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Abstract

Background: Shotgun metagenomes are often assembled prior to annotation of genes which biases the functional
capacity of a community towards its most abundant members. For an unbiased assessment of community function,
short reads need to be mapped directly to a gene or protein database. The ability to detect genes in short read
sequences is dependent on pre- and post-sequencing decisions. The objective of the current study was to
determine how library size selection, read length and format, protein database, e-value threshold, and sequencing
depth impact gene-centric analysis of human fecal microbiomes when using DIAMOND, an alignment tool that is
up to 20,000 times faster than BLASTX.

Results: Using metagenomes simulated from a database of experimentally verified protein sequences, we find that
read length, e-value threshold, and the choice of protein database dramatically impact detection of a known target,
with best performance achieved with longer reads, stricter e-value thresholds, and a custom database. Using
publicly available metagenomes, we evaluated library size selection, paired end read strategy, and sequencing
depth. Longer read lengths were acheivable by merging paired ends when the sequencing library was size-selected
to enable overlaps. When paired ends could not be merged, a congruent strategy in which both ends are
independently mapped was acceptable. Sequencing depths of 5 million merged reads minimized the error of
abundance estimates of specific target genes, including an antimicrobial resistance gene.

Conclusions: Shotgun metagenomes of DNA extracted from human fecal samples sequenced using the Illumina
platform should be size-selected to enable merging of paired end reads and should be sequenced in the PE150
format with a minimum sequencing depth of 5 million merge-able reads to enable detection of specific target
genes. Expecting the merged reads to be 180-250 bp in length, the appropriate e-value threshold for DIAMOND
would then need to be more strict than the default. Accurate and interpretable results for specific hypotheses will
be best obtained using small databases customized for the research question.
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Background
Measurement of the human fecal microbiome can pro-
vide a snapshot of the functional capacity of the mi-
crobes of the distal gut. Previous studies have used
methods in which a particular marker gene, e.g. 16S
rRNA gene, is amplified and sequenced to estimate the
taxonomy of microbes present [1]. A method, PICRUSt

(phylogenetic investigation of communities by recon-
struction of unobserved states), has been developed to
predict the functional composition of metagenomes
from 16S rRNA marker data and reference genomes [2].
However, in a comparison with full metagenomes,
PICRUSt still missed a large percentage of genes known
to be present and predicted many genes not found in ad-
equately sequenced metagenomes [3]. The current
golden standard remains to sequence all of the DNA
present in the sample—the metagenome, also known as
the “shotgun” metagenome—and to directly map DNA
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sequences to protein or gene family databases to infer
functional capacity.
One common way of functionally annotating a shot-

gun metagenome is to first assemble the reads into lon-
ger fragments of DNA called contigs, then predict open
reading frames in the contigs and map these ORFs to
gene family databases. This is valuable because it can
provide genomic context for individual genes. However,
when estimating the functional capacity of a community,
metagenomics assembly biases in favor of the assembled
contigs which have less fragmented gene sequences. This
means that abundance estimates are biased in favor of
the functions of the most abundant organisms. Assembly
has been shown to be detrimental to obtaining true gene
abundance estimates, as in the case of antibiotic resist-
ance genes [4]. If the objective of the study is to assess
the overall functional capacity of a community, it may
not be necessary to put sequences in the context of their
individual genomes.
Different bioinformatics strategies have been suggested to

functionally annotate shotgun metagenomes (reviewed in
[5–7]). Regardless of the bioinformatics strategy used, a
fundamental step is the ability to detect genes-of-interest in
short read sequencing data now commonly produced via
Illumina platforms. At the time of this writing, common
formats are single read 50 bp or 100 bp (SR50, SR100) and
paired end 100 bp and 150 bp (PE100, PE150). Gene detec-
tion in short read sequences is impacted by decisions in
both the pre- and post-sequencing phases. Pre-sequencing
decisions include choices of size-selection during library
preparation, read length and format (single or paired end),
and sequencing depth. Post-sequencing decisions include
selection of pre-processing steps, a reference database, and
a mapping strategy. While some guidance has been pro-
vided on sequencing [8], recommendations are based
largely on practices that best inform taxonomy, rather than
function. Metagenome studies have generally been designed
with microbial ecology (e.g. taxonomy) in mind as the fore-
most goal with functional annotation as an afterthought. As
a result, pre-sequencing decisions for the estimation of tax-
onomy may be weighted towards creating non-overlapping
paired ends of reads that maximize the ability to fully as-
semble the metagenome. However, tools that map reads to
protein databases, such as BLASTX [9] and DIAMOND
[10], are not able to leverage non-overlapping pairs of reads.
A systematic assessment of the annotation of short reads
demonstrated the general utility of homology-based map-
ping with the caution that read length, phylogeny, and data-
base coverage impacts accuracy [11]. Since that important
work which utilized BLAST [11], a protein alignment tool
called DIAMOND was developed which is 20,000 times
faster than BLASTX [10]. We therefore sought to identify
appropriate e-value thresholds for functional annotation of
shotgun metagenomics using DIAMOND for read lengths

commonly available via the popular Illumina platform in
the current study.
Another important limitation of prior work is that it

has not been clear how pre- and post-sequencing deci-
sions impact the ability to quantify abundances of genes
with verified functionality. Databases of genes, gene fam-
ilies, or orthologous groups are often based on predic-
tions or homology with few entries being verified for
functionality. For example, the carbohydrate-active en-
zymes database (CAZy) requires only one member of
each gene family to be biochemically characterized with
the remaining members assigned based on amino acid
sequence similarity [12]. It is possible for enzymes to be
assigned to more than one family and for different en-
zymes in the same family to act on different substrates.
In the current study, we evaluated various pre- and

post- sequencing choices. We first assembled a data-
base of protein sequences for which the function has
been experimentally verified and then used this data-
base of “knowns” to generate simulated metagenomes
consisting of sequence reads of proteins with verified
functionality. Simulating metagenome sequence reads
from this database of “knowns” enabled us to accur-
ately quantify how pre- and post- sequencing choices
affected the number of true positives, false positives,
true negatives, and false negatives. We then used
these simulated metagenomes to investigate how read
length, e-value threshold, and the choice of protein
database impacted our ability to detect sequences of
known abundance. Next, we used real human stool
metagenomes from two different studies to investigate
strategies for paired end reads when most reads don’t
overlap. Finally, we sub-sampled deeply sequenced
fecal metagenomes to determine the minimum se-
quencing depth needed to quantify the abundance of
the genes of specific enzymes.

Results
Evaluation of the effect of read length
We first constructed a database containing only protein
sequences with experimentally verified functions (see
Methods). Metagenomes were then simulated using se-
quences from this database with increasing proportions
of a target enzyme, beta-galactosidase, with the non-
beta-galactosidase reads being derived from other se-
quences in our known protein database. One hundred
metagenomes were simulated with five different read
lengths of 50 bp, 100 bp, 150 bp, 200 bp, and 250 bp for
500 total metagenomes. For each read length, the 100
simulated metagenomes were mapped to a custom beta-
galactosidase database, the NCBI RefSeq database [13]
or the SEED database [14] using DIAMOND with the
“sensitive” flag and default e-value threshold. With a
read length of 50 bp, only the custom beta galactosidase
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database, from which the beta-gal metagenomic reads
were simulated, performed well with both high true
positive rates and low false positive rates (Fig. 1). True
positive rates were expressed as the proportion of reads
known to originate from the target that were correctly
identified as the target. False positive rates would ordin-
arily be expressed as the proportion of reads not origin-
ating from the target as being incorrectly identified as
the target. However, for metagenomes, such rates are as
low as 0.0001, which seems small. However, when
expressed as the number of reads per 10 million that
were incorrectly identified as being the target (as in Fig.
1), this is a more practical perspective. A false positive
rate of 0.0001 translates to 1000 counts per 10 million,
which is likely intolerable if the target were only 100
counts per 10 million because that target’s accurate
count of 100 per 10 million would become 1100 per 10
million. This is especially problematic for differential
abundance testing. If the target’s true abundance doubles
with a false positive rate of 0, the fold-change is 2 (200/
100), but if the target doubles in abundance with a false
positive rate of 0.0001, the fold-change is only 1.09
(1200/1100).
The SEED and RefSeq databases required longer reads

for more accurate matching of beta-galactosidase, prefer-
ably 200 bp and above. Regardless of database choice,
true positive rates increase with increasing read length
(Fig. 1a) but the number of false positives increase with
increasing read length as well (Fig. 1b). This results in
increased sensitivity but decreased specificity with in-
creasing read length (Additional file 1, Figure S1). How-
ever, overall accuracy is increased with increasing read
length (Additional file 1, Figure S1).

Selection of appropriate e-value threshold for mapping
reads
To evaluate an appropriate DIAMOND e-value thresh-
old for mapping reads of different lengths to a custom
database, error rates were calculated for different e-
values. We simulated a metagenome of 2500 beta-
galactosidase reads per 100,000 total reads with the non-
beta-galactosidase reads being derived from other se-
quences in our known protein database (see Methods).
Metagenomes were simulated at all 5 read lengths: 50,
100, 150, 200, and 250 bp. Reads were aligned to the
beta-galactosidase database using e-value cutoffs of 1e-3
(default DIAMOND e-value threshold), 1e-10, 1e-25, 1e-
50, and 1e-100 (Fig. 2). Both true and false positives de-
crease with more stringent e-values (Fig. 2a-b), resulting
in lower sensitivity but higher specificity (Additional file
1, Figure S2). For every read length, the default e-value
was most accurate for this unique situation where a cus-
tom database containing only the gene of interest is used
to detect the gene of interest, beta-galactosidase, in the
metagenome (Additional file 1, Figure S2).
While the choice to examine beta-galactosidase in our

previous experiments was due to our lab’s interest in this
enzyme, we conducted another series of experiments
with a protein sequence selected specifically to maximize
the difficulty of distinguishing it from other proteins.
Using our custom database of known proteins, we com-
puted all pairwise percent identities of all sequences in
the database and chose the protein with the highest per-
cent identity with other proteins in the database. Homo-
serine O-acetyltransferase (HTA), which had 28 matches
of mean 42% identity with other proteins in the database
of known proteins, was selected for this experiment. Of

Fig. 1 True (a) and false (b) positive rates, across different read lengths, of detecting the target beta-galactosidase sequence in simulated
metagenomes using DIAMOND with “sensitive” flag and default e-value and 3 databases: NCBI RefSeq (navy), SEED Subsystems (blue), and
beta-galactosidase (salmon)
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the 28 sequences with high pairwise identity in the
known protein database, only 14 are HTA and the other
14 proteins are not HTA. The 14 true HTA proteins
were used to construct a custom database while all of
the known proteins, including the 14 off-target se-
quences were used to create simulated metagenomes.
Using simulated metagenomes containing 350 HTA
reads per 100,000 total reads at all 5 read lengths, the
metagenomes were aligned to a custom database con-
taining the HTA protein sequences. To detect HTA, the
best choice of e-value threshold was dependent on read

length. For read lengths 100 bp and higher, the best
choice of e-value was not the default (Fig. 2c-d). For
100-150 bp, a threshold of 1-e10 yielded the highest ac-
curacy (Additional file 1, Figure S3). For 200-250 bp read
lengths, 1e-25 was most accurate (Additional file 1, Fig-
ure S3). In general, the optimal e-value threshold in-
creases with increasing read length.

Choice of protein database
Protein databases differ in their organization, level of
resolution, and level of evidence for annotations. To

Fig. 2 a True positive rates and b false positive rates of detection of beta-galactosidase sequences in simulated metagenomes containing 2500
beta-galactosidase sequences at varying e-value cutoffs and read lengths of 50 bp (light blue), 100 bp (purple), 150 bp (salmon), 200 bp (blue),
and 250 bp (navy). c True positive rates and d false positive rates of detection of Homoserine O-acetyltransferase sequences in simulated
metagenomes containing 350 Homoserine O-acetyltransferase at varying e-value cutoffs and read lengths of 50 bp (light blue), 100 bp (purple),
150 bp (salmon), 200 bp (blue), and 250 bp (navy)
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understand how the choice of protein database impacts
the accuracy of functional annotation, several databases—
Carbohydrate Active Enzyme (CAZy), NCBI nonredun-
dant RefSeq, SEED Subsystems and a customized database
containing only beta-galactosidases—were used to anno-
tate metagenomes that were simulated from a database of
proteins of experimentally verified function (see Methods).
CAZy is a database of sequence-based families of enzymes
that assemble, modify and breakdown oligo- and polysac-
charides [12]. The NCBI RefSeq database contains a com-
prehensive set of non-redundant protein sequences [13].
The SEED subsystems database contains collections of
functionally related protein families [14]. The customized
database contained only beta-galatosidase sequences with
previously verified functionality.
One hundred metagenomes of 100,000 reads were

simulated from our database of known proteins with
increasing doses of beta-galactosidase sequences ran-
ging from 25 to 2500 sequences for each of the five
different read lengths: 50 bp, 100 bp, 150 bp, 200 bp,
and 250 bp. Each metagenome was annotated against
each database to determine the total number of beta-
galactosidase hits. At all read lengths, the custom
beta-galactosidase database was closer to the “ex-
pected” dose-response than the other databases
(Fig. 3). At 50 bp, only the custom database per-
formed well. At higher read lengths, the CAZy data-
base appeared to over-estimate and the RefSeq and
SEED subsystems databases appeared to underesti-
mate the number of betagalactosidase reads present.
To better understand why the CAZy database over-

estimated beta-galactosidase abundance, we mapped the
reads to CAZy families. For the beta-galactosidase dose
experiment, some families showed an increasing dose
while other families showed a constant number of hits
across all doses (Fig. 4). GH42 had the most obvious dose-
response with a more moderate dose-response for GH2.
Other GH families with potential beta-galactosidase mem-
bers had an even response across the metagenomes. This
phenomenon was true at all read lengths: 50 bp, 100 bp,
150 bp, 200 bp, and 250 bp (Additional file 1, Figure S4).
Some of the CAZy families which contain beta-
galactosidase (GH1, GH2, GH16, GH35, GH42, and
GH98) also contain other genes that are not beta-
galactosidase. This suggests that there may be off-target
hits when using the CAZy database.

Evaluation of strategies for paired end reads
When mapping paired end reads to a protein database,
mapping tools such as DIAMOND are not able to lever-
age the joint nature of pair-end reads. One must either
map the two reads independently or the reads can be
merged and then mapped. The extent to which se-
quences of the two ends can be merged depends on the

size selection of the DNA prior to sequencing and the
length of the reads. In the current study, we analyzed
stool metagenomes from two projects with different read
formats and insert sizes. The adult stool metagenomes
were sequenced in a 2x101bp format from DNA with an
insert size range of 280–320 bp [15]. With the larger in-
sert size, the average percent of read pairs that could be
merged in the 30 largest metagenomes used in the
present study was 34.6% and the average length of the
merged reads was 112 bp. The infant stool metagenomes
were sequenced in a 2x151bp format from DNA with an
average insert size range 119–289 bp [16]. In these meta-
genomes, which were deliberately sequenced with a
smaller insert size to improve overlaps, we found that
the average percent of read pairs that could be merged
was 87.9% and the average length of the merged read
was 188 bp. Thus, with a custom size selection step dur-
ing library preparation, it is possibly to vastly improve
the number of overlapping reads and the resulting
length of the merged reads.
We next evaluated whether an alternative strategy

should be used when analyzing shotgun metagenomes in
the paired end format with few overlapping paired reads.
Other options besides merging reads included using only
one of the read pairs (referred to here as the “R1 strat-
egy”) or independently mapping both reads and keeping
only those hits in which both reads map to the same
protein (referred to here as the “congruent strategy”).
We used our custom database for beta-galactosidase, a
well-known enzyme present in both infant and adult
stool, and mapped reads against this beta-gal database
using the R1, congruent, or merged read strategy.
With the infant metagenomes, in which most reads
were mergeable and the resulting reads were not
much longer than the single reads, both alternative
strategies were highly correlated with the merged
strategy, as expected. The correlation between merged
and R1 strategies was r = 0.97, p < 2.2e-16 (Fig. 5a)
and the correlation between merged and congruent
strategies was r = 0.96, p < 2.2e-16 (Fig. 5b). Further-
more, the number of reads mapped using any of the
strategies was similar, likely due to the high percent of
overlapping reads (88%). With the adult metagenomes, in
which only one third of the reads overlapped, the alterna-
tive strategies had a lower correlation with the merged
strategy: the correlation between merged and R1 strategies
was r = 0.91, p < 4.9e-12 (Fig. 5c) and the correlation
between merged and congruent strategies was r = 0.95,
p < 1.1e-14 (Fig. 5d). Roughly double the number of
counts were obtained with the R1 strategy compared with
the merged strategy. The fewest counts were obtained
with the congruent strategy, although the correlation was
higher. In summary, it is best to increase the number of
overlapping reads during the library preparation phase;
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however, if few reads can be merged, the congruent strat-
egy appears to be a viable alternative.

Evaluation of the effect of sequencing depth
The choice of sequencing depth would be expected to
effect the likelihood of detecting all the proteins in a
given population. To determine the minimum sequen-
cing depth needed for metagenomic sequencing of stool
metagenomes, we sub-sampled stool metagenomes that
were deeply sequenced. The 33 infant metagenomes had
a range of sequencing depths from 13.7 to 31.7 million
reads per metagenome [16]. We also selected the 30 lar-
gest metagenomes from among 500 metagenomes in an

adult stool metagenome project [15]. Each metagenome
was randomly sub-sampled to produce metagenomes
ranging from 100,000 to 10 million sequences each, with
10 sub-samples at each read depth. The standard devi-
ation of the counts of the target gene, beta-galactosidase,
across the 10 sub-samples was then calculated at each
read depth. As expected, the greater the sequencing
depth in infant stool metagenomes, the lower the stand-
ard deviation relative to quantitation from the full meta-
genome (Fig. 6). For quantification of beta-galactosidase
in infant metagenomes, it appears that even a few mil-
lion merged reads is sufficient to accurately capture the
relative abundance of beta-galactosidase. We repeated

Fig. 3 Comparison of total number of beta-galactosidase annotations across varying beta-gal dosages and read lengths of a 50 bp, b 100 bp, c
150 bp, d 200 bp, and e 250 bp between 4 databases: NCBI RefSeq (blue), SEED Subsystems (purple), CAZy (green), and Beta-galactosidase (red).
The expected line is black
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the experiment with adult stool metagenomes but be-
cause these were prepared with suboptimal insert
sizes for merging, even the largest metagenomes had
only 4 million merged reads, which would be insuffi-
cient for a sub-sampling experiment. We therefore
applied the conguent strategy to all unmerged read
pairs in the largest metagenomes with at least 20 mil-
lion reads. The standard deviation of the count of
beta galactosidases in the sub-sampled metagenomes
relative to the full metagenomes reached a plateau
near 10 million reads (Fig. 6b).
Given that one of the infant metagenomes was very

deeply sequenced (30 million reads with merging of nearly
90% of reads), we conducted further experiments to deter-
mine the read depth to classify other groups or enzymes
of interest. For CAZy families GH29 or GH95 which con-
tain fucosidases, 5 million reads appear to be sufficient for
quantification (Additional file 1, Figure S5). This appears
to be similarly true for broader classifications of “animal
carbohydrates”, “plant cell wall carbohydrates”, “mucin”,
and “sucrose/fructans” based on multiple CAZy families
(Fig. 7a).
Antimicrobial resistance genes in fecal metagenomes

are of practical importance, but they are rare. We

therefore asked what the sequencing depth would need
to be to accurately quantitate an antimicrobial resistance
gene, beta-lactamase, that was known to be both low
abundance and differentially abundant in the infant
metagenomes [16]. We sub-sampled six infant ge-
nomes—two known to be high in beta-lactamase, two
with medium beta-lactamase and two with low beta-
lactamase—and mapped against a custom database for
beta-lactamases. The standard deviation of beta-
lactamase counts, relative to the full metagenomes,
seemed to be again minimized by 5 million merged
reads (Fig. 7b). In general, 5 million merged reads seem
sufficient for functional assessment of infant stool
metagenomes.

Discussion
As the cost of sequencing continues to decrease, more
studies will use shotgun metagenomes to estimate the
functional content of fecal microbiomes and scientists will
be faced with practical choices in the pre- and post-
sequencing phases. In the current study, we found that
read length, e-value threshold, choice of protein database,
strategy for paired end reads, and sequencing depth all im-
pacted the ability to detect sequences of known

Fig. 4 CAZy family hits with increasing beta-gal dosages at a read length of 150 bp. Annotations against 7 CAZy families that contain beta-
galactosidase were included: GH1(navy), GH2 (blue), GH16 (tan), GH35 (red), GH42 (pink), and GH98 (grey)
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abundance in shotgun metagenomes of human fecal
microbiomes. Furthermore, decision-making around these
parameters is intertwined as they affect each other.
Previous studies have observed a relationship between

read length and the accuracy of gene detection [11, 17].
Consistent with their observations, we found that overall
accuracy increases with read length. What is more inter-
esting is translating this knowledge to determine which
of the commonly available sequencing formats are there-
fore appropriate. SR50 should clearly never be used;
SR100 should only be used with a small customized

database, provided that quality trimming does not exten-
sively trim the reads. PE100 should only be used for the
same purpose as SR100 or it can be used more broadly
if the sequencing library is size selected to enable over-
lapping paired ends, which are then merged to create
merged reads longer than 100 bp. When processing lon-
ger read formats, reads < 100 bp should simply be dis-
carded. The Human Microbiome Project’s WGS Read
Processing protocol retaining all reads > 60 bp [18];
clearly, this threshold is too low for functional annota-
tion of gene sequences. Given today’s read format

Fig. 5 Correlations of the R1, congruent, and merged read annotations in (a-b) infant fecal metagenomes 2x150bp with nearly 90% merge-able
reads and (c-d) adult fecal metagenomes 2x100bp format with only one third merge-able reads
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choices, the ideal choice would be PE150 with size-
selection to enable overlapping reads. This can generate
merged reads with a median length near 250 bp (D.
Lemay, unpublished observations).
We also investigated what to do with legacy data in

which most paired end reads are not mergeable. For one
of the largest sets of fecal metagenomes from healthy

adults to date [15], we found that only one third of the
reads overlapped and when they did, the mean read
length was still rather short (just 112 bp). In another
dataset [16], merging reads was much more successful
((~ 88% overlap, mean 188 bp, on PE150 data). Using
these two datasets, we compared three read strategies: a
“merged strategy” (using only merge-able reads), an “R1

Fig. 6 Effect of sub-sampled read depth on the standard deviation of target gene hits in the sub-sampled metagenome relative to the full
metagenome. The target gene was beta-galactosidase, mapped using a custom database of beta-galactosidase sequences. The metagenomes
tested were a an infant fecal metagenome of 30 million merged reads, b all infant fecal metagenomes of at least 10 million merged reads, and c
adult fecal metagenomes with at least 20 million unmerged reads mapped using the congruent strategy
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strategy” (using only forward reads), and a “congruent
strategy” (independentally mapping both reads and keep-
ing only those hits in which both reads map to the same
protein). As expected, all three strategies are highly cor-
related with “merged” and “congruent” having the high-
est correlation. However, given that mergeable reads
result in different absolute numbers of counts across the
three strategies (R1 > >merged > > congruent), the
counts from the three strategies should not be com-
bined. A single strategy should be used for the whole
data set. If the reads are mergeable, the merged strategy
should be used, otherwise the congruent strategy is a
reasonable alternative.
For the design of future experiments, should the se-

quence library be size-selected to enable overlapping
pairs of reads? If functional annotation is a primary
focus, then merged reads are highly desirable. Fewer hits

were obtained with the “congruent” strategy, suggesting
that the sensitivity would be lower if paired end reads
cannot be merged. Rare genes, such as antimicrobial re-
sistance genes, would then be more difficult to
quantitate.
Knowing that appropriate e-value thresholds are

dependent on the search tool used as well as read length
and database size [17], we investigated what thresholds
would be appropriate for use with DIAMOND at differ-
ent read lengths. We found that two different protein se-
quences had two different optimal thresholds for
accurate detection. This supports the opinion of other
researchers that it may not be possible to identify a sin-
gle cut-off for all proteins [7, 17]. However, given that
we identified and tested a “worse case scenario”, our
data suggests that it is possible to identify reasonable
ranges for mean read lengths. For example, using

Fig. 7 Effect of sub-sampled read depth on the standard deviation of target gene hits in the sub-sampled metagenome relative to the full
metagenome. The target gene was a CAZy category, mapped using the CAZy database, or b beta-lactamase, using a custom database. The
metagenomes tested were a an infant fecal metagenome of 30 million merged reads, and b six infant stool metagenomes representative of high
(blue), medium (yellow), and low abundance (red) in beta-lactamase

Treiber et al. BMC Bioinformatics           (2020) 21:74 Page 10 of 15



DIAMOND in “sensitive” mode, a threshold within the
range of the default 1-e3 to 1-e10 would be appropriate
for read lengths of 100-150 bp when a small customized
database is used. A threshold within the range of 1e-10
to 1e-25 would be appropriate for read lengths of 200-
250 bp. For a larger database, like the SEED, we observed
higher false positives with increasing read length, sug-
gesting that a threshold more strict than the default is
needed for broad databases. Generally, if the research
question in mind has low tolerance for false positives,
thresholds towards the stricter end of the suggested
ranges should be chosen.
As it is well-known that shotgun metagenomes will

have reads of varying length, it may be useful to imple-
ment a binning strategy to apply e-value thresholds pro-
portional to the read length. First, shorter reads (< 100
bp) should be removed. Then, if the read lengths vary
dramatically within a sample, it may be useful to sort
each sequence or merged pair of sequences into bins
such that appropriate e-value thresholds can be applied
to each bin.
Most metagenomic analyses to date are non-

hypothesis driven, using a database of all available pro-
tein sequences. As more metagenomes become publicly
available, one can imagine that these data will be revis-
ited with specific hypotheses in mind. As sequencing be-
comes cheaper, it is also likely that shotgun
metagenomes will be produced to address a specific re-
search question on microbial functionality, rather than
as a non-hypothesis-driven exploration. Bengtsson-
Palme has suggested that a database that is specialized
for the research question should be used and, if it does
not exist, should be constructed based on genes of veri-
fied function described in the literature [7]. Our data
supports that opinion. With the goal of detecting beta-
galactosidase, the custom database for this enzyme was
far superior to the other databases. NCBI and SEED
tended to under-estimate the number of beta-
galactosidase enyzmes in the simulated metagenome,
while the use of CAZy over-estimated them. The fact
that beta-galactosidases exist in several distinct families
in the CAZy database and that those families, in turn,
include some sequences that are likely not beta-
galactosidases further demonstrates the difficulty inter-
preting results for specific enzymes using the CAZy
database. Criteria previously suggested for customization
of databases include whether the sequences are experi-
mentally verified, the quality of the data, and the func-
tional and/or taxonomic coverage of the data [19]. If
analyzing the content of a particular enzyme of interest,
the database could be focused on experimentally verified
sequences of that enzyme as we did for beta-
galactosidase. By extension, if a particular pathway is the
focus of the hypothesis, the protein sequences associated

with the pathway should be curated for the database.
Hypothesis-specific databases would be faster, more ac-
curate, and highly interpretable.
Although it was expected that a custom database

would perform best, this had not been previously
demonstrated. Prior to performing the experiments,
we did not know if the use of a custom database
would increase the false positive rate. Without other
proteins in the database, there could be a risk that
non-target sequences would be more often matched
to the target because the non-target sequence reads
would not have a true match in the database. How-
ever, our experiments suggest this is not the case.
The custom database containing only the target se-
quence provided superior performance.
Investigating the effect of sequencing depth (e.g. li-

brary size) on the ability to quantitate specific genes or
functional categories in human fecal metagenomes, we
found that 5 million merged reads or 10 million
unmerged reads would be sufficient to quantitate even
rare genes. In prior work, Nayfach and Pollard surpris-
ingly found that reducing the sequencing depth of hu-
man gut metagenomes by 95% introduced < 2.5%
variation in gene copy number estimates [20]. However,
they also suggest that the effects differ for common ver-
sus rare genes. What is rare? Considering that there
are, on average, around 500,000 unique microbial genes
per individual’s gut microbiome [21], many individual
genes will be rare. We found that beta-galactosidase,
the enyzme that digests lactose, has about 500 copies
per 5 million merged reads in an adult metagenome
and tens times as many in an infant metagenome. For
beta-lactamase, an antimicrobial resistance gene, there
were about around 100 copies per 5 million merged
reads in a deeply sequenced infant metagenome. The
concept of shallow sequencing—roughly 500,000 se-
quences per metagenome—has been put forward as an
in-between alternative between 16S sequencing and
current shotgun metagenomes [22]. With 500,000
unique microbial genes per individual’s gut microbiome
[21], shallow sequencing would sample each gene only
once, on average, which would not be sufficient to as-
sign presence/absence to most genes with confidence,
nevermind comparative quantitation among samples.
Answering hypotheses about specific genes or functions
more narrow than say, “carbohydrate metabolism”, will
require a more deeply sequenced metagenome. We sug-
gest a minimum of 5 million merged reads of at least
150 bp in length.
Our recommendations on sequencing depth are lim-

ited to shotgun sequencing of human fecal samples.
These samples are high biomass with nearly all DNA
from microbial sources and low risk of substantial con-
tamination. Furthermore, host DNA is easly removed
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[23, 24]. Others have indicated that problem of higher
variation due to contamination in low biomass samples
[25] which suggests that recommendations based on hu-
man fecal samples may not extend to other samples. It is
possible that recommendations may not even extend to
stool samples of other animals. Zaheer et al. reported
that > 50 million reads per sample would be needed to
characterize the fecal resistome of cattle fecal samples
[26]. Nearly all reads (> 97%) were uncharacterizable in
that study; the authors suggested that this may be due to
the presence of feed-associated plants that were not in
the database.
The experiments in the current study do not ad-

dress how to use gene abundances to compare across
metagenomes. Nayfach and Pollard review three
methods: (1) gene relative abundance, which is rela-
tive amounts of genes found in a sample, (2) average
genomic copy number, which is the expected number
of copies of the gene per cell, and (3) gene absolute
abundance, which cannot be estimated from sequence
data alone [20]. The choice should probably be
dependent upon the application. If the primary goal is
to calculate the carbohydrate active enzyme profile of
a fecal metagenome without regards to whether those
enyzmes are derived from bacteria with a reference
genome or even non-bacteria, such as archaea or
yeasts, then the gene relative abundance may be ex-
pected to yield less bias than average genomic copy
number. However, it is important that differential
abundance testing is done using a count-adapted
method, such as DESeq2 [27] and edgeR [28], which
simultaneously account for differences in library sizes
and the compositional nature of the data and have
demonstrated applicability for metagenome data [29].
A comparison of 14 different methods demonstrated
that these methods have the best performance to de-
termine differnentially abundant genes in metagen-
omes [30].
Most analyses of metagenomes involve assembly of

reads into contigs followed by functional annotation
of the contigs [5–7]. However, it is known that this
process results in draft assemblies of only the most
abundant organisms [5]. Thus, estimates of functional
capacity of assembled metagenomes are biased in
favor of the functions of the most abundant members
[7]. It has also been shown that the assembly process
was detrimental to accurate estimation of antimicro-
bial resistance genes [4]. For these reasons, we recom-
mend the direct mapping of reads without prior
metagenomic assembly when the primary research
goal is an unbiased quantification of the functional
capacity of a microbial community.
Our study is intended to be agnostic to the analysis

pipeline used, except for the use of DIAMOND as a

mapping utility. An argument against using point-
and-click computational computational pipelines is
the inability to assign appropriate cut-offs for genes
of interest [7]. An advantage of creating one’s own
pipeline or modifying one that is open source, such
as SAMSA2 [31], is the ability for users to define e-
value thresholds and use customized databases.
SAMSA2, although built for metatranscriptomes, also
works to assess gene abundances in metagenomes
with the omission of the rRNA removal step, which is
unnecessary for metagenomes. Therefore, a version of
the SAMSA2 pipeline with that modification was used
for the experiments in this paper. For the functional
annotation of fecal metagenomes, it could be argued
that a broad overview with mappings to the Clusters
of Orthologous Genes (COG) database [32], KEGG
Orthology [33], and/or SEED subystems [14] data-
bases is a reasonable first step followed by tests for
specific hypotheses with databases customized for
those hypotheses.
An alternative to the DIAMOND/BLAST approach

would be a mapping strategy which uses hidden Mar-
kov models (HMMs). A profile HMM encodes the
statistical probability of each amino acid in the se-
quence of a protein family used to train the model.
This can be useful to identify distant homologs that
may not be represented in a database. The Pfam data-
base is a large collection of protein families, with
each family represented by a multiple sequence align-
ment and HMM [34]. Pfam also collects entries into
clans that are collections of proteins related by profile
HMM. Several tools, such as HMM-GRASPx [35] and
MetaCLADE [36], identify protein domains in meta-
genome and/or metatranscriptome sequences. These
methods are likely most useful to annotate sequences
when proteins are not well-represented in reference
databases, such as in environmental sequence data
[37], because protein domain information is better
than no information. However, proteins with very dif-
ferent functions can share the same protein domain
and there can be multiple protein domains in the
same protein. For human fecal metagenomes, it is
now possible to map 70–90% of reads to genes [38]
using the integrated gene catalog (IGC) of the human
gut metagenome [39]. Given that the average percent-
age of prokyarotic genomes that comprise gene-
coding regions is 87%, mapability of reads from hu-
man gut microbiomes has approached the maximum
achievable [39]. Thus, it is both possible and prefera-
ble to identify the complete protein rather than a
protein domain to enable interpretation of the results.
In theory, a profile HMM can be built using complete
sequences from different taxa for a particular protein;
whether such a strategy has higher performance than
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the DIAMOND/BLAST approach is beyond the scope
of the current analysis.
Assignment of sequence reads from fecal metagen-

omes to broad functional categories gives the impression
of stability [40, 41], but this impression is likely false
when investigating function on a finer scale of individual
genes. Publicly available human fecal metagenomes have
been reanalyzed for functional content using alternate
methods [42] or for meta-analyses across cohorts [38].
Legacy data should also be re-analyzed for specific hy-
potheses. The results of the current study suggests some
guidelines for using legacy data to address hypotheses of
interest: create a custom database of the gene or genes
of interest, merge paired ends to create longer reads,
and adjust the e-value threshold for the median read
length or bin reads by read length for different e-value
thresholds.
While many of our observations are unsurprising,

they challenge the current paradigm in several ways.
First, conventional sequence library preparation for
metagenomes produces non-overlapping reads; our
analysis suggests that this protocol should be altered
to increase the percentage of overlapping reads when
the primary research question involves microbial
genes, rather than taxa. Second, if metagenomes with
non-overlapping reads have already been sequenced,
we demonstrate that a congruent mapping strategy is
an appropriate alternative. Third, the default e-value
thresholds for DIAMOND are not always appropriate
for the analysis of metagenomes; this work provides
appropriate e-values for different read lengths. Finally,
the use of custom databases is non-standard in meta-
genomics analysis, and this work advocates for their
use in hypothesis-driven analysis of metagenomes.

Conclusions
The accurate identification of sequences of known abun-
dance in human fecal metagenomes was affected by read
length, e-value threshold, choice of protein database,
strategy for paired end reads, and sequencing depth. If
the primary purpose of metagenomics analysis is to
quantitate the functional capacity of microbial commu-
nities, then DNA extracted from human fecal samples
sequenced using the Illumina platform should be size-
selected to enable merging of paired end reads, and
should be sequenced in the PE150 format or better with
a minimum sequencing depth of 5 million merge-able
reads, which will likely be closer to 10 million reads.
Expecting the merged reads to be 180-250 bp in length,
the appropriate e-value threshold for DIAMOND would
then be more strict than the default. Accurate and inter-
pretable results for specific hypotheses will be best ob-
tained using small databases customized for the research
question.

Methods
Construction of a database of proteins with known
function
In order to test various functional metagenomic tech-
niques, a database containing only proteins with experi-
mentally verified functions was constructed. The three
sources for protein sequences were Swiss-Prot [43], New
England BioLabs (NEB) Inc., and those previously ex-
perimentally verified in Bifidobacterium [16–24]. From
Swiss-Prot, a fasta formatted database of reviewed bac-
terial sequences with experimentally verified functions
was downloaded. Sequences of experimentally validated
glycosidases were sent directly from the NEB techical
team. We manually collected a list of Bifidobacterium
enzymes that were biochemically confirmed for their
function [16–24]. The protein database (~ 5000 protein
sequences) was then blasted against itself to remove all
sequences with greater than 50% identity using custom
scripts, removing ~ 1000 protein sequences that were
closely related to other sequences within the database.
Lastly, we reverse translated the protein database into a
nucleic acid database using the E. coli codon table and
the tool EMBOSS Backtranseq [44]. Note, because DIA-
MOND translates nucleic acid sequences into protein
sequences, the choice of codon table did not make a dif-
ference in this scenario.

Construction of simulated metagenomes with increasing
dosage of beta galactosidase
The database of proteins with known functions was split
into two databases, one with only beta-galactosidase se-
quences and the other containing all other protein se-
quences. Sequences were randomly selected from the two
databases to create 100 test databases with an increasing
proportion of beta-galactosidase enzyme sequences (1/4000
to 100/4000). Next, in silico metagenomes were created
using the next generation sequencing simulator software
MetaSim [45]. Using MetaSim, 100 metagenomes of 100,
000 reads with increasing dosages of beta-galactosidase (25/
100,000 - 2500/100,000) were simulated at 5 different read
length of 50 bp, 100 bp, 150 bp, 200 bp, and 250 bp. Using
the same reverse translated nucleic acid database, each se-
quence was extended by 20% (10% to each end) by ran-
domly adding nucleotides based on actual nucleotide
frequencies to represent more realistic DNA fragments
with flanking intergenic regions. Another 500 metagenomes
were simulated from the elongated sequences of increasing
beta-galactosidase proportions at the 5 different read
lengths.

Fecal metagenome datasets
Two human fecal shotgun metagenomic datasets were
analyzed in this paper. The dataset of infant fecal meta-
genomes included 33 samples [16]. The second dataset
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included 30 adult fecal metagenomes which were among
the largest metagenomes from a cohort of 471 healthy,
Western European adults of at least 18 years of age, as
part of the 500 Functional Genomics project [15]. The
infant metagenomes’ sequence data are in DDBJ Center
with SRA accession no. SRP133760, and the adult meta-
genomes’ sequence data are in NCBI SRA with accession
no. PRJNA319574.

Metagenomic sequence analysis
The SAMSA2 pipeline [31] was modified for metage-
nomics analysis with the following steps: 1) reads map-
ping to the human genome were first removed with
BMTagger [23], 2) paired-end reads were merged using
PEAR [46], 3) sequence adaptor contamination and low
quality bases were removed using Trimmomatic [47]
and 4) the quality reads were then annotated against a
protein reference database using DIAMOND, a high-
throughput squence aligner [10]. DIAMOND is highly
sensitive and runs at a speed that is up to 20,000 times
faster than BLASTX and up to 2500 times faster with
the “sensitive” option. The pipeline script, master_beta.-
galac.db_analysis_stoolmg.sh, is in https://github.com/
mltreiber/functional_metagenomics
To determine gene content, reads were mapped

against three publicly available databases, NCBI RefSeq
[13], SEED Subsystems [14], and CAZy [12] with only
the best hit retained. Reads were also mapped against a
custom-built database which was a fasta-formatted list
of experimentally verified beta-galactosidase sequences.

Metrics of evaluation
The performance of sequence read mapping was evalu-
ated using several metrics. Sequence reads originating
from the target that were also classified as the target
were considered true positives (TP). Sequence reads not
originating from the target that were classified as the
target were considered to be false positives (FP). Sensi-
tivity refers to the ability to detect the target sequence
while specificity refers to the ability to correctly identify
sequences that are not the target; accuracy is the propor-
tion of true results. Sensitivity, specificity, and accuracy
were calculated as follows:

sensitivity ¼ TP
TP þ FN

; speci f icity ¼ TN
FP þ TN

; accuracy ¼ TP þ TN
n

False negatives (FN) were target sequence reads that
were not correctly classified as the target. True negatives
(TN) were non-target sequence reads that were correctly
classified as non-target. The number of total reads was
equal to n.
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