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Abstract
Background: Technological developments in the emerging field of spatial
transcriptomics have opened up an unexplored landscape where transcript
information is put in a spatial context. Clustering commonly constitutes a central
component in analyzing this type of data. However, deciding on the number of clusters
to use and interpreting their relationships can be difficult.

Results: We introduce SpatialCPie, an R package designed to facilitate cluster
evaluation for spatial transcriptomics data. SpatialCPie clusters the data at multiple
resolutions. The results are visualized with pie charts that indicate the similarity
between spatial regions and clusters and a cluster graph that shows the relationships
between clusters at different resolutions. We demonstrate SpatialCPie on several
publicly available datasets.

Conclusions: SpatialCPie provides intuitive visualizations of cluster relationships when
dealing with Spatial Transcriptomics data.
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Background
Clustering is a standard analysis operation used for grouping entities in complex datasets
to bring order and find patterns of similarity. Typically, clusters are used for identification
purposes and further downstream analysis, e.g., statistical identification of key drivers
of dissimilarity. The clustering can be conducted in various ways. Common techniques
include k-means clustering, hierarchical clustering, DBSCAN, or MCL [1]. Most cluster-
ing methods require prespecifying the number of clusters to use or otherwise choosing
suitable hyperparameters for the dataset at hand.
Spatial Transcriptomics (ST) is a recent method to obtain spatial information during

RNA-seq experiments [2]. Briefly, barcoded capture probes are grouped into “spots” and
printed on a glass array. The tissue section is placed on the array and permeabilized so
that transcripts diffuse down to the capture probes. After sequencing, the barcodes of the
probes can be used to map the transcripts back to the spot in which they were captured.
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A common step in analyzing ST data is to cluster the gene expression profiles of the
spots in order to identify and annotate regions of interest in the tissue section. This could,
for example, be used to identify tumor regions or discover intra-tumor heterogeneity
hidden to the human eye [3]. However, selecting appropriate hyperparameters, e.g., the
right number of clusters to use, poses a challenge in these types of analyses. Indeed, it is
often necessary to try out different sets of hyperparameters, as each may provide distinct
insights about the data. Moreover, the relationships between clusters are not always clear,
and common visualizations strategies for high dimensional data, for example based on t-
SNE, often produce results that are difficult to interpret [4]. An additional obstacle is the
fact that each barcoded spot in ST normally captures multiple cells. Consequently, gene
expression measurements are derived from mixtures of cells, obfuscating cluster-based
cell-type identification.
While tools exist for visualizing clusters in the context of ST data, none fully address

the above concerns. Most prominently, the ST viewer [5] can visualize clusters spatially
but classifications are binary and only a limited number of clustering algorithms are
supported.
Here, we present SpatialCPie, an easy-to-use R package that gives the user an intuitive

understanding of how clusters in ST data are related to each other and to what extent
each region on the two-dimensional ST array is associated with each cluster. SpatialCPie
is designed to be used as part of an R workflow, giving the user a high degree of flex-
ibility to customize and quickly iterate their analyses. The data is clustered at multiple
resolutions—i.e., with different numbers of clusters or hyperparameter settings—thereby
avoiding the need to prespecify a single set of hyperparameters for the analysis, and the
user can freely define which clustering algorithm to use. The results are visualized in two
ways: with a cluster graph [6] that shows how clusters overlap between different resolu-
tions and with two-dimensional array plots in which each spot is represented by a pie
chart indicating its similarity to the different cluster centroids.
Historically, pie charts have frequently been used to display spatial data on geograph-

ical maps [7, 8]. Recently, with the advent of spatial omics and in a similar vein as the
work presented here, analogous visualizations have also successfully been applied to tissue
maps [9].

Implementation
The user interface of SpatialCPie is implemented in Shiny [10]. The interface consists
of two main components: the cluster graph and the array plots, both described in detail
below.

Cluster graph

The cluster graph (Fig. 1, left) is a graph that visualizes the relationships between clusters
over different resolutions. Clusters are represented as nodes in the graph, and edges show
the degree to which clusters in consecutive resolutions overlap. Specifically, the opaque-
ness of an edge indicates the proportion of spots in the higher-resolution cluster that also
exist in the lower-resolution cluster. The user can set a threshold on the proportion so
that less informative edges—those representing only very small overlaps—are removed.
Cluster relationships are further visualized by encoding the mean expression profile of
each cluster in color space so that nodes constituting spots with similar expression have
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Fig. 1 Left: The cluster graph. Edge opacity indicates the proportion of spots in the higher-resolution cluster
that originate from the lower-resolution cluster. Right: Array plot. Pie charts show gene expression similarity
between spatial regions and the cluster centroids. In both plots, expression profiles are projected into color
space by PCA, so that similar clusters have similar colors

similar colors. The user can hover a node to see a summary of the most expressed genes
in the cluster.
The cluster graph shows the ancestry of clusters and allows the user to reconcile insights

from different cluster resolutions (“Human developmental heart” section).

Array plot

The array plot (Fig. 1, right) is a graphical representation of the ST array. A pie chart
for each spot shows the similarity score between the spot and the cluster centroids. The
similarity score between spot s and cluster k is defined as

score(s, k) = exp
(−λRMSD

(
xs, mean {xs′ }s′∈C(k)

))
, (1)

where xi is the gene expression vector of spot i, C(k) is the set of spots in cluster k,
RMSD(a, b) is the root-mean-square deviation between gene vectors a and b, and λ is a
user-selectable constant.
The pie charts relativize cluster assignments, making it possible to identify spatial

trends in gene expression (fig. S2).

Sub-clustering

In a typical analysis of ST data, it is often the case that some parts of the tissue cluster
clearly at a low resolution and are of less interest for further exploration.Meanwhile, other
regions may be interesting to study in finer detail by sub-clustering. This can be achieved
by using the tool iteratively (“Human developmental heart” section and Fig. 3).

Results
SpatialCPie can be used to analyze any dataset with spatially distributed count data.
Here, we demonstrate its utility on three publicly available ST datasets [11–13]: the
human developmental heart (“Human developmental heart” section), breast cancer in
situ (section S2.1), and melanoma (section S2.2). In all cases, we normalize the data using
Seurat [14] before passing it to SpatialCPie.
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Human developmental heart

The tissue section is taken from a 5-week-old heart with well-defined anatomical regions
(Fig. 2b).
The array plots (Fig. 2a) and cluster graph (Fig. 2c) show a clear separation between the

outflow tract, atria, and ventricles across resolutions. It is also evident that the outflow
tract is highly homogeneous; most of its spots exhibit high similarity scores to a single
cluster (cluster 2), and this cluster is clearly separated in color space from other clusters.
There is evidence of subtle differences in gene expression within the ventricles, but

the clusters there are more similar to each other than to other clusters, as indicated by

Fig. 2 The human developmental heart. a Array plots. b H&E stain of the sample with annotated anatomical
areas. c Cluster graph. The small color differences between the ventricular clusters (blue) indicate that their
expression profiles are similar compared to the other clusters
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their colors and shared ancestry (Fig. 2c). Sub-clustering the ventricles (Fig. 3) reveals
the compact ventricular myocardium that spans the periphery of the tissue. Curiously,
we also find that the left and right ventricle exhibit slightly different cluster affini-
ties, suggesting that their differences could be an interesting property to investigate
further.

Conclusion
SpatialCPie provides a user-friendly interface for analyzing clusters in ST data and uses
visualization techniques to help the analyst uncover and explore hidden gene expression
patterns. Concretely, clustering is done at multiple resolutions, each providing a differ-
ent level of granularity of the patterns in the data. Clusters over different resolutions are
hierarchized in a cluster graph, and their spatial distributions are visualized in array plots.
The array plots relativize cluster membership for each spatial region, thereby exposing
gradients in gene expression that otherwise would be difficult to observe.

Fig. 3 Sub-clustering of the left and right ventricle of the developmental heart. a Array plots. Resolution 2
shows a rim-like structure spanning the periphery of the tissue (compact ventricular myocardium).
Resolution 3 shows evidence of gene expression differences between the left and right ventricle. Cluster 4 in
resolution 4 indicates another subtle rim-like structure contained within the outermost rim. b Cluster graph.
The left and right ventricles share ancestry, suggesting relatedness. The inner rim structure shares ancestry
with the outer rim and one of the ventricles



Bergenstråhle et al. BMC Bioinformatics          (2020) 21:161 Page 6 of 7

Overall, we find that the visual clues from looking at multiple cluster resolutions on the
array plots, the relationships between the clusters in the cluster graph, as well as their
color-coded expression profiles together give a comprehensive view of the spatial gene
expression landscape in tissues.

Availability and requirements
Project name SpatialCPie
Project home page https://github.com/jbergenstrahle/SpatialCPie
Operating system(s) Platform independent
Programming language R
License MIT

Abbreviations
ST: Spatial transcriptomics
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