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However, extracting which features and how to combine multiple features to improve
the performance of EMCl identification have always been a challenging problem. To
address this problem, in this study we propose a new EMCI identification framework
using multi-modal data and graph convolutional networks (GCNs). Firstly, we extract
grey matter volume and shortest path length of each brain region based on
automated anatomical labeling (AAL) atlas as feature representation from T1w MRI and
rs-fMRI data of each subject, respectively. Then, in order to obtain features that are
more helpful in identifying EMCI, a common multi-task feature selection method is
applied. Afterwards, we construct a non-fully labelled subject graph using imaging and
non-imaging phenotypic measures of each subject. Finally, a GCN model is adopted to
perform the EMCl identification task.

Results: Our proposed EMCl identification method is evaluated on 210 subjects,
including 105 subjects with EMCl and 105 normal controls (NCs), with both TTw MRI
and rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Experimental results show that our proposed framework achieves an accuracy of 84.1%
and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.856 for
EMCI/NC classification. In addition, by comparison, the accuracy and AUC values of our
proposed framework are better than those of some existing methods in EMC
identification.

Conclusion: Our proposed EMCI identification framework is effective and promising
for automatic diagnosis of EMCl in clinical practice.
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Background

Alzheimer’s disease (AD) is a common neurodegenerative disease accompanied by mem-
ory, cognitive and motor disorders. As of 2006, there are 26.6 million AD patients
worldwide, and by 2050, one in every 85 people worldwide is expected to have AD [1]. As
the world is developing into an aging society, the negative impact of AD on families and
society will become more and more significant. Mild cognitive impairment (MCI) is an
intermediate process in the conversion of normal people to AD, with up to 15% of people
with MCI being converted to AD each year [2]. At present, there is no accurate diagnosis
and effective treatment for AD. Most researchers hope that patients can be diagnosed in
time when they are in the stage of MCI, and then take effective measures to prevent fur-
ther deterioration of the disease. Therefore, accurate identification of early MCI (EMCI)
is critical to human health.

Since magnetic resonance imaging (MRI) can noninvasively measure brain structural
and functional changes related to brain disorder development iz vivo, in recent years it has
been widely used in the study of brain disorders [3], such as AD/MCI [4, 5], schizophre-
nia [6, 7] and autism [8]. Therefore, MRI can provide phenotypes that can be used to
diagnose such disorders. MRI falls into two broad categories: structural MRI (such as T1
MRI, and T2 MRI) and functional MRI (such as rs-fMRI and ts-fMRI). Brain structure
is typically measured using structural MRI, which can provide relatively high-definition
brain structure in grey matter and white matter. There are many metrics to measure brain
structure, and most of them have been widely applied in the study of MCI identification,
such as grey matter volume, cortical thickness, texture properties and so on [9-12]. Brain
function is typically measured using functional MRI, which can provide changes in hemo-
dynamics caused by neuronal activity. Functional connectivity between brain regions is
a common measure of brain function. Also, brain networks based on brain regions and
functional connectivity between brain regions have been widely used for feature repre-
sentation in the study of various brain disorders. In the past years, brain function analysis
based on graph theory has shown a powerful role in exploring functional impairment of
brain disorders, and has been widely used for MCI identification [13-16].

In the past decade, whether structural MRI-based brain structure metrics or functional
MRI-based brain function metrics, these metrics were mainly used separately in the stud-
ies with MCI. For example, Karas et al. [9] found that the MCI subjects showed a decrease
in grey matter volume in the medial temporal lobe. Wang et al. [15] constructed functional
brain networks of MCI subjects and found that the length of the shortest path increased in
MCI subjects compared with NCs; Zhang et al. [17] first extracted functional connectivity
between brain regions from functional MRI data of each subject as feature representation,
and then trained a L2-regularized logistic regression classifier based on these func-
tional connectivity features to perform MCI identification. Therefore, many researchers
believe that different metrics may contain different-yet-complementary information, and
combinations of these metrics may improve MCI classification performance over separate
metrics. In fact, recent studies have also been show great promises for improving the
accuracy of MCI identification by combining multiple structural and functional metrics,
such as grey matter volume (GMV) and shortest path length (SPL). For example, Wee
et al. [18] first used both structural MRI and functional MRI data of each subject to
construct multiple brain networks for each subject, and then extracted local clustering
coefficient from each brain network of each subject as feature representation to perform
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the MCI identification task by using a multi-kernel learning algorithm; De Marco et al.
[19] used multiple machine learning models based on different metrics from both struc-
tural MRI and functional MRI data to investigate the performance of MCI identification;
Tripathi et al. [20] proposed an unsupervised framework for the classification of EMCI
and LMCI by combining shape and voxel-based features from 12 brain regions; Jie et al.
[21] proposed a feature combination framework to combine both temporal and spatial
features of dynamic functional networks to perform automatic identification of EMCI
and LMCI. So far, although some results have been achieved for the identification of MCI
subjects based on structural and functional MRI data, extracting which features and how
to combine multiple features to improve MCI identification accuracy have always been a
difficult problem.

Recently, deep learning models have been widely applied in the fields of medi-
cal health [22-25]. Since spectral graph-based convolutional neural network (GCN)
models [26, 27] can process irregular graph structures using computational harmonic
analysis, many researchers in medical health adopt spectral GCN models to perform
various applications, especially at a subject level [28—32]. For example, Anirudh et al.
[28] proposed a bootstrapping strategy-based spectral GCN model to perform autism
spectrum disorder classification using rs-fMRI data. Guo et al. [29] proposed a spec-
tral GCN model that integrates brain connectivity information to predict visual tasks
using MEG data. Ktena et al. [30] proposed a siamese GCN model to learn a graph
similarity metric to perform autism and sex classification using rs-fMRI data. In the
field of MCI identification, the spectral GCN model is also applied. For example, Parisot
et al. [31] proposed a spectral GCN model by combining imaging and non-imaging
information to distinguish EMCI from late MCI. However, Parisot et al. [31] only extract
GMV of each brain region as imaging features from Tlw MRI data, and the Mini
Mental State Examination (MMSE), a common scale for AD in clinical practice, has not
been taken into account.

Taking the above-mentioned into consideration, in this study we propose a new EMCI
identification framework using multi-modal data and graph convolutional networks,
which is denoted as GCN-EMCI and shown in Fig. 1. Firstly, we extract GMV and SPL of
each brain region based on automated anatomical labeling (AAL) atlas [33] as feature rep-
resentation from T1w MRI and rs-fMRI data of each subject, respectively. Then, in order
to obtain features that are more helpful in identifying EMCI, a common multi-task feature
selection method is applied. Afterwards, we construct a non-fully labelled subject graph
using imaging and non-imaging phenotypic measures of each subject. Finally, a recent
GCN model is adopted to perform the EMCI identification task. The GCN-EMCI is eval-
uated on 210 subjects (including 105 subjects with EMCI and 105 NCs) with T1w MRI
and rs-fMRI data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu/).

Materials and methods

Data

A subset of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [34] is used to eval-
uate our proposed EMCI identification method. This subset includes 210 subjects with
both T1w MRI and rs-fMRI data, which are composed of 105 normal controls (NCs) and
105 subjects with early mild cognitive impairment (EMCI). All Tlw MRI and rs-fMRI
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Fig. 1 Schematic overview of our proposed EMCI identification framework (GCN-EMCI)

data are acquired on 3.0 Tesla Philips medical system scanners at multiple sites, and the
slice thickness of T1w MRI data and rs-fMRI data is 1.2 mm and 3.0 mm, respectively.
Furthermore, rs-fMRI data of each subject contain 140 volumes. Table 1 presents a brief
demographic information of the subjects involved in this study. In Table 1, the front and
back of + represent mean and standard deviation, respectively. For more details with
these subjects from ADNI, please see http://adni.loni.usc.edu/.

Prior to EMCI identification using the subjects, Chi-square test [35] is implemented to
test the differences in gender, and ¢-test [35] is implemented to test the differences in age
and MMSE. As can be seen from Table 1, no significant differences (p > 0.05) are found
between each of the two groups in gender, age and MMSE.

Image preprocessing and feature representation

As can be seen from Fig. 1, the procedures of image preprocessing and feature represen-
tation in our work mainly include two aspects: T1w MRI data preprocessing and feature
representation, and rs-fMRI data preprocessing and feature representation. These two
aspects are briefly introduced as follows.

Firstly, a standard preprocessing procedure is applied to T1w MRI data of each subject
using a standard FreeSurfer pipeline (https://surfernmr.mgh.harvard.edu) [36], including
motion correction, non-uniform intensity normalization, talairach transform computa-
tion, skull removal, volumetric segmentation, cortical surface reconstruction and so on.
After this standard preprocessing procedure, we can obtain the gray matter (GM) map,
which lies between the gray-white interface and the pial surface, and has been widely
used to investigate AD/MCI in the literatures [37, 38]. Since EMCI is accompanied by
brain atrophy, we suspect that the gray matter volume (GMV) is also accompanied by a
decrease. The gray matter volume is defined as the amount of gray matter, and uses the
surface-based volume calculation as shown in Fig. 2. For this reason, in this study we
extract GMV based on each GM region of the automated anatomical labeling (AAL) atlas

Table 1 Demographic information of the subjects involved in this study

Demographic information NC EMCI p-value
Number (male/female) 105 (54/51) 105 (49/56) >0.05
Age (year) 771 +£63 763154 >0.05

MMSE 291 £ 1.1 275+18 >0.05
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Fig. 2 A sketch of calculating the gray matter volume

[33] as structural feature representation from T1w MRI data for each subject. For more
details of the 90 GM regions of the AAL atlas, please see http://www.gin.cnrs.fr/en/tools/
aal-aal2/. Finally, we can obtain GWYV of each GM region from T1lw MRI data for each
subject, which is denoted as Fgpy. It is worth mentioning that Fgyy is 90-dimensional
vectors.

Secondly, a standard preprocessing procedure is also applied to rs-fMRI data of each
subject using the pipeline provided by the Analysis of Functional NeuroImages (AFNI)
software (https://afni.nimh.nih.gov/) [39], including removing the first 10 rs-fMRI vol-
umes, slice timing, head motion corrections, spatial smoothing, band-pass filtering
(0.01-0.1 Hz), nuisance signal regression, and Montreal Neurological Institute (MNI)
space normalization and so on. After this standard preprocessing procedure, we can
obtain the average rs-fMRI time series of each brain region according to the AAL atlas
from the resulted rs-fMRI data of each subject. At present, brain network analysis based
on graph theory [40, 41] plays an important role in the study of complex brain dis-
eases, and is widely used in various brain diseases [42], such as AD/MCI, Schizophrenia,
Parkinson and so on. The shortest path length (SPL) plays an important role in the infor-
mation transmission of a brain network, and it is a very important metric to describe the
internal structure of the brain network. Meanwhile, the SPL is a measure of functional
integration, which can measure the ability to rapidly combine pieces of specialized infor-
mation. The shorter SPL can transmit the information more quickly and reduce brain
consumption. Since EMCI is accompanied by brain atrophy, we suspect that the brain
information transmission of EMCI is also accompanied by damage. For this reason, in
this study we construct an individual brain network for each subject, which consists of 90
brain regions according to the AAL atlas and functional connectivity between each two
brain regions. The functional connectivity is calculated by the pairwise Pearson correla-
tion coefficient between the average rs-fMRI time series of each two brain regions. Then,
we compute nodal SPL based on individual brain network of each subject as functional
feature representation, which is denoted as Fspy. It is worth mentioning that Fspy is also
90-dimensional vectors.

With the above analysis, we can obtain two regional feature sets from both T1w MRI
and rs-fMRI data for each subject, i.e., Fgary and Fspr. These two regional feature sets are

taken as the original feature representation of each subject.

Multi-task feature selection
Since the two original feature sets: Fgary and Fspy, are calculated based on a certain rule,
these two feature sets may contain irrelevant or redundant features. Therefore, feature
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selection is required for these two original feature sets. Before performing feature selec-
tion on each feature set, each original feature set were first scaled individually to range
[—1,+1]. Then, every scaled feature was normalized across all training subjects to obtain
its standard score (z-value). These steps ensure that each feature set is within the same
scale, minimizing possible bias that may occur when performing selection on features
with different dynamic ranges.

In this study, to consider the relationship between different feature selection tasks, the
different feature selection tasks should be learned jointly, which is often called multi-task
feature selection (MTES). At present, the group LASSO-based MTES method (denoted as
MTES-gLASSO) [43] is a common feature selection method, and has been widely used in
various feature selection tasks. The MTFS-gLASSO method can be formulated as follows,

T
Wy(znw—wa;+wwwm) g

t=1

where X;= [x},xf, ...,xi, ,xf[] e MV*P denotes all training subjects in the ¢-th task, P
denotes the number of features of each training subject, y =[y',?, ..., 5", ...,yN], e BN
denotes the labels of all training subjects, W = [w1, wy, ..., w;, .., wr] € RP*T isa discrim-
inant matrix, || W||,, 1 denotes the I ; —norm of W, and A > 0 is a parameter to balance the

loss function (i.e., Z Hy tht” ) and the regularization term (i.e., [ Wl ;). The larger

the A value, the greater the penalty for the parameters in the model, resulting in higher
model sparsity, that is, more parameters are trained to zero.

Finally, as shown in Fig. 1, we concatenate the two selected feature sets (i.e., Fgarys and
Fsprs) obtained by MTFS-gLASSO, which is denoted as Fc.

Subject graph construction

Before performing EMCI identification using GCN model, we should fist construct a
graph using all subjects. A graph is typically defined as G = (V, E, C), where V is the set
of vertices (or nodes), E is the set of edges, and C is the adjacency matrix describing the
graph’s connectivity. Therefore, to construct the subject graph, we need to determine the
definition of the nodes and edges in this graph.

In this study, we define each subject as a node, and the correlation between each two
subjects as edges. For a node V;, we use Fc(V;) to represent it. To compute the adjacency
matrix (i.e., C) of the subject graph, we follow the work of Parisot et al. [31]. Considering
a set of D non-imaging phenotypic measures H = {H,} (such as gender, age or MMSE),
the adjacent matrix is defined as follows:

D
C(i,]) Corr V,,V Zn H; (Vy),Hy (V])) @)
d=1
2
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where Corr (V;, V}) is an imaging phenotypic measure of correlation between subjects,
p (+,+) is a correlation distance, ¢ > 0 is a constant parameter, and 7 (Hd V) ,Hy (V}))
a non-imaging phenotypic measure of distance between subjects. It is worth mentioning
that different non-imaging phenotypic measures correspond to different values of ¢.

Classification using GCN model

Following the work of Parisot et al. [31], schematic illustration of the GCN model in this
study is shown in Fig. 3. The input layer of the GCN model is a non-fully labelled subject
graph, and the output layer of the GCN model is a fully labelled subject graph. Obviously,
the training set consists of labelled nodes (such as Vi and Vj}) in the non-fully labelled
subject graph, and the testing set consists of unlabelled nodes (such as V; and V;) in the
non-fully labelled subject graph.

As can be seen from Fig. 3, the GCN model is a semi-supervised classification method
and a relatively simple model, which consists of L hidden layers with graph convolution
and a softmax layer. The L hidden layers are activated by a rectified linear unit (ReLU)
function. After training the GCN model, the softmax function is used in the testing set to
assign labels to nodes that have no labels.

Experiments and results

Experimental settings

Our proposed EMCl identification framework (GCN-EMCI) is evaluated on 105 subjects
with EMCI and 105 NCs via a 5-fold cross-validation strategy. In the multi-task feature
selection step, the parameter A is set to [0, 100] with a step size of 5, and these features
with non-zero elements in W are selected. In the subject graph construction step, the cor-
responding ¢ values for the non-imaging phenotypic measures: gender, age and MMSE
are set to 1, 2 and 2, respectively. In the classification using GCN model step, GCN param-
eters are similar with [31], we only change: L = 5, dropout rate: 0.01, learning rate: 0.02,
epochs: 500, K = 4.

To quantitatively evaluate the classification performance of GCN-EMC], in this study
the three metrics: accuracy (ACC), sensitivity (SEN) and specificity (SPE) are com-
puted. In addition, to quantitatively evaluate the overall performance of GCN-EMCI, the
area under receiver operating characteristic (ROC) curve (AUC) value [44-46] is also
reported. It is worth mentioning that the greater the values of the four metrics are, the
better the classification performance of the method is.

Graph convolutional network (GCN) model

Graph L hidden layers

. ! Graph

: mmp| convolution + e lution
el convo

Fig. 3 Schematic illustration of the GCN model in GCN-EMCI
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Table 2 Classification performance of GCN-EMCI based on different subject graphs

Features ACC(%) SEN(%) SPE(%) AUC
Fomy 65.8 69.8 62.7 0.672
Fspt 62.7 66.5 594 0.637
Femv + Fspr 69.7 714 65.6 0.719
Femvs 79.8 834 77.1 0.802
Fsprs 753 783 732 0.765
Fc 81.5 82.7 80.2 0.828
Fc+H 84.1 86.5 81.3 0.856

To avoid the bias caused by randomly dividing the subjects in the cross-validation, the
5-fold cross-validation is repeated 50 times in our experiments. In this study we only
report the average of 50 repeated experiments.

Classification performance

In order to verify the effectiveness of GCN-EMCI, we have done a series of experiments
based on different subject graphs. First, we only use imaging phenotypic features (i.e.,
Femv, Fspr, Feamv + Fspr, Femvs, Fsprs and Fc) to construct subject graphs, and then we
combine imaging and non-imaging phenotypic features (i.e., Fc + H) to construct subject
graph. The results of these experiments are shown in Table 2.

As can be seen from Table 2, the classification performance of GCN-EMCI based on
subject graphs with original features (i.e., Fgaryv, Fspr and Fgary + Fspr) are relatively low
(such as ACC <70%), and the classification performance of GCN-EMCI based on subject
graphs with selected features (i.e., Fgavs, Fsprs and Fc) are relatively good (such as ACC
~ 80%). However, the classification performance of GCN-EMCI based on subject graph
with both imaging features and non-imaging features (i.e., Fc + H) is the best (ACC =
84.1%, SEN = 86.5%, SPE = 81.3%, AUC = 0.856). Experimental results show that GCN-
EMCI is effective for EMCI identification.

Discussion

Different feature selection methods

To demonstrate the superiority of MTFS-gLASSO in GCN-EMCI, we compare two other
common feature selection methods, i.e., t-test [35] and LASSO [47]. These two methods
are implemented by scipy [48] and scikit-learn [49] packages in Python, respectively. The
specific approach of these two methods is to first use the t-test or LASSO method for
Feay and Fspy, respectively, and then concatenate Fgrys and Fsprs as the feature repre-
sentation of each subject. It’s worth mentioned that when t-test is used as feature selection
method, these features with p-value less than 0.1 are selected; when LASSO is used as
feature selection method, these features whose weights are not equal to 0 are selected.
The EMCI/NC classification performance based on GCN-EMCI with different feature
selection methods is shown in Table 3.

Table 3 Comparison with different feature selection methods for EMCI/NC classification

Methods ACC(%) SEN(%) SPE(%) AUC
t-test 709 747 68.2 0.728
LASSO 78.5 836 76.6 0.798

MTFS-gLASSO 84.1 86.5 81.3 0.856
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Table 4 Comparison with existing methods for EMCI/NC classification

Methods ACC(%) SEN(%) SPE(%) AUC p-value
Tripathi et al.,, 2017 [20] 75.8 74.2 76.7 0.762 <0.01
Jieetal, 2018 [21] 79.5 826 77.2 0.801 <0.01
GCN-EMCI 84.1 86.5 813 0.856

As can be seen from Table 3, the EMCI/NC classification performance based on GCN-
EMCI with MTES-gLASSO is best in ACC, SEN, SPE and AUC. This result indicates
that MTFS-gLASSO can obtain better feature representation than the other two feature
selection methods.

Comparison with existing methods

To demonstrate the superiority of GCN-EMCI, we also compare two existing methods
[20, 21] in EMCI identification. In our comparative experiments, the existing methods are
also repeated 50 times via a 5-fold cross-validation strategy, and the average classification
performance is reported in Table 4. In order to statistically verify that the classification
performance of GCN-EMCIl is better than that of the other two existing methods, we also
report the p-values of GCN-EMCI and other methods in terms of ACC, which is shown
in Table 4.

As can be seen from Table 4, GCN-EMCI obtains the best performance in ACC, SEN,
SPE and AUC for EMCI/NC classification. Compared with the two existing methods,
GCN-EMCI utilizes the correlation between each two subjects, and uses a GCN model to
learn the deep differences between EMCI and NC. In addition, as the statistical p-value
is less than 0.01, GCN-EMCI is significantly better than the other two existing methods.
These results indicate that our proposed method (i.e., GCN-EMCI) is not only effective,
but also has a good advantage in EMCI identification.

Conclusion

In this study, we propose a new EMCI identification method using multi-modal data
and graph convolutional networks. Firstly, we perform image preprocessing and feature
representation for both T1w MRI and rs-fMRI data of each subject. Then, in order to
obtain features that are more helpful in identifying EMCI, a common multi-task feature
selection method is adopted. Afterwards, we construct a subject graph using imaging phe-
notypic measures and non-imaging phenotypic measures of each subject. Finally, a GCN
model is applied to perform the EMCI identification task. Experimental results on 210
subjects from ADNI database demonstrate that our proposed framework is effective for
EMCI identification. This method paves the way to discriminative imaging markers for
computer-aided identification of EMCL
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