value (mean) or two values (mean and standard devi-
ation). Examples of such metrics are Tau [5], the z-score
[6], the Gini coefficient [7] and the tissue specificity
index (TSI) [8]. Metrics that can handle biological repli-
cates (e.g. JSD [9]) require equal sample sizes. Specificity
metrics also differ in the output that is generated. Some
(Tau, Gini, TSI) generate a single score often represent-
ing fold-changes between the mean values while others
(z-score, JSD) generate a score per tissue. A thorough
benchmark was performed for these scores, identifying
Tau as the best overall method [10]. This benchmark fo-
cused on robustness of the scores by subsampling the
tissues. Biological signal was evaluated by calculating the
conservation of tissue specificity between mouse and hu-
man orthologs, and by assessing several tissue specific
GO terms.
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In this application note, we describe a novel non-
parametric specificity score that is compatible with un-
equal sample group sizes, uses all individual datapoints
and enables the detection of features that are specifically
present or absent in one or more tissue types. We
benchmarked our SPECS score with others by artificially
introducing expression specificity in a large and hetero-
geneous RNA-sequencing data set.

Results
The evaluation of individual features for predicting a
binary biological status can be based on an estimate of
the area under the ROC curve (AUC). The AUC can be
either interpreted as an integrated performance metric
of sensitivities and specificities over all possible thresh-
olds, or as a measure for the overlap between the distri-
butions of the feature in the two biological status
groups. When more than two groups are present, and
the aim is to evaluate a feature, in our case gene expres-
sion, for distinguishing one group from the others, we
propose a new AUC-type of statistic (SPECS). This
method still has the interpretation of a measurement for
the overlap between two distributions (one group as
compared to the pooled group of the others). Perfect
non-overlapping abundance distributions where the dis-
tribution of the specific group is shifted to higher abun-
dance values have a SPECS score of one. On the other
hand, when the feature is absent in one group, the distri-
bution of this group shifts to zero or lower abundance
values and this results in a score of zero. On top, the
method can be adjusted to account for the prevalence of
the biological statuses in the target population (and
hence correct for the group sample sizes in the available
dataset).
Although features can be selected based on their rank-

ing in terms of their estimated AUCs, this procedure is
at risk for selection bias, i.e. a large estimated AUC may
result from a feature with only a moderate AUC but
with a large estimation variance. Efron et al. discussed
this issue in detail [11], but did not apply this to the
AUC. He proposed to correct the estimates by means of
an empirical Bayes procedure, which can be seen as a
Bayesian procedure for which no prior distribution need
to be specified. As an advantage, Bayesian methods are
known to be insensitive to selection bias. His formula is
also known as Tweedie’s formula, described into more
detail in Supplemental Methods 1.
To evaluate our SPECS method, we made use of RNA-

sequencing data from the GTEx (version 7) project [4] con-
sisting of 12,766 samples belonging to 31 different tissues
(7 to 1854 samples per tissue). We calculated the SPECS
specificity score on normalized counts for all Ensembl
(GRCh38.v85) genes (n = 56,202) using all samples. For 30
of the 31 tissues, 2 (esophagus) to 7948 (testis) specifically

expressed genes were identified. Most of these genes are
protein coding (n = 10,959), followed by lincRNAs (n =
3080), antisense genes (n = 2022) and pseudogenes (n =
1976) (Fig. 1a, Supplemental Figure 1 and Supplemental
Table 1). In addition, the method has the ability to identify
genes that are highly specific for two (or more) tissues, with
specificity scores that are slightly lower. As expected, the
tissues with the highest number of common specific genes
are biologically related such as spleen and blood, or brain
and pituitary or muscle and hart.
Besides genes that are specifically abundant in a tissue,

our method also enables the identification of genes that
are specifically repressed in a given tissue. These so-
called disallowance genes [12] were found for 17 tissues
ranging from 2 (salivary gland) to 1989 (blood) genes.
Most of these are protein coding genes (Supplemental
Figure 2). Distributions of the SPECS score are highly
similar for all tissue types, except for testis (which is
known to be enriched for tissue-specific genes). Most
genes have a SPECS score around 0.5 (Supplemental Fig-
ure 3). For all specifically abundant genes we calculated
fold changes between the specific tissue(s) and all other
tissues. The fold changes for lincRNAs were typically
higher than for other biotypes, in line with previous
studies in which lincRNAs were shown to be more spe-
cific compared to protein coding genes [9] (Fig. 1b and
c). The SPECS score is not impacted by abundance,
however, measuring counts with RNA-seq is. Low abun-
dant genes suffer from sampling bias and thus have a
higher variance. In addition, zero counts can indicate
real absence of gene expression or can occur when
abundance falls below the detection threshold of the
gene expression profiling method.
From our analyses, known specific genes are readily

confirmed, such as kallikrein related peptidase 2 (KLK2)
and 3 (KLK3, also known as PSA) for prostate, uroplakin
2 (UPK2) for bladder, mucin 7 (MUC7) for the salivary
gland and amylase alpha 2A (AMY2A) for pancreas (Fig.
1d). For each tissue in GTEx, rank percentiles for the
specific genes are pre-calculated and distilled into a web
tool (specs.cmgg.be) where a user can select either their
gene of interest to evaluate its specificity or a tissue of
interest to identify the most specific genes.
To compare the SPECS score to other existing scores,

we artificially introduced specificity in the GTEx expres-
sion dataset by multiplying true gene counts with a con-
stant factor or by adding constant values to gene counts
in one tissue type. To this purpose, a set of 1000 genes
with small overall variabilities and a mean expression
below 10 counts was selected (further referred to as the
backgound set). For each experiment, counts for fifty
randomly selected genes from the background set were
manipulated as described above (see Methods for de-
tails) to introduce tissue-specificity. This process was
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performed independently for 5 random tissues. Since the
different specificity scores each have their own scale and
cut-off value, we used the ranks of the scores across all
1000 genes to compare methods. We expect our
specificity-induced genes to rank high, and thus have
low ranks. For each round of simulations, we then sum
up these ranks for the specificity induced genes and
compare these summed ranked values across all (five)
simulations.

No differences between the methods in the summed
ranked values were observed for multiplication factors of
1, 2, 10 and 20 (respectively p = 0.914, p = 0.454, p =
106, p = 0.439). For multiplications with a factor of 3, 4,
5, 6 and 8, significant differences (p < 0.05) amongst spe-
cificity metrics were observed. When looking into this
data (for a 5-fold multiplication), SPECS assigned lower
scores, resulting in lower ranks, to some of the specifi-
city induced genes (Fig. 2a) compared to the other

Fig. 1 Known and novel genes are detected as specific for various biotypes. a The number of specific genes for each GTEx tissue and biotype
shows that most specific genes are protein-coding. b Cumulative distribution of the mean expression of specific genes, shows that specific
protein-coding genes are higher expressed compared to the other biotypes. c Cumulative distribution of the fold changes of specific genes and
the 2nd tissue shows larger differences for lincRNA genes compared to other biotypes. d Examples of well-known specific genes; UPK2 for
bladder, KLK3 for prostate, MUC7 for adrenal gland and AMY2A for pancreas

Everaert et al. BMC Bioinformatics           (2020) 21:58 Page 3 of 8



methods. The expression profiles of these genes in the
tissue with induced specificity were increased but
showed clear overlap with the expression profiles in the
other tissues (Fig. 2b), explaining the lower SPECS
scores. Most other methods did not generate lower
scores for these genes. To assess the impact of over-
lapping expression distributions on the specificity
score, we first calculated a metric that reflects over-
lap. To this end, all samples were ranked based on
expression of the gene, and the ranks of the samples
belonging to the specificity induced tissue were

summed. If the expression in the tissue with induced
specificity is consistently higher, the rank sum in that tis-
sue will be low (Fig. 2c). In contrast, if the expression of
the specific tissue is overlapping the other tissue, the indi-
vidual ranks will be higher, resulting in a higher rank sum
(Fig. 2b). Plotting expression rank sums for all specificity
induced genes versus the matching ranked scores of the
metrics clearly shows that only SPECS has a reduced score
when there is more expression overlap with other tissues
(Fig. 2d), while this relationship is lacking for the other
metrics.

Fig. 2 Benchmarking SPECS compared to the other scores by multiplication of the background signal in one tissue. a Ranked specificity score
values for different metrics. Ranks are higher for SPECS compared to the other metrics. b A gene with induced specificity that is ranked higher
SPECS compared to the other metrics shows a large expression overlap with the other tissues. c A gene with induced specificity, that is ranked
lower all metrics shows less expression overlap with the other tissues. d Correlation between the summed rank of the gene expression with the
rank of the score for each metric. SPECS shows the strongest correlation
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To assess the impact of the variance, a constant count
value was added to the gene count and multiple variance
factors were introduced (see Methods for details). Com-
pared to multiplying counts, adding a constant value ex-
cludes zero counts and maintains the variance. When
adding 10, 15, 25, 50, 75, 100 and 1000 counts, clear dif-
ferences between the performance of the methods are
observed up to adding 50 counts (p < 0.0001). SPECS
clearly outperforms the other methods for lower count
values and is thus more sensitive to detect low abundant
tissue-specific genes (Fig. 3a). To analyze the impact of
the variance, we added 100 counts to the gene count
and evaluated the specificity scores while increasing the
variance (from original variance to 50 times higher vari-
ance). Specificity scores were insensitive to increasing
variance for all metrics but SPECS (shown for 50 specifi-
city induced genes in Supplemental Figure 4). This ob-
servation can be explained by the fact that SPECS is
taking into account the variation. As expected, genes
who’s SPECS scores decrease with increasing variance
showed systematically more expression overlap with the
other tissues (measured by the rank sum as explained
higher) (Fig. 3b). For the genes that have a stable SPECS
score the overlap is stable as well.
Additionally, we wanted to evaluate how SPECS deals

with changing group sizes. Specificity was induced by
randomly adding 100 counts to 50 genes from the back-
ground set and this for one tissue. From the specificity
induced tissue samples, a random fraction of samples
was subsampled (ranging between 20 and 100%) after
which the SPECS score was calculated on this subsam-
pled set. This was repeated five times for different ran-
domly chosen tissues. No difference (p = 0.874) was
observed for the SPECS score between the different
group sizes. Finally, robustness was tested to show that
SPECS is stable when using random fractions of the
data. We therefore repeatedly (n = 5) subsampled equally
sized sample groups (20% of the original data) from the
original data. No changes in the SPECS score values for
the specificity induced genes were observed (p-values be-
tween 0.158 and 0.411).

Discussion
Current statistics to calculate specificity are collapsing
datapoints within each label into a single value, whether
or not with an additional variance metric, resulting in
loss of information. Our non-parametric specificity score
SPECS uses all data points to calculate a specificity
metric. We calculated the score on the GTEx data and
recovered known biology. We benchmarked SPECS with
various established specificity scores and found that
SPECS outperforms the other scores. SPECS is more
sensitive to detect specific genes that are low abundant.
Additionally, SPECS takes into account the variance, and

therefore disfavors genes with overlapping expression
distributions between tissues. In addition, SPECS is
stable with changing sample sizes and robust. This speci-
ficity metric can be applied to any type of quantitative
molecular data including protein expression or chip-
sequencing. Not only tissues could be used as features
but also cancer types or ethnic populations. Besides bio-
logical applications, we also see application potential in
other fields such as economy and social sciences.

Conclusion
SPECS is a non-parametric specificity score applicable
on big data sets without data loss or reduction. In our
example SPECS is shown to be useful to calculate tissue
specific expression of genes, however, other applications
are possible in molecular biology or beyond.

Methods
Let the index d = 1,...,md refer to a particular sample
state. Depending on the application and whether the
user wants to give weight to a certain state, πd is the
prevalence of state d in the target population or πd is
equilibrated. Suppose there are mg candidate features,
i.e. g = 1,...,mg. Let Ygd denote the outcome of feature g
in state d with ngd observations, so that the individual
outcomes are denoted by Ygdi, i = 1, …,ngd. The Yg-d no-
tation denotes the outcome of feature f in all groups but
the state d. The index g will be dropped in further nota-
tions. A feature is a characteristic for a given state if its
outcome distribution for the given state shows no over-
lap with the outcome distributions of the other states.
This means a larger AUC, given by:

pd ¼ P Y −d < Ydf g ¼
X
k≠d

P Y k < Ydf gπk ð1Þ

If pd is close to zero or one, the distributions are well
separated. The probabilities P{Yk < Yd} are computation-
ally fast to calculate. The probability Pkd = P{Yk < Yd} is
then estimated as:

P̂kd ¼ 1
nknd

Xnk
i¼1

Xnd
j¼1

Iki;d j

with Iki; dj a 0/1 indicator for the event Yki < Ydj.
Hence, an estimator of pd is given by:

p̂d ¼
X
k≠d

P̂kdπk

Further selection of features can be performed
based on the distributions of p̂d as explained in Sup-
plemental Methods 1. As this is a computationally in-
tensive step for large data matrices, one can opt to
select features based on a threshold. In our use case,
we defined state-specific features as those where the
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score ( p̂d ) for one state was above 0.95 and features
that were specifically absent in one state as those
with a score (p̂d ) lower than 0.05. If the score of 0.95

or 0.05 was reached in multiple states, the feature
was defined as specific (present or absent) for all
these states. The python implementation of the

Fig. 3 Benchmarking SPECS compared to the other scores by summation of a constant value to the background signal in one tissue. a Ranked
score values of multiple metrics show higher ranks for SPECS compared to the other scores when adding 10 counts. b The impact of increasing
variance on the SPECS score. Increasing variance results in increasing overlap of expression distributions, indicated by summed expression ranks.
Each gene is represented by an individual line in the plot, colors indicate the same gene in each plot
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method is available at https://github.com /celineever-
aert/SPECS.
To calculate SPECS, the count data was retrieved

from the GTEXportal (www.gtexportal.org) and nor-
malized by DESeq2 [13]. For the benchmarking, we
selected 1000 low abundant (mean normalized counts
between 0.1 and 10) and stable (lowest standard devi-
ation between the tissue types) expressed genes to
create a background set. We included samples from
10 tissue types with a variable sample number (11 to
490 samples per type). In this data set, we artificially
introduced specificity and calculate various specificity
metrics.

Zscore [6]

z ¼ xi−μ
σ

μ is the mean of gene expression; σ is the standard
deviation

Gini coefficient [7]

Gini ¼ nþ 1
n

−
2
Pn

i¼1 nþ 1−ið Þxi
n
Pn

i¼1xi

xi has to be ordered starting at the smallest value

Tau [5]

τ ¼
Pn

i¼1 1−x̂ið Þ
n−1

; x̂i ¼ xi
max
1≤ i≤n

xið Þ

TSI [8]

TSI ¼
max
1≤ i≤n

xið ÞPn
i¼1xi

JSD Score [9]

JS p1; p2
� � ¼ H

p1 þ p2

2

� �
−
H p1ð Þ þ H p2ð Þ

2

where H is the entropy of a discrete probability
distribution:

p ¼ p1; p2::; pn
� �

; 0≤pi≤1 and
Xn
i¼1

pi ¼ 1

H pð Þ ¼ −
Xn

i¼1
pi log pið Þ

The distance between two expression patterns (e) is
defined as:

JSD e1; e2ð Þ ¼
ffiffiffiffiffiffi
JSð

p
e1; e2Þ

The tissue specificity for tissue t can then be defined
as:

JSD Score ejtð Þ ¼ 1−JSD e; etð Þ

where et is a predefined expression pattern in which
there is only expression in one tissue.
The tissue specificity score is than defined as the max-

imal score across all tissues.
To be able to compare these scores expressed on dif-

ferent scales, score ranks were used instead of the abso-
lute score values. These score ranks are calculated over
all genes (including the background set). As such, the
need to define cut-off values was also avoided.
We define a specific gene as a gene that is systematic-

ally higher expressed compared to the background. We
introduced higher expression by either multiplication of
the counts or adding a constant number. If we multiply,
zero counts remain zero and low counts can still appear
in the background. To quantify the overlap, we calcu-
lated for each gene the expression-based rank of the
sample over all samples, were 1 is the sample with the
highest abundance. By summing these ranks, we have a
proxy for systematically higher expression. A high rank
sum indicates that some samples overlap with the non-
specificity induced tissues which resulted in a higher
rank across all samples and thus a higher rank sum.
To compare the metrics, ANOVA testing was used on

five cycles of random specificity induction of 50 genes
out of 1000 genes from the background set.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3407-z.

Additional file 1. Supplementary methods.

Additional file 2. Supplemental Figure 1. Heatmap of the median
expression of the specific genes for each tissue, shows the degree of
specificity. Supplemental Figure 2. Number of disallowance genes for
each tissue and biotype is variable. Supplemental Figure 3. SPECS score
distribuitions for all GTEx tissue types. Supplemental Figure 4. Most scores
remain stable with a larger induced variance, while SPECS has a declining
score.

Additional file 3. Supplementary Table SPECS results for all genes on
GTEX.

Abbreviations
AMY2A: Amylase alpha 2A; GTEx: Genotype-Tissue Expression; KLK2: Kallikrein
related peptidase 2; KLK3: Kallikrein related peptidase 3; MUC7: Mucin 7;
TCGA: The Cancer Genome Atlas; UPK2: Uroplakin 2

Acknowledgements
The computational resources (Stevin Supercomputer Infrastructure) and
services used in this work were provided by the VSC (Flemish
Supercomputer Center), funded by Ghent University, FWO and the Flemish
Government – department EWI.

Everaert et al. BMC Bioinformatics           (2020) 21:58 Page 7 of 8

https://github.com
http://www.gtexportal.org
https://doi.org/10.1186/s12859-020-3407-z
https://doi.org/10.1186/s12859-020-3407-z


Authors’ contributions
Conceptualization: C.E., O.T & P.M; Data curation: C.E.; Formal analysis: C.E. &
A.M; Funding acquisition: C.E. & P.M; Investigation: C.E. & A.M; Methodology:
C.E., PM & O.T; Project administration: C.E.; Software: C.E. & P.V; Supervision:
O.T. & P.M; Visualization: C.E.; Writing – original draft: C.E.; Writing – review &
editing: P.V, O.T. & P.M. The authors read and approved the final manuscript.

Funding
This work has been supported by the Fund for Scientific Research Flanders
(FWO), Stichting Tegen Kanker, Kom Op Tegen Kanker and Vocatio. A.M is
supported by Kom op Tegen Kanker and P.V. is supported by Fund for
Scientific Research Flanders (FWO).
The funding body did not play any role in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
Code: https://github.com/celineeveraert/SPECS
Precalculated GTEx data: https://specs.cmgg.be

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Center for Medical Genetics, Department of Biomolecular Medicine, Ghent
University, Ghent, Belgium. 2Cancer Research Institute Ghent, Ghent, Belgium.
3Flemish Institute for Biotechnology, Ghent, Belgium. 4I-Biostat, Data Science
Institute, Hasselt University, Hasselt, Belgium. 5National Institute for Applied
Statistics Australia (NIASRA), University of Wollongong, Wollongong, Australia.
6Department of Data Analysis and Mathematical Modelling, Faculty of
Bioscience Engineering, Ghent University, Ghent, Belgium.

Received: 18 July 2019 Accepted: 11 February 2020

References
1. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al.

Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;
531:518–22. https://doi.org/10.1038/nature17161.

2. Stutterheim J, Gerritsen A, Zappeij-Kannegieter L, Kleijn I, Dee R, Hooft L,
et al. PHOX2B is a novel and specific marker for minimal residual disease
testing in neuroblastoma. J Clin Oncol. 2008;26:5443–9. https://doi.org/10.
1200/JCO.2007.13.6531.

3. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, et al. The long
noncoding RNA SChLAP1 promotes aggressive prostate cancer and
antagonizes the SWI/SNF complex. Nat Genet. 2013;45:1392–8. https://doi.
org/10.1038/ng.2771.

4. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The
genotype-tissue expression (GTEx) project. Nat Genet. 2013;45:580–5.
https://doi.org/10.1038/ng.2653.

5. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, et al.
Genome-wide midrange transcription profiles reveal expression level
relationships in human tissue specification. Bioinformatics. 2005;21:650–9.
https://doi.org/10.1093/bioinformatics/bti042.

6. Vandenbon A, Nakai K. Modeling tissue-specific structural patterns in human
and mouse promoters. Nucleic Acids Res. 2009;38:17–25.

7. Ceriani L, Verme P. The origins of the Gini index: extracts from Variabilità e
Mutabilità (1912) by Corrado Gini. J Econ Inequal. 2012;10:421–43.

8. Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, et al.
Mechanisms and evolutionary patterns of mammalian and avian dosage
compensation. PLoS Biol. 2012;10:e1001328. https://doi.org/10.1371/journal.
pbio.1001328.

9. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al.
Integrative annotation of human large intergenic noncoding RNAs reveals
global properties and specific subclasses. Genes Dev. 2011;25:1915–27.

10. Kryuchkova-Mostacci N, Robinson-Rechavi M. A benchmark of gene
expression tissue-specificity metrics. Brief Bioinform. 2016;18:bbw008.
https://doi.org/10.1093/bib/bbw008.

11. Efron B. Tweedie’s formula and selection bias. J Am Stat Assoc. 2011;106:
1602–14. https://doi.org/10.1198/jasa.2011.tm11181.

12. Thorrez L, Bonner-Weir S, Van Mechelen I, Van Lommel L, Laudadio I,
Aguayo-Mazzucato C, et al. Tissue-specific disallowance of housekeeping
genes: the other face of cell differentiation. Genome Res. 2010;21:95–105.

13. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
https://doi.org/10.1186/s13059-014-0550-8.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Everaert et al. BMC Bioinformatics           (2020) 21:58 Page 8 of 8

https://github.com/celineeveraert/SPECS
https://specs.cmgg.be
https://doi.org/10.1038/nature17161
https://doi.org/10.1200/JCO.2007.13.6531
https://doi.org/10.1200/JCO.2007.13.6531
https://doi.org/10.1038/ng.2771
https://doi.org/10.1038/ng.2771
https://doi.org/10.1038/ng.2653
https://doi.org/10.1093/bioinformatics/bti042
https://doi.org/10.1371/journal.pbio.1001328
https://doi.org/10.1371/journal.pbio.1001328
https://doi.org/10.1093/bib/bbw008
https://doi.org/10.1198/jasa.2011.tm11181
https://doi.org/10.1186/s13059-014-0550-8

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusion
	Methods
	Zscore [6]
	Gini coefficient [7]
	Tau [5]
	TSI [8]
	JSD Score [9]

	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

