Elhefnawy et al. BMC Bioinformatics 2020, 21(Suppl 6):203

https://doi.org/10.1186/512859-020-3504-z B M C B | Oi nfO rm atl CS

RESEARCH Open Access

DeepFrag-k: a fragment-based deep ®
learning approach for protein fold
recognition

Wessam Elhefnawy', Min Li?, Jianxin Wang? and Yaohang Li'"

Check for
updates

From 15th International Symposium on Bioinformatics Research and Applications (ISBRA'19)
Barcelona, Spain. 3-6 June 2019

*Correspondence:

yaohang@cs.odu.edu Abstract

' Department of Computer Science, Background: One of the most essential problems in structural bioinformatics is
S'SADomimO“ University, Norfolk, protein fold recognition. In this paper, we design a novel deep learning architecture,
Full list of author information is so-called DeepFrag-k, which identifies fold discriminative features at fragment level to
available at the end of the article improve the accuracy of protein fold recognition. DeepFrag-k is composed of two

stages: the first stage employs a multi-modal Deep Belief Network (DBN) to predict the
potential structural fragments given a sequence, represented as a fragment vector, and
then the second stage uses a deep convolutional neural network (CNN) to classify the
fragment vector into the corresponding fold.

Results: Our results show that DeepFrag-k yields 92.98% accuracy in predicting the
top-100 most popular fragments, which can be used to generate discriminative
fragment feature vectors to improve protein fold recognition.

Conclusions: There is a set of fragments that can serve as structural “keywords”
distinguishing between major protein folds. The deep learning architecture in
DeepFrag-k is able to accurately identify these fragments as structure features to
improve protein fold recognition.
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Background

The relationship between the protein amino acid sequence and its tertiary structure is
revealed by protein folding. A specific protein fold describes the distinctive arrange-
ment of secondary structure elements in the nearly-infinite conformation space, which
denotes the structural characteristics of a protein molecule. A number of protein
fold databases, including CATH [1] and SCOP [2], have been developed to classify
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these experimentally-determined protein structures according to the hierarchy of struc-
tural similarity. In the past decades, the number of identified protein sequences has
dramatically increased due to high-throughput sequencing technologies; however, the
number of unique structural folds remains unchanged in the past seven years [3],
indicating that the protein structure universe is nearly complete. A highly accurate com-
putational fold recognition method is a critical tool to bridge the sequence-structure
gap.

Fold recognition methods can be classified into two categories: sequence alignment
methods and machine learning methods [4]. The idea behind sequence alignment
methods is to match a sequence or sequence profile against those with experimentally-
determined structures as templates [5] to identify the most suitable fold. On the other
hand, machine learning methods aim at identifying global or local features of a given
sequence and then classify it into one of the known fold categories. Early machine
learning fold recognition methods encompass using multi-layer perceptron and support
vector machines [6]. Later, ensemble classifiers and kernel-based methods are introduced
to discover correlations between sequence features to overcome the weakness of the
early machine learning methods and improve the discriminability of the fold recogniz-
ers [5]. Recently, deep learning techniques have been applied to extract effective features,
such as secondary structures [4] and inter-residue contacts [7], to further improve fold
recognition.

In this work, we present a novel deep neural network architecture, so-called Deep-
Frag-k, to classify target protein sequences into known protein folds. Unlike most of
the fold recognition methods which predict folds directly from sequence and sequence-
related features, Deep-Frag-k adopts a two-stage process, where a fragment vector is
predicted in stage 1 and then the corresponding protein fold is predicted in stage
2. The fundamental idea in Deep-Frag-k is to predict the potential structural frag-
ments that a target protein sequence will form [8] during folding, represented as a
fragment vector, which contains highly discriminative features to distinguish a pro-
tein fold [9]. If a protein sequence is regarded as a document, the fragments can
be treated as words in this document. The fragments form structural motifs, which
are building blocks to assemble the protein structure. In particular, certain frag-
ments are critical to carry out important protein functions. These fragments can be
treated as “keywords” features that are able to uniquely distinguish one fold from the
others.

Deep-Frag-k is composed of two stages. The first stage uses a multi-modal Deep
Belief Network (DBN) to fuse multiple groups of features, including sequence composi-
tion, amino acid physicochemical properties, and evolutionary information, to precisely
predict potential structure fragments for a given sequence, which are represented as a
fragment vector. Then, a 1-D Convolutional Neural Network (CNN) is employed to clas-
sify the fragment vector into the appropriate fold. We evaluate DeepFrag-k on three fold
recognition datasets: Ding and Dubchak (DD) [10], Extended DD (EDD) [11], and Taguchi
and Gromiha (TG) [12]. Our results show that DeepFrag-k is more accurate, sensitive,
and robust than the existing methods, including PFP-Pred [13], GAOEC [14], ThePFP-
FunDSeqE [15], Dehzangi et al. [6, 16], MarFold [17], PFP-RESM [18], Feng and Hu [19],
Feng et al. [20], PFPA [21], Paliwal et al. [22, 23], Dehzangi et al. [24], HMMFold [25],
Saini et al. [26], and Profold [27], in protein fold recognition.
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Methods

DeepFrag-k fold recognition architecture

Figure 1 presents the two-stage deep neural network architecture of DeepFrag-k. In the
first stage, we predict a fragment vector representation of a target protein sequence using
a fragment prediction model based on multi-modal DBN [28], which predicts the poten-
tial fragments that the target protein sequence will form during protein folding process.
In particular, we focus on the top-100 most popular fragments, with 4- to 20-residue in
length, described in our Frag-k fragment libraries [8, 9]. Our previous results [9] show
that these fragments can be used as the structural “keywords” to effectively distinguish
between major protein folds. In the multi-modal DBN, the DBNs interact with each other
to learn fragment latent representation on the set of features derived from sequence com-
position, physicochemical properties, and evolutionary information. The output of the
first stage is a fragment vector with respect to the target protein sequence. Afterwards, in
the second stage, this fragment vector is fed to a 1D Convolutional Neural Network (1D-
CNN) [29] classifier, as the feature vector of the target protein sequence, to predict the
likeliness of the protein folds.

DeepFrag-k is implemented on the Tensorflow platform. The leaky ReLU activation
functions are used in the DBN and CNN layers to avoid the vanishing gradient problem
and speed up training. The Adam optimization algorithm for stochastic gradient descent
is adopted for training the DBN and CNN models, with learning rate of 0.0001. The train-
ing of DeepFrag-k is carried out on a GPU P40 server with 3,840 CUDA cores and 24GB
GDDR5 memory.

Fragment prediction (Stage 1)

A protein fold distinguish itself by forming certain unique secondary structures and
super-secondary structure motifs, such as S-hairpins, short S-sheets, helix-loop-helix,
and helix-turn-helix, which are represented as structural fragments. Correctly predicting
these fragments from a given sequence can lead to effective features for fold recognition.
However, the sequence features to predict fragments hold distinct statistical properties
and the correlations between them are highly nonlinear [28]. For a shallow model, it is
difficult to capture these correlations and form an integrated informative representation.
Our fragment prediction model consists of a multimodal DBN and a fully-connected net-
work. Our motivation for the proposed multimodal DBN is to tackle the above challenge
by using an integrated representation to enhance the fragment prediction accuracy [28].
Figure 2 summarizes the framework of our proposed fragment prediction model. We use
the Frag-k fragment libraries to train the fragment prediction model. First, we use the
extracted sequence composition, physicochemical properties, and evolutionary informa-
tion as feature groups to learn the latent representations of the top-100 Frag-k fragments.
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As shown in [28], the top-100 Frag-k fragments are capable of classifying major SCOP
folds in high accuracy and can also be used to assemble most protein structures in high
precision. The multiple feature representations learned by the DBNs are concatenated
to train a Restricted Boltzmann Machine (RBM) model [28] to fuse a latent feature rep-
resentation for the feature groups. Finally, two fully-connected 1,000 x 1,000 neural
network layers followed by a SoftMax layer of 100 output nodes, representing the top-
100 Frag-k fragments, are trained with these latent feature representations to generate
the fragment prediction. Such layer-by-layer learning helps gradually extract the effective
features from the original feature groups [30]. The multimodal DBN learns discriminative
latent features as a joint distribution determined by the hidden variables of non-correlated
feature groups input [28]. As a result, the hybrid framework of multi-modal learning fuses
an abstraction level representation, which enables the fragment predictor to integrate
different feature groups for fragments of different lengths flexibly.

The training of the fragment prediction model is performed via Stochastic Gradient
Descent method. During the training process, the Frag-k fragment library, with 1,000
samples in each fragment class, is randomly split into batches, each of which contains 500
samples. In order to prevent overfitting, dropout layers are inserted after every hidden
layer with 0.5 dropout rate and an early stopping strategy is employed.

Fold prediction (Stage 2)

The fragment feature vector generated from stage 1 is fed to a 1D-CNN architecture to
predict protein fold, as shown in Fig. 3. The proposed 1D-CNN comprises two pairs of
convolution and max pooling layers (COV1-MP1 and COV2-MP2 ), two fully-connected
layers FC1 and FC2, and a SoftMax layer. Between MP1 and COV2, we include a stacking
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layer ST. The COV1 layer contains 10 convolution filters, producing 10 filtered versions
of the fragment feature vector as output. These filtered versions are then subsampled in
max pooling layer MP1. The stacking layer rearranges the output of MP1 so that a 2D
stack of the generated features from COV1 is sent to the second convolution layer COV2.
The convolution filters in COV2 are 2D filters, with the same height as the ST layer.
The purpose of these 2D filters is to capture the relationships across the latent features
produced by the convolution filters of the original fragment vector in COV1. Then the
generated output is subsampled in max pooling layer MP2. In order to classify the flat-
tened output of MP2 into corresponding folds, two fully-connected layers, FC1 and FC2,
followed by a SoftMax layer are employed. We summarize the hyper-parameters for deep
fold recognition architecture in Table 1.

Features extraction

Constructing a proper feature vector from a protein sequence is a critical step for pro-
tein fragment prediction [7]. Using multiple features extraction strategy, representing
sequence, evolutionary, physicochemical information of a sequence fragment, maximizes
the discriminative capability of the fold recognizer [31]. The sequence features for frag-
ments used in DeepFrag-k include frequencies of functional groups, information entropy
of amino acids and dipeptides [32], distribution of amino acids relative positions [31],
and transitions of functional groups [33]. The physicochemical features include PseAAC
(Pseudo Amino Acid Composition) [34] and Discrete Wavelet Transform (DWT) of

Table 1 Hyperparameters for Fold Classification Architecture

Layer Layer type # of Units Unit Type Size Stride
Input # of fragments

COV_1 Convolution 10 RelLU 1,10 11
MP_1 Max Pool 1,10 11
ST Stacking

COv_2 Convolution 100 RelLU 10,10 11
MP_2 Max Pool 55 55
FC_1 Fully Connected 100 RelU

FC_2 Fully Connected 100 RelLU

Output SoftMax # of folds Logistics
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hydrophobicity, flexibility, and average accessible surface area of amino acids in a frag-
ment. The evolutionary features are described by various forms of position-specific
scoring matrix (PSSM) profiles [35] including profile PSSM (P-PSSM), PSSM-Dipeptide
Composition (PSSM-DC), Bi-gram PSSM (Bi-PSSM), and Evolutionary Difference-PSSM
(ED-PSSM). These features are summarized in Table 2.

Results

Datasets

Three datasets, including DD [10], TG [12], and EDD [11], are used to compare the effec-
tiveness of DeepFrag-k with existing fold recognition methods. The sequences in these
datasets cover most of the sequences in the SCOP database. The DD dataset is com-
posed of a training set and a testing set, both of which cover 27 protein folds in the SCOP
database, which belong to different structural classes containing «, 8, /8, and « + 8,
comprehensively. The DD training set contains 311 protein sequences with < 40% residue
identity and the testing set contains 383 protein sequences with < 35% residue identity.
Additionally, the sequences in the training set have identity < 35% with those in the test-
ing dataset, ensuring to provide an unbiased performance evaluation. The TG dataset
contains 1,612 protein sequences with < 25% sequence identity belonging to 30 different
folds in SCOP 1.73 [12]. The EDD dataset is an extended version of the DD dataset, which
contains 3,418 protein sequences with < 40% sequence identity [11].

Fragment prediction model

The extracted sequence composition, physicochemical properties, and evolutionary
information features of the Frag-k fragments are fed to the fragment prediction model to
predict their potential corresponding fragments classes. We investigate the performance
of the classifier measured by specificity, sensitivity, and accuracy, which are defined as
the percentage of predicted fragment classes that are true positives, the percentage of
true positives that are correctly predicted, and the fraction of fragments that are correctly
classified, respectively.

We first examine the classification of sequence fragments of the same length. Figure 4
shows the accuracy, specificity, and sensitivity of the ten-fold cross-validation results for
top-100 Frag-k fragment targets of length ranging from 4 to 20 residues. One can find that
the prediction accuracies of longer fragments (> 10 residues) are better than those of the
shorter ones, where both specificity and sensitivity are over 80%. This is due to the fact

Table 2 Protein sequence features

Feature Type Dimension
Sequence Composition Frequency of Function Group 10
Information Entropy 2
Distribution 20
Transition 45
Physicochemical properties Pseudo Amino Acid Composition 40
Discrete Wavelet Transformation 42
Evolutionary Information P-PSSM 400
PSSM-DC 400
Bi-Gram PSSM 400

ED-PSSM 400
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Fig. 4 Accuracy of variable length Frag-k fragment prediction when different feature groups and their
combinations are applied

that the longer fragments encompass richer discriminative information. However, when
the top-100 Frag-k fragments with variable lengths are used as the target classes, the pre-
diction accuracy reaches over 90%, because these top-100 Frag-k fragments with variable
lengths are more representative structural keywords in the protein structure universe, as
we showed in our previous study [9].

We analyze the effectiveness of the three feature groups (Table 2) used to represent the
sequence fragments on variable length Frag-k fragment prediction accuracy. We com-
pose individual and combined sequence composition, physicochemical properties, and
evolutionary information feature vectors to train the fragment prediction model showed
in Fig. 2. The ten-fold cross-validation accuracy results are reported in Fig. 5. The evo-
lutionary information plays the most important role; however, all of these feature groups
contribute to the overall fragment accuracy improvements.
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Fold classification model

As shown in our previous work [9], the Frag-k fragment library with variable length
achieves higher fold classification accuracy than fixed-length ones. Moreover, our results
in the previous sections show that the prediction accuracy on variable length Frag-k frag-
ments than individual fixed-length fragments. Therefore, we used the fragment vectors
based on variable-length fragment predictions from the fragment prediction model for
the fold recognition model.

We use the sequences in DD, EDD, and TG datasets to evaluate the performance of
DeepFrag-k. First, for a given sequence, we use a sliding window of 4 to 20 residues
to consecutively segment it into a set of overlapping fragments, where gaps and non-
protein residues are excluded. Figure 6 summarizes the ten-fold cross-validation results
of DeepFrag-k and other fold recognition methods on the DD dataset. DeepFrag-k out-
performs the other methods by yielding 85.3% accuracy, which is 9.1% higher than the
second highest, proFold (76.2%). More detailed comparisons between DeepFrag-k and
ProFold for each individual protein fold are listed in Table 3. One can find that DeepFrag-k
demonstrates better fold recognition accuracy than ProFold in 18 out of 27 protein folds.
It is also important to notice that DeepFrag-k shows more balanced prediction accuracy.
In particular, for the folds, such as b.34, b.47, c.3, ¢.37, and d.15, that ProFold exhibits
poor prediction results, DeepFrag-k yields significant accuracy improvements.

We further evaluate the performance of DeepFrag-k on the EDD and TG datasets.
The ten-fold cross-validation results in comparison with other methods are illustrated
in Fig. 7. DeepFrag-k yields 96.1% and 97.5% accuracies on the EDD and TG datasets,
respectively, which are higher than the other fold recognition methods. Due to signifi-
cantly more samples are available in EDD and TG datasets, which is particularly helpful
for our deep learning model to capture the discriminative features of the protein folds in

100%
90%
80%
70%
= 60%
Q
o
35 50%
o
<
40%
30%
20%
10%
0%
F LSS PSS &
SO S A o &
& < & & RN, SO S ST S S\
' & @ & T &
(8 [C) X N N @ <(Q O ) Q‘
] PRSI S T K
< S @
& &
AP Fold Recognition Methods
Fig. 6 Comparison with existing fold recognition methods on DD-dataset




Elhefnawy et al. BMC Bioinformatics 2020, 21(Suppl 6):203 Page 9 of 12

Table 3 DeepFrag-k and ProFold folds classifications accuracies for DD-dataset

# Fold ID Fold Name DeepFrag-k Accuracy ProFold Accuracy
1 a.l Globin-like 98.0 100.0
2 a3 Cytochrome ¢ 95.0 100.0
3 a4 DNA/RNA-binding 3-helical bundle 859 60.0
4 a.24 4-Helical up-and-down bundle 91.5 87.5
5 a.26 4-Helical cytokines 989 88.9
6 a39 EF hand-like 90.8 77.8
7 b.1 Immunoglobulin-like B-sandwich 91.1 84.1
8 b.6 Cupredoxin-like 78.7 66.7
9 b.121 Nucleoplasmin-like/VP 913 923
10 b.29 ConA-like lectins/glucanases 76.7 66.7
11 b.34 SH3-like barrel 78.0 50.0
12 b.40 OB-Fold 804 684
13 b.42 B-Trefoil 89.0 100.0
14 b.47 Trypsin-like serine proteases 75.0 50.0
15 b.60 Lipocalins 90.5 100.0
16 cl TIM B/a-barrel 938 93.8
17 c2 FAD/NAD(P)-binding domain 89.7 91.7
18 c3 Flavodoxin-like 60.2 46.2
19 c.23 NAD(P)-binding Rossmann 90.2 85.2
20 c37 P-loop containing NTH 79.5 50.0
21 c47 Thioredoxin-fold 97.5 875
22 c55 Ribonuclease H-like motif 753 583
23 c.69 a/B-Hydrolases 784 74
24 c93 Periplasmic binding protein-like 92.0 100.0
25 d.15 B-Grasp (ubiquitin-like) 69.4 250
26 d.58 Ferredoxin-like 76.8 593
27 g3 Knottins (small inhibitors, toxins, lectins) 88.2 96.3
Accuracy 853 76.2

sequence space, the DeepFrag-k yields better fold recognition accuracies in the EDD and
TG datasets than that in the DD dataset.

Figure 8 depicts the Class Activation Map (CAM) [36] of DeepFrag-k on the EDD
dataset to show how protein folds classified based on the fragment feature vectors
from the protein sequences. The activation units that are most discriminative to fold
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Fig. 7 Comparing DeepFrag-k with other fold recognition methods on the TG and EDD datasets
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SCOPe Fold

Activiation Unit

Fig. 8 Class activation map for EDD fold classification in DeepFrag-k

classifications are identified, which are highly weighted. The combination of these class-
specific units guides DeepFrag-k in distinguishing each fold. One can observe that the
fold classification model makes use of more activation units to classify «/8 or o + 8 pro-
teins (C.1 to C.93), when compared to all o (A.1 to A.39) and all 8 proteins (B.1 to B.60).
However, in folds of small proteins, such as G.3, only a few activation units are effective
in the fold recognition process.

Discussions

In our previous work [9], we develop a protein structural fragment library (Frag-k), com-
posed of about 400 backbone fragments ranging from 4 to 20 residues, as the structural
“keywords” in the protein structure universe. A structure dictionary using these frag-
ments as keywords can classify the major protein folds with high accuracy. The success
of DeepFrag-k is due to identifying these keywords with high precision as structural fea-
tures that are effective for fold recognition. The deep learning architecture in DeepFrag-k
plays an important role in accurately identifying these fragments.

The current version of DeepFrag-k has its limitations. The CNN used in the Stage 2
training of DeepFrag-k is effective in capturing local interaction patterns between frag-
ments, but have difficulty in learning their high-order, long-range interactions, which are
essential to form stable spatial structures. This problem may be addressed by incorporat-
ing deep learning techniques, such as Recurrent Neural Network (RNN), that can learn
sequence data as time series and capture long-range correlations.

Conclusions and future research directions

In this paper, we design DeepFrag-k, a two-stage deep learning neural network archi-
tecture, for fold recognition. The fragment prediction stage derives effective fragment
feature vectors by fusing sequence composition, physicochemical properties, and evolu-
tionary information features groups of sequence fragments to the fold recognition stage.
Due to the highly discriminative capability of the fragment feature vectors, DeepFrag-k
yields significant accuracy enhancement compared to other fold recognition methods on
the DD, EDD, and TG datasets.

We will investigate using RNN to capture high-order, long-range interactions between
structural fragments to further improve DeepFrag-k. Moreover, the features derived
in DeepFrag-k are based on sequence fragments. They can be incorporated with
other sequence or structure features, such as inter-residue interactions [7], to further
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improve fold recognition. Moreover, accurate fold recognition allows cooperatively fitting
sequences into known three-dimensional folds, increasing the success rate by detecting
very remote homologies. The recognized folds can be used as high-quality templates
to predict tertiary structures in high resolutions. These will be our future research
directions.
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