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Abstract

Background:Functional enrichment of genes and pathways based on Gene Ontology (GO) has been widely used
to describe the results of various -omics analyses. GO terms statistically overrepresented within a set of a large
number of genes are typically used to describe the main functional attributes of the gene set. However, these lists
of overrepresented GO terms are often too large and contains redundant overlapping GO terms hindering informative
functional interpretations.

Results:We developed GOMCL to reduce redundancy and summarize lists of GO terms effectively and informatively.
This lightweight python toolkit efficiently identifies clusters within a list of GO terms using the Markov Clustering (MCL)
algorithm, based on the overlap of gene members between GO terms. GOMCL facilitates biological interpretation of a
large number of GO terms by condensing them into GO clusters representing non-overlapping functional themes. It
enables visualizing GO clusters as a heatmap, networks based on either overlap of members or hierarchy among GO
terms, and tables with depth and cluster information for each GO term. Each GO cluster generated by GOMCL can be
evaluated and further divided into non-overlapping sub-clusters using the GOMCL-sub module. The outputs from both
GOMCL and GOMCL-sub can be imported to Cytoscape for additional visualization effects.

Conclusions:GOMCL is a convenient toolkit to cluster, evaluate, and extract non-redundant associations of Gene
Ontology-based functions. GOMCL helps researchers to reduce time spent on manual curation of large lists of GO
terms, minimize biases introduced by redundant GO terms in data interpretation, and batch processing of multiple GO
enrichment datasets. A user guide, a test dataset, and the source code of GOMCL are available athttps://github.com/
Guannan-Wang/GOMCLandwww.lsugenomics.org.
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Background
High-throughput “omics” approaches are frequently
employed to investigate expression changes and regu-
lation of genes at a genome-wide level. Use of these
genomic data often results in the identification of
large lists of genes of interest. A standard approach

to summarize the functions of these genes is to deter-
mine the enriched functions represented by Gene
Ontology (GO) terms and other functional associa-
tions extracted from databases such as KEGG [1–3],
Reactome [4] and Pathway Commons [5], known as
pathway enrichment analysis [6, 7]. This approach
significantly simplifies the need from understanding
the biological meaning embedded in individual genes
in a large list, to the interpretation of enriched gene
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sets that could serve as a summary of enriched
functions.

GO resources have become the most widely used know-
ledge base in terms of gene functions [8, 9], which pro-
vides a controlled hierarchy of GO vocabularies describing
biological processes, molecular functions, and cellular
components. However, this hierarchical functional anno-
tation system presents a high level of redundancy as par-
ent GO terms include or partially overlap with child GO
terms and one gene could be annotated with seemingly
unrelated GO terms. The computational tool, Enrichment
Map [10, 11] was initially developed to overcome this
problem by building a GO similarity network built on the
overlap between gene sets annotated with each GO term.
Yet, the identification of GO clusters within the GO simi-
larity network in Enrichment Map does not define clusters
and therefore the user has to separate groups based on a
visual selection, which can be heavily affected by the lay-
out of the network visualizations. As a result, when there
are large numbers of similar GO terms, it is challenging to
identify significant functional groups using Enrichment
Map. Another comparable tool, ClueGO, identifies func-
tional groups by first creating all possible initial groups
with a user-defined number of GO terms showing similar-
ities equal or above the predefined threshold and then it-
eratively comparing and merging these initial groups if the
overlap between them is above the predefined threshold
[12]. However, ClueGO can assign unique GO terms to
multiple groups, making it challenging to identify non-
redundant clusters [12]. Additionally, this tool does not
accept direct output files from other commonly used GO
enrichment tools such as BiNGO, g:Profiler, or agriGO.
Both tools fall short at parallel processing a large number
of distinct set of gene functions often encountered in
large-scale -omics experiments. To address these limita-
tions and generate a similarity-based functional GO net-
work, we developed a new toolkit, GOMCL, that applies
the Markov Clustering (MCL) algorithm [13–15] to iden-
tify cluster structures in GO networks in an unbiased ap-
proach. Each GO term is represented by a node and edges
connect two GO terms that share a certain percentage of
gene members in GOMCL. To further facilitate the inter-
pretation of resulting functional groups, GOMCL allows
users to generate hierarchy plots and provides sub-
clustering options for any number of selected clusters.
GOMCL is a user friendly python toolkit, which offers
multiple visualization schemes and enables batch process-
ing of large GO datasets to mine for functionally signifi-
cant attributes.

Implementation
GOMCL is implemented in Python and allows grouping
of lists of individual GO terms of interest into GO clus-
ters using MCL (Fig.1). GOMCL encapsulates its entire

pipeline in a single command and offers default parame-
ters with which users can expect optimal results.

Input data
The package accepts the direct outputs from a variety of
commonly used GO enrichment analysis tools, including
BiNGO [16], GOrilla [17], g:Profiler [18], and agriGO [19], as
well as customized GO lists. Support for more enrichment
tools will be provided. In addition to the GO lists, GOMCL
requires a GO ontology file in OBO format from the Gene
Ontology Consortium (http://geneontology.org/) as an input
(Fig.1).

GOMCL workflow
GOMCL first trims the input GO lists by removing
overly broad GO terms whose size is greater than a
user-defined threshold. For example, a large GO term
such as biological regulation (GO:0065007) has over 12,
000 child GO terms, including 15,000 genes in Arabi-
dopsis and is often uninformative as a term representing
a meaningful biological function. GOMCL also enables
users to separate input GO lists into biological process,
molecular function, and cellular component categories
or any combinations of these categories if clustering
within different categories is preferred. Each term in the
trimmed GO lists is then compared to each other, and
similarity between any two GO terms is computed based
on the overlaps between the members of these two GO
terms as either aJaccard Coefficient (JC) or an Overlap
Coefficient (OC) [10]. Given any two GO terms, A and
B, the Jaccard Coefficient (JC) is calculated as A∩B/A∪B,
and preferred for clustering of similarly sized GO terms.
The Overlap Coefficient (OC) is derived from A∩B/min
(A, B), and works better to maximally reduce the redun-
dancy between disproportionately sized GO terms. The
construction of the GO term similarity network is initi-
ated using only those interactions that pass a user-
defined threshold for theJaccard or Overlap coefficient
of users’ choice. MCL algorithm is subsequently applied
to identify cluster structure in the initial network and as-
signs more similar GO terms into one cluster. The
resulting GO clusters are ordered based on the number
of genes in each cluster. GO terms with largest number
of genes, or smallest enrichmentp-value, or most other
GO terms connected are selected and offered as poten-
tial representative GO terms for each cluster. GOMCL
also reproduces the hierarchy of GO terms from the
provided ontology structure for any user-selected clus-
ters upon command to assist identification and inter-
pretation of the functional themes of these clusters. A
novel functionality enabled in GOMCL that is unavail-
able in previous tools for GO-network analysis, is the
evaluation of clustering results by visualizing the distri-
bution of similarity indexes between GO terms for each
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cluster. Taking this one step further, GOMCL includes a
second module, called GOMCL-sub, which provides
users customizable options to break down selected clus-
ters produced by GOMCL into sub-groups with more
specific functional themes. These functionalities com-
bined, allows users to determine if there are distinct
functional themes present in primary clusters and fur-
ther identify these sub-structures in clusters of interest.

Output format
The standard GOMCL output consists of a heatmap
(Fig. 2a), a graphical GO-similarity-network based on
the clustering results (Fig.2b), a tabulation of each GO
term with cluster information and depth information
[20] from the provided ontology structure, and a sum-
mary file for all clusters (Fig.2c). Graphical presenta-
tions of similarity index distribution (Fig.3) and GO
hierarchy for individual clusters (Fig.4) are generated if
the user chooses that option to create additional result
files. If the user plans to generate cluster depth informa-
tion for each GO term and build GO hierarchies as an
output file, we recommend that the same version of the
GO ontology file used in the GO enrichment analysis
tool where the GO input list is created to should be used
as an input for GOMCL. In addition to the graphical
outputs, the user can opt to generate simple interaction
format files with either similarity between GO terms or
GO hierarchy (Additional file2), both of which can be
directly used as inputs, together with the information
about clustered GO terms (Additional file1), to Cytos-
cape [21] for further manipulation of GO network
visualization.

Results
As a proof of concept, we performed a GOMCL run on
a list of over-represented GO terms identified from
genes differentially expressed between two GFP tagged
cell populations of Arabidopsis roots in a published
study [22] to highlight the functional use of GOMCL. In
this published study, a xylem-specific promoter was used
to drive the expression of GFP in Arabidopsis, and root
proximal meristem cells were later separated into two
populations based on the intensity of GFP signals. Cells
with high GFP signals were assumed to be close to the
quiescent center while cells with low GFP signals were
assumed to be located away from the quiescent center.
A microarray analysis was then conducted to compare
the two cell populations and the authors aimed to see a
difference in gene expression associated with cell div-
ision between these two cell populations.

Cluster identification
We used GO terms that had less than 3500 genes anno-
tated under each GO annotation for Arabidopsis, to allow
identification of specific functional traits associated with
the published study. This resulted in 244 total GO terms
(out of 251) enriched in genes expressed higher in the cell
population with high GFP intensity (Additional file1).
The defaultOverlap Coefficient of 0.5 and granularity of
1.5 were used for cluster identification. These cutoffs can
be set by the user. Among the 244 GO terms, GOMCL
identified five distinct clusters with minimal overlap be-
tween clusters and extensive overlaps among GO terms
within each cluster (Fig.2a). The largest cluster (C1)
included 124 GO terms and was mainly related to

Fig. 1 The workflow of GOMCL clustering on GO enrichment test results
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developmental processes and reproduction (Fig.2b, c).
The 4th largest cluster, albeit comprising only 33 genes
from 20 GO terms (Fig.2b, c), was overrepresented in
genes associated with regulation of cell cycle and was also
found to be mostly associated with the largest cluster.
These representative functional groups and associations
reflected the essential difference in the growth stages be-
tween the high GFP cells (cells assumed to be close to the
quiescent center) and low GFP cells (cells located away
from the quiescent center) in the targeted study where it
aimed to see a difference in gene expression associated
with cell division between these two cell populations [22].
The reduction from over 200 GO terms to 5 GO clusters
preserved the enriched functional themes and facilitated

the explanation of major patterns identified among ~ 1000
differentially expressed genes.

Cluster quality evaluation and sub-clustering process
To demonstrate the use of cluster quality evaluation and
sub-clustering, we first enabled options to generate simi-
larity index distributions for all five clusters identified by
GOMCL. As shown in Fig.3, the majority of similarity in-
dexes between GO terms within cluster C3, C4, and C5
were greater than 0.5. However, there is a large proportion
of GO terms from cluster C1 and C2 showing no or small
overlaps with other GO terms from the same cluster. To
assist determining whether cluster C1 and C2 should be
further separated into groups with more specific

Fig. 2 Representative outputs created with GOMCL for clustering of enriched GO terms in a selected study [22] to distinguish two cell
populations. Overlap coefficient of 0.5 and cluster granularity of 1.5 were used in GOMCL for cluster identification.a Similarity heatmap,b
Network of identified GOMCL clusters. Node size represents the number of genes in the test set which are annotated to that GO term; edges
represent the similarity index between GO terms; each cluster is coded with a different color; and shade of each node representsp-value assigned by
the enrichment test. Lighter to darker shades indicate larger to smallerp-values, respectively.c A tabular summary of all GOMCL clusters. x: the number
of genes in the test set; n: total number of genes in the reference annotation
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