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Abstract

Background: Microorganisms are important occupants of many different
environments. Identifying the composition of microbes and estimating their
abundance promote understanding of interactions of microbes in
environmental samples. To understand their environments more deeply, the
composition of microorganisms in environmental samples has been studied
using metagenomes, which are the collections of genomes of the
microorganisms. Although many tools have been developed for taxonomy
analysis based on different algorithms, variability of analysis outputs of existing
tools from the same input metagenome datasets is the main obstacle for
many researchers in this field.

Results: Here, we present a novel meta-analysis tool for metagenome
taxonomy analysis, called TAMA, by intelligently integrating outputs from three
different taxonomy analysis tools. Using an integrated reference database,
TAMA performs taxonomy assignment for input metagenome reads based on a
meta-score by integrating scores of taxonomy assignment from different
taxonomy classification tools. TAMA outperformed existing tools when
evaluated using various benchmark datasets. It was also successfully applied to
obtain relative species abundance profiles and difference in composition of
microorganisms in two types of cheese metagenome and human gut
metagenome.

Conclusion: TAMA can be easily installed and used for metagenome read
classification and the prediction of relative species abundance from multiple
numbers and types of metagenome read samples. TAMA can be used to more
accurately uncover the composition of microorganisms in metagenome
samples collected from various environments, especially when the use of a
single taxonomy analysis tool is unreliable. TAMA is an open source tool, and
can be downloaded at https://github.com/jkimlab/TAMA.
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Background
Microbes are essential occupants in an ecological system that interact with and

affect their environment. In the sea, these microbes help recycle nutrients [1]. In

an alpine ecosystem, they compete for nitrogen with plants [2]. They also live in

animal organs. They are thought to be the cause of many diseases [3–5]. They can

affect the environment in various areas, such as animal development and biofuel

production [6, 7]. Although it is crucial to identify the ecosystem of the micro-

organism in its environment, it is still hard to decipher the composition and func-

tions of microbes in an environment because most bacteria on Earth cannot be

cultivated [8].

Recently, the next-generation sequencing (NGS) technology has enabled studies

of metagenomes [9], which are the sets of whole genetic materials of microorgan-

isms in an environmental sample. Whole-genome sequence-level analysis of meta-

genomes is useful to research microbes in an environmental sample, including

unculturable microbes. Taxonomy analysis using metagenomic reads has been used

to identify the composition and abundance of the microorganisms in an environ-

mental sample. Several methods have been developed for this purpose, including

the k-mer-based approach and the read mapping-based approach. In k-mer-based

taxonomy analysis tools, such as CLARK [10] and Kraken [11], all k-mers, which

are possible substrings with length k in sequences, are extracted from both refer-

ence sequences and metagenome reads. Metagenome reads are then classified to

reference sequences with the most similar k-mer composition. Read mapping-based

taxonomy classification tools such as Centrifuge [12] assign metagenome reads to

one or more taxons with the best mapping score against a compressed reference

database.

Although there are many taxonomy classification tools, their results and per-

formance are quite different, even with the same input metagenome read data-

sets [13, 14]. Therefore, it is difficult to know which taxonomy classification tool

is the best for a given metagenome data [15]. In order to overcome such prob-

lem, meta-analysis approaches have recently been utilized to metagenome ana-

lysis [16–18]. The concept of meta-analysis was originally used in the clinical

field for systematic and integrated studies of multiple findings from different

sources [19–22]. In the metagenome analysis, the meta-analysis approach can be

effectively used to remove both false positive and false negative analysis results,

which can lead to the better understanding of the microbial community in envir-

onment. However, the application of the meta-analysis approaches to the meta-

genome analysis still lags behind.

Here, we present a novel taxonomy classification tool for metagenome NGS

reads, called TAMA. TAMA performs the meta-analysis by integrating read assign-

ment obtained from taxon ID classification with CLARK, Kraken, and Centrifuge

using integrated reference database. A read classification profile is then generated

by reassigning taxon ID(s) to each read based on the meta-analysis. Relative species

abundance profile is next created using the read classification profile based on esti-

mated genome size. TAMA outperformed existing taxonomy analysis tools in

evaluation using simulated metagenome read datasets and the Critical Assessment

of Metagenome Interpretation (CAMI) metagenome read datasets [23]. Relative
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species abundance profiles for real metagenome samples from two different cheese

and human gut were then obtained, and differences in composition and abundance

were identified using TAMA. TAMA will contribute to more accurately uncovering

of the composition of microorganisms in metagenome samples collected from vari-

ous environments, especially when the use of a single taxonomy analysis tool is un-

reliable. TAMA can be downloaded at https://github.com/jkimlab/TAMA together

with an integrated reference database.

Implementation
Overview of TAMA

TAMA is a meta-analysis tool for metagenome taxonomy analysis. Given multiple sets of

metagenome reads, TAMA can perform taxonomy analysis by integrating analysis results

from existing taxonomy analysis tools at user-specified target taxonomic rank (phylum, class,

order, family, genus, or species). TAMA consists of three steps: read preprocessing, taxonomy

analysis, and meta-analysis (Fig. 1). In the read preprocessing step, quality control of read se-

quences is performed. In the taxonomy analysis step, taxon IDs are assigned to reads using

Fig. 1 Overview of TAMA. In the read preprocessing step, low-quality input metagenome reads (single- or
paired-end) are eliminated. Integrated database with identical set of reference genomes is also created.
Initial taxonomy classification results, which has assigned taxon IDs for each read sequence, are generated
by using CLARK, Kraken, and Centrifuge with the integrated database. In the meta-analysis process, results
from the three tools are calibrated and integrated to produce a read classification and relative species
abundance profile. The relative species abundance profile is generated only when the target taxonomic
rank is species
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three taxonomy analysis tools, CLARK [10], Kraken [11], and Centrifuge [12], based on an in-

tegrated database of bacterial genome sequences. These three tools were selected because

their performance was good based on literature survey, and it was easy to use them and easy

to customize their database. In the meta-analysis step, results from the three tools are cali-

brated and integrated to reassign a final taxon ID for each read, and a relative species abun-

dance profile is produced. The details of each step are described in the following subsections.

Read preprocessing step

Trimmomatic (v0.36) [24] and BayesHammer [25] are used in this step to perform

metagenome read quality control. Trimmomatic removes or trims low-quality reads,

while BayesHammer corrects sequencing errors. TAMA supports both single- and

paired-end reads.

Taxonomy analysis step

Three taxonomy analysis tools (CLARK, Kraken, and Centrifuge) are used in each

high-quality metagenome read to assign a single or multiple taxon ID(s) (per read in

the case of a single-end read, and per read pair in the case of a paired-end read). Be-

cause each of the three tools needs to use a different type of database of bacterial gen-

ome sequences, a database is generated for each taxonomy analysis tool separately

(collectively called the TAMA database) using the same set of bacterial reference gen-

ome sequences (total 111,029) downloaded from the NCBI RefSeq website (https://

www.ncbi.nlm.nih.gov/refseq/) in Nov. 2017. Supplementary Table S1 shows detailed

information of reference sequences. The above three taxonomy analysis tools were exe-

cuted with their default parameter values in this study.

Meta-analysis step

The meta-analysis step integrates and reassigns all classified results from the three tax-

onomy analysis tools, followed by the creation of a read classification profile and a rela-

tive species abundance profile. The meta-analysis step has five sub-steps: taxonomic

rank adjustment, score normalization, meta-score calculation, taxon ID determination,

and relative species abundance estimation.

First, in the taxonomic rank adjustment step, initially assigned taxon IDs of a read

from each taxonomy analysis tool are adjusted up to a user-provided target taxonomic

rank based on taxonomic hierarchy information obtained from the NCBI taxonomy

database (https://www.ncbi.nlm.nih.gov/taxonomy). Because Kraken and Centrifuge

automatically assign the best possible taxon IDs out of the six taxonomic ranks to a

read instead of following a given target taxonomic rank, this step is applied only to the

results of Kraken and Centrifuge. In the case of CLARK, this step is not used because it

takes the target taxonomic rank as input, and generates results based on the target

taxonomic rank. This taxonomic rank adjustment is possible only when the taxonomic

rank of the initially assigned taxon ID is lower than the target taxonomic rank. Other-

wise, because a specific taxon ID at a lower taxonomic rank cannot be determined, the

initially assigned taxon ID is ignored and the corresponding read is labeled as unclassi-

fied. If a read does not have any assigned taxon ID in the previous taxonomy analysis

step, it is also labeled as unclassified.
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Because the scale of assignment confidence scores from these three tools is different,

all taxon assignment scores for adjusted taxon IDs in a read are normalized with eq. (1)

in the score normalization step:

Sr;i;t ¼ sr;i:t�Nr;i;t

Nr;i
ð1Þ

where Sr, i, t is the normalized taxon assignment score of an adjusted taxon t to a read r

from the taxonomy analysis tool i ∈ {CLARK, Kraken, Centrifuge}, sr, i. t is a min-max

normalized score over the range [0,1] of the original assignment score of the adjusted

taxon t obtained from the tool i, Nr, i is the total number of assigned taxon IDs to the

read r obtained from the tool i, and Nr, i, t is the number of adjusted taxon ID t

assigned to the read r obtained from the tool i. CLARK and Kraken always produce a

single taxon ID for one read. Therefore, Nr, i, t and Nr, i are always 1. However, if their

assignment scores are equally the best, Centrifuge can assign multiple taxon IDs to a

single read. Therefore, originally assigned different taxon IDs can be adjusted to the

same taxon at higher taxonomic rank, leading to multiple existence of the same taxon

ID assigned to a single read (Nr, i, t > 1). In this case, the last term Nr, i, t/Nr, i in equa-

tion (1) contributes to distributing sr, i. t to each differently adjusted taxon ID propor-

tional to its fraction against Nr, i. This strategy is used to prevent overestimation of an

assigned taxon resulting from (i) duplicate assignment of the same taxon to a single

read or (ii) the nature of the final meta-score, which is the sum of taxon assignment

scores from the three tools that will be described in the following subsection. For all

“unclassified” reads in the previous taxonomy analysis step, Sr, i, t is set to 0.

Normalized scores (Sr, i, t) from the three tools are integrated to calculate the meta-

score Mr, t shown in equation (2) in the meta-score calculation step:

Mr;t ¼ 1
F

X

i

Sr;i;t�Fi
� � ð2Þ

where Fi is the weight of a tool i representing the relative performance of the three

tools, and F is the sum of all Fi s. Default values of Fi are set to 1 for all tools, but user

can change those values. In the taxon ID determination step, taxon IDs with the highest

Mr, t are reassigned, resulting in the generation of the read classification profile for each

read.

Finally, when the target taxonomic rank is species, a relative species abundance profile

is estimated by using the read classification profile. Before calculating the relative species

abundance, additional filtering is performed by using the meta-score. For all assigned spe-

cies, the average meta-score is computed and the species with an average meta-score less

than 0.34 is ignored in abundance estimation. The default cutoff score of 0.34 was empir-

ically estimated using simulated metagenome datasets, and can be changed by user. The

estimated relative species abundance EAs is calculated with equation (3):

EAs ¼ RCs=GSsð Þ=
X

i

RCi=GSið Þ ð3Þ

where RCs and GSs represent the number of assigned reads to a species s and the aver-

age genome size of the species, respectively; while
P

iðRCi=GSiÞ represents the sum of

the number of reads over the genome size of all species with classified reads. Therefore,
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EAs represents only the relative proportion among all species with classified reads. The

average genome size of each species is calculated using all sub-strain and sub-species

genomes in known reference genome sequences. This is because there can be many

genome sequences with different genome sizes for the same species. For each reference

genome, its genome size was calculated using both chromosome and plasmid

sequences.

Simulated metagenome read generation for performance evaluation

Metagenome read datasets were simulated to have two types of reads: (i) generated

from bacterial genome sequences which were treated as true positive reads, and (ii)

random reads simulated by using fabricated sequences from non-bacterial genome se-

quences which were treated as true negative reads. Specifically, metagenome profiles

were first generated using different numbers of genomes (10, 50, and 100) to simulate

bacterial read sequences of metagenome read datasets. For each dataset with a total of

N genomes, Poisson distribution was utilized with different parameter values to create

a diverse abundance of N genomes. For 10 genomes dataset, six different parameter

values (0.1, 0.5, 1.25, 2.5, 3.75, and 5) were used to generate the abundance profile. For

50 and 100 genomes datasets, seven different parameter values of (0.1, 0.5, 2.5, 6.25,

12.5, 18.75, and 25) and (0.1, 0.5, 5, 12.5, 25, 37.5, and 50) were used, respectively (Sup-

plementary Tables S2–S4). By randomly assigning species selected from the NCBI

RefSeq bacterial genome sequences (a total of 2788 genomes downloaded in Dec. 2016)

without replacement to those 20 abundance profiles five times, 100 different profiles of

species abundance were generated.

Once species abundance profiles were created, read sequences were generated using

the read simulation program ART [26] based on the Illumina HiSeq 2500 sequencing

platform with 101 bp read length and 500 bp insert size. In this read simulation, the

number of simulated reads of each chosen species was calculated considering its

assigned abundance and genome size as defined in equation (4):

Rs ¼ As�Gsð Þ�TX

k

Ak�Gkð Þ ð4Þ

where Rs, As, Gs, and T are the number of reads, the abundance, the genome size of

species s, and the total number of reads (6,000,000 in this study), respectively.

Random reads were downloaded from a recent benchmarking study for metagenome

analysis tools [15]. From whole random read sequences, 100 different sets of 600,000

read sequences were randomly extracted and added into the simulated metagenome

read datasets.

Evaluation of read classification performance

For each of the simulated metagenome read dataset, the assignment accuracy was mea-

sured using the recall, precision, and F1-score measures. To calculate recall and preci-

sion scores, numbers of true positive (TP), true negative (TN), false positive (FP), and

false negative (FN) were counted from a read dataset as follows. When the taxon ID

was correctly assigned for the simulated read, then the taxon ID was counted as TP,

otherwise as FN. Also, when the taxon ID was precisely unassigned for the random
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read, then the taxon ID was counted as TN, otherwise as FP. In the case of Centrifuge,

multiple taxon IDs can be assigned to a single read. Therefore, if a simulated read was

assigned to several different taxon IDs and only some of them were right, proportions

of right and wrong assignment were used as TP and FN, respectively. These four num-

bers were then used to calculate recall (TP/(TP + FN)) and precision (TP/(TP + FP))

scores, which were then used to calculate the F1-score with equation (5):

F1−score ¼ 2� recall�precision
recallþ precision

ð5Þ

Evaluation of species prediction and abundance estimation

To assess the performance of species prediction, we compared the list of species in be-

tween the read simulation profile and the estimated relative species abundance profile

for each simulated dataset. We measured the performance with recall, precision, and

F1-score. In the predicted abundance profile from Centrifuge, some species were in-

cluded in the profile with zero abundance (or ratio). We considered them as nonexis-

tent species and ignored them for the comparison.

To evaluate the estimated relative species abundance, we calculated the sum of rela-

tive abundance difference compared to the true relative abundance profile. The sum of

the relative abundance difference was calculated with equation (6):

SDra ¼
X

Ox þ
X

Ty þ
X

Pz: ð6Þ

where Ox, Ty, and Pz are relative abundance difference of species x which exists in

both true relative abundance profile and the predicted abundance profile, the relative

abundance of species y is only observed in the true relative abundance profile, and the

relative abundance of species z is only present in the predicted abundance profile, re-

spectively. When the set of predicted species and their relative abundance completely

agree with the true answer, the SDra score becomes the minimum (the best) score of 0.

When there is no overlap between species in the predicted and true relative abundance

profile, it becomes the maximum (the worst) score of 2.

Real metagenome read datasets

Real metagenome read datasets were downloaded from the EBI metagenome database

(https://www.ebi.ac.uk/metagenomics). Two cheese metagenomes (artisanal cheese:

ERP004234, cotija cheese: SRP059999) and one human gut metagenome (ERP002469)

were collected (Supplementary Table S5). Their compositions and relative species

abundance were identified using TAMA.

Results
Evaluation of TAMA using simulated metagenome datasets

The performance of TAMA was evaluated by comparing to the three initial taxonomy

analysis tools (CLARK [10], Kraken [11], and Centrifuge [12]) used in TAMA in terms

of the accuracy of read classification, species prediction, and species abundance estima-

tion using simulated datasets (Implementation).

Firstly, the performance of read classification was measured by calculating F1-score

at species rank (Fig. 2a). For all three types of genome datasets, TAMA showed the best
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performance (the highest classification accuracy with the smallest variance) compared

to the initial three taxonomy analysis tools. In the examination of recall and precision

(Fig. 2b, c), TAMA successfully increased recall while preserving precision. These eval-

uations were also repeated for other taxonomic ranks, and similar performance of

TAMA was observed (Supplementary Figs. S1-S5).

To assess the performance of TAMA in terms of species prediction, we compared

simulated and predicted abundance profiles by the four tools, including TAMA, in

terms of the F1-score, recall, and precision (Fig. 3a-c). TAMA successfully improved

the performance of species prediction for all types of datasets. Specifically, TAMA dra-

matically increased the precision with minor decrease of recall in all types of datasets.

The recall of all tools was less variable and high (≥ 0.8), whereas their precision was

highly variable (Fig. 3b, c).

Finally, the identified species by each tool were more deeply examined and compared

in terms of relative species abundance. The abundance difference of each species was

first calculated by comparing the predicted relative abundance of the species by each

tool with the true answer in the simulated datasets. Abundance differences from all

species were then added (see Implementation). Note that the relative species abundance

of CLARK or Kraken was generated using the abundance estimation module of TAMA

Fig. 2 Performance evaluation results of read classification for the species rank. Boxplots indicate the
distribution of (a) F1-score, (b) recall, and (c) precision of read classification in the 10 genomes dataset (left),
50 genomes dataset (center), and 100 genomes dataset (right). The Wilcoxon signed-rank test was used for
pairwise comparison between TAMA and the others (s: p-value <= 0.05, and ns: p-value > 0.05)

Sim et al. BMC Bioinformatics          (2020) 21:185 Page 8 of 17



because neither CLARK nor Kraken could directly generate relative species abundance

(they could only generate the proportion of reads for each assigned species). For all

datasets, the overall performance of TAMA was superior to all three tools in all data-

sets (Fig. 3d). More obvious performance gap was observed when the numbers of sam-

ples with the smallest abundance difference were compared (Table 1 and

Fig. 3 Performances of initial taxonomy analysis tools and TAMA in species identification and abundance
estimation. Boxplots indicate the distribution of (a) F1-score, (b) recall, and (c) precision of species
prediction and (d) the sum of abundance differences of all species in the 10 genomes dataset (left), 50
genomes dataset (center), and 100 genomes dataset (right). The Wilcoxon signed-rank test was used for
pairwise comparison between TAMA and the others (s: p-value <= 0.05, and ns: p-value > 0.05)
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Supplementary Table S6). For example, in the 50 genomes dataset, TAMA showed the

smallest abundance difference in 21 out of total 35 samples, whereas the abundance

was the smallest only in 8, 1, and 5 samples in the case of CLARK, Kraken, and Centri-

fuge respectively.

Evaluation of TAMA compared to another meta-analysis tool

We evaluated the performance of TAMA compared to another meta-analysis tool,

MetaMeta [16]. When we compared TAMA with MetaMeta, we used the original

reference database of MetaMeta for comparison of MetaMeta and TAMA. Specific-

ally, we used the Kraken database in MetaMeta as itself and created CLARK refer-

ence database using the list of reference genomes of CLARK from the MetaMeta

database information. Taxonomy analysis tools that are overlapped with MetaMeta

and TAMA are only CLARK and Kraken. Thus, we also created Centrifuge refer-

ence database for the integrated reference database by using the list of reference in

CLARK. We used identical measures to previous evaluation of species prediction

and abundance estimation using simulated metagenome datasets. TAMA performed

better than MetaMeta in the case of the 10 genomes dataset, but showed slightly

worse performance in the case of the 100 genomes dataset (Fig. 4). However,

TAMA achieved dramatically smaller abundance difference than MetaMeta for all

the three datasets.

Evaluation of TAMA using CAMI metagenome datasets

Critical Assessment of Metagenome Interpretation (CAMI) data [23] was used for

separate evaluation at species rank. In this evaluation, one sample from each of

low (only one sample exists), medium (the sample2 from total two samples), and

high (the sample3 from total five samples) complexity dataset in CAMI was used

to compare the performance for species identification and their abundance estima-

tion of CLARK, Kraken, Centrifuge, and TAMA. The CAMI dataset provides the

list of genomes, their corresponding taxon IDs, and their relative abundance that

were used to simulate the datasets. However, there is no information of a true

taxon ID for each read. Therefore, we only compared the performance in terms of

species prediction and abundance estimation. As in the previous section, relative

species abundances of CLARK and Kraken were created by using the abundance

estimation module of TAMA.

Similar patterns to the previous evaluation were observed (Table 2). In the per-

formance of species prediction, TAMA showed similar recall values compared to

other tools. However, it showed extremely higher precision values, leading to a

Table 1 The number of samples with the minimum abundance difference

Dataset 10 genomes 50 genomes 100 genomes

No. of samples 30 35 35

CLARK 2 8 11

Kraken 2 1 1

Centrifuge 9 5 3

TAMA 17 21 20
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dramatic increase of F1-score compared to other tools. Precision was increased

more than ten times by using TAMA compared to the use of non-meta-analysis

tools for all complexity datasets. We also obtained more than four times higher

F1-score in species prediction with TAMA compared to the best of other tools.

The performance of abundance difference of all tools was very similar.

Fig. 4 Performance of meta-analysis tools in species identification and abundance estimation. Boxplots
indicate the distribution of (a) F1-score, (b) recall, and (c) precision of species prediction and (d) the sum of
abundance differences of all species in the 10 genomes dataset (left), 50 genomes dataset (center), and 100
genomes dataset (right). The Wilcoxon signed-rank test was used for pairwise comparison between TAMA
and MetaMeta (s: p-value <= 0.05, and ns: p-value > 0.05)
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Application to cheese metagenomes

TAMA was applied to predict species and their relative abundance in two different

cheese metagenomes (Artisanal and Cotija cheese). Highly variable relative abun-

dance of different species was observed in different metagenome samples (Table 3

and Supplementary Tables S7, S8). The number and type of validated species be-

tween two cheese metagenome samples were very different. For example, the num-

bers of identified species for Artisanal cheese and Cotija cheese were 33 and 60,

respectively. Moreover, among all predicted profiles, only eight species (Leuconostoc

mesenteroides, Aerococcus viridans, Enterococcus faecium, Enterococcus italicus, En-

terococcus faecalis, Lactococcus lactis, Streptococcus macedonicus, and Streptococcus

thermophilus) were overlapped in both cheese metagenomes. To identify the distri-

bution of relative abundance, we counted the number of species occupied more

than 50% (P50) and more than 90% (P90). We found that both cheese metagenome

had a few dominant species that occupied a large proportion of each sample. In

the case of Artisanal cheese, Mycobacterium malmesburyense and Streptococcus

macedonicus showed large relative abundances (more than 0.66 and 0.26 of the

sample, respectively).

Application to human gut metagenome

We identified a metagenome profile of human gut sample using TAMA. In the human

gut metagenome sample, 3,380,409 reads were classified to species in the reference

database, 80 species were identified, and 7 species occupied more than 50% (Table 3

Table 2 Performance evaluation results using CAMI metagenome datasets

Sample Species prediction Abundance
differencePrecision Recall F1-score

Low CLARK 0.003 0.571 0.007 1.591

Kraken 0.003 0.524 0.007 1.620

Centrifuge 0.044 0.524 0.082 1.627

TAMA 0.917 0.524 0.667 1.620

Medium CLARK 0.010 0.486 0.019 0.800

Kraken 0.010 0.486 0.019 0.800

Centrifuge 0.058 0.486 0.104 0.893

TAMA 0.652 0.429 0.517 0.826

High CLARK 0.022 0.336 0.042 1.198

Kraken 0.022 0.336 0.042 1.198

Centrifuge 0.071 0.328 0.117 1.256

TAMA 0.720 0.320 0.443 1.207

Table 3 Summary of metagenome profiles

Artisanal cheese Cotija cheese Human gut

No. of species 34 60 80

P50a 1 3 7

P90b 2 10 26
aThe number of species occupied more than 50% of relative abundance
bThe number of species occupied more than 90% of relative abundance

Sim et al. BMC Bioinformatics          (2020) 21:185 Page 12 of 17



and Supplementary Table S9). There was no species that had an occupancy of more

than 15% in the sample. The most abundant species was Bacteroides uniformis (0.13),

followed by Escherichia coli (0.09). We constructed a phylogenetic tree with 26 species

that were included in P90 and indicated their relative abundances using iTOL [27].

Bacteroidales and Clostridiales occupied approximately 33% and 41% of predicted spe-

cies, respectively. Approximately 9 % of identified species were Escherichia coli in the

human gut metagenome sample (Fig. 5).

Discussion
TAMA is a novel meta-analysis tool for metagenome taxonomy analysis. TAMA pro-

vides classification results from the output of different taxonomy analysis tools by inte-

grating taxon ID assignment of reads and generating an improved relative species

abundance profile. Taxonomy classification can be performed for multiple types of se-

quence files from a sample and for multiple numbers of metagenome samples at once.

To reduce any bias from reference databases in the classification for each taxonomy

analysis tool, an integrated reference database was generated and embedded in each

tool. We provide an integrated reference database with the NCBI RefSeq genome se-

quences. In addition, users can easily create the integrated database using their refer-

ence genome sequences. Taxonomy classification result can be obtained for one of six

taxonomy ranks (phylum, class, order, family, genus, and species). A relative species

abundance profile can be generated using the estimated genome size of each species

for the species rank classification.

To evaluate TAMA, various types of simulated metagenome read datasets were gen-

erated. They were composed of various numbers of genomes and distributions of their

relative abundance to cover as many different conditions of metagenome samples as

possible. TAMA was compared to three non-meta-analysis tools (CLARK, Kraken, and

Centrifuge) and one meta-analysis tool (MetaMeta). MetaMeta is based on six different

taxonomy analysis tools (CLARK [10], DUDes [28], GOTTCHA [29], Kaiju [30], Kra-

ken [11], mOTUs [31]), while two of them (CLARK and Kraken) overlap with TAMA.

Fig. 5 Phylogenetic tree of the identified human gut metagenome. It indicates 26 species included in P90
of identified species at leaf nodes and their upper groups (S: superkingdom, P: phylum, O: order, and F:
family). The relative species abundance is represented the bar plot with the value shown at the right side
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The reference database could not be fully customized for every tool used in MetaMeta.

Therefore, a similar reference database to the one used in MetaMeta was created and

used for fair evaluation.

The main difference between MetaMeta and TAMA is in the way of integrating re-

sults from different tools. TAMA uses an eager integration scheme in the sense that

the read classification results from used tools are integrated which is followed by the

prediction of species and their abundance. However, MetaMeta relies on a lazy integra-

tion scheme because it allows used tools to classify reads and predict species abundance

separately, and then integrates the final results. In addition, whereas MetaMeta filters

out only species with low abundance in the final integrated results, TAMA can remove

reads with low confidence score before predicting species and their abundance. The

eager integration scheme with the use of classified reads with high confidence may lead

to higher performance of TAMA than MetaMeta especially in the estimation of species

abundance, indicating that a result integration scheme may be a more important factor

than the number of used tools in the meta-analysis.

In the evaluation with simulated metagenome datasets, we first examined each as-

signment of read. As shown in Fig. 2, all initial taxonomy analysis tools and TAMA

showed F1-score of more than 0.75. However, TAMA had the smallest variance and

the highest median for all datasets. We performed the Wilcoxon signed-rank test to

examine whether the performance of TAMA was significantly greater than perfor-

mances of initial tools. From the analysis, we obtained significantly low p-value (< 0.05

for all pairs by the Wilcoxon signed-rank test), indicating that statistically significant

performance improvement was possible with TAMA. Additionally, because we provide

all assigned taxon IDs in read classification profile with high accuracy and the score of

meta-analysis, we believe that TAMA could be helpful in a following study utilizing

classified read information.

The performance of TAMA was then examined in terms of the accuracy of predicting

existing species in a metagenome dataset. We reduced many false positive species from

the predicted species with meta-score of TAMA, indicating a degree of confidence for

an integration. In the evaluation using the CAMI metagenome, non-meta-analysis tools

had very low predictive precisions of species. This has been similarly observed in a pre-

vious study at species rank [32]. However, TAMA was able to increase the precision

more than ten times. A tiny amount of incorrectly assigned reads are one of the reasons

for the generation of false positively predicted species. Another reason is that a part of

the read sequence for a single genome could be generated from the common sequence

region between different genomes. We could filter out assignments that have low confi-

dence using the meta-score of TAMA by calculating the average meta-score of the pre-

dicted species and ignoring the unreliable prediction with the average. It is considered

to be an advantage of meta-analysis because MetaMeta, another meta-analysis program,

also shows similar performance in species prediction. Moreover, TAMA shows im-

proved performance in the estimation of relative species abundance, in line with its

read classification performance.

Finally, TAMA was applied to predict species and their abundances in real metagen-

ome samples from various environments. In the investigation of three real metagenome

samples, it was found that compositions and relative abundances of species were very

different in different environments. In Artisanal cheese, there are dominantly existing
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species (the relative abundances of a species > 0.5). However, other metagenome sam-

ples do not have such dominant species. TAMA could successfully identify three main

bacterial genomes in the Cotija cheese sample, namely Lactobacillus plantarum, Weis-

sella paramesenteroides, and Leuconostoc mesenteroides [33]. There are some limita-

tions to apply it to real metagenome datasets. There are still many unclassified read

sequences because of the shallow coverage of the reference database (Supplementary

Tables S7-S9). This is a common problem in taxonomy analysis based on a reference

database. This will be alleviated as more and more new species are discovered and

added into the reference database.

One drawback of TAMA is relatively long runtime because of the requirement of

running multiple taxonomy analysis tools. However, we believe that it can be comple-

mented by modern computing power, such as the capability of parallel computing, and

superior performance of TAMA compared to other tools. As a future direction, TAMA

will become more customizable to use any number of taxonomy analysis tools chosen

by users, and the integrated reference sequence database in TAMA will be kept up-

dated to reflect the changes of bacterial genome sequences in the NCBI database.

Conclusion
TAMA is a meta-analysis tool for the taxonomy analysis of metagenome reads at the

user selected taxonomic rank. TAMA can be used to improve the quality of taxonomy

classification profiles, and to reduce many of the false positives. We believe that TAMA

is the most accurate and easy-to-use existing meta-analysis tool based on evaluation re-

sults in comparison with other tools, and TAMA can contribute to more accurate

metagenome analysis if more accurate and larger amounts of reference genomes are

accumulated.

Availability and requirements
Project name: TAMA.

Project home page: https://github.com/jkimlab/TAMA

Operating system: Linux.

Programming language: Perl.

Other requirements: Docker.

License: MIT.

Any restrictions to use by non-academics: License needed.
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Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3533-7.

Additional file 1: Supplementary Table S1. The statistics of reference sequences used in the TAMA database.
Supplementary Table S2. The relative abundance of 10 genomes generated using six different parameter values
of the Poisson distribution. Supplementary Table S3. The relative abundance of 50 genomes generated using
seven different parameter values of the Poisson distribution. Supplementary Table S4. The relative abundance of
100 genomes generated using seven different parameter values of the Poisson distribution. Supplementary
Table S5. The statistics of read sequences in real metagenome datasets. Supplementary Table S6. The
abundance difference of initial taxonomy analysis tools and TAMA for the simulated metagenome datasets.
Supplementary Table S7. The abundance profile of Artisanal cheese metagenome. Supplementary Table S8.
The abundance profile of Cotija cheese metagenome. Supplementary Table S9. The abundance profile of
human gut metagenome.

Additional file 2: Supplementary Figure S1. Performance evaluation results of read classification for the genus
rank. Boxplots indicate the distribution of (A) F1-score, (B) recall and (C) precision of read classification in 10
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genomes dataset (left), 50 genomes dataset (center), and 100 genomes dataset (right). Supplementary Figure
S2. Performance evaluation results of read classification for the family rank. Boxplots indicate the distribution of (A)
F1-score, (B) recall and (C) precision of read classification in 10 genomes dataset (left), 50 genomes dataset (center),
and 100 genomes dataset (right). Supplementary Figure S3. Performance evaluation results of read classification
for the order rank. Boxplots indicate the distribution of (A) F1-score, (B) recall and (C) precision of read classification
in 10 genomes dataset (left), 50 genomes dataset (center), and 100 genomes dataset (right). Supplementary Fig-
ure S4. Performance evaluation results of read classification for the class rank. Boxplots indicate the distribution of
(A) F1-score, (B) recall and (C) precision of read classification in 10 genomes dataset (left), 50 genomes dataset (cen-
ter), and 100 genomes dataset (right). Supplementary Figure S5. Performance evaluation results of read classifi-
cation for the phylum rank. Boxplots indicate the distribution of (A) F1-score, (B) recall and (C) precision of read
classification in 10 genomes dataset (left), 50 genomes dataset (center), and 100 genomes dataset (right).

Abbreviations
CAMI: Critical Assessment of Metagenomic Interpretation; TAMA: Taxonomy Analysis pipeline for metagenome using
Meta-Analysis

Acknowledgements
Not applicable.

Authors’ contributions
JBK conceived and designed the research. MKS, JYK, and DHL implemented modules for existing taxonomy analysis
tools. MKS and JIL designed and implemented a meta-analysis module and relative species abundance profile estima-
tion module. DHL optimized each module, while DHK constructed a pipeline. MKS performed experiments, and MKS
and JBK interpreted the analysis results. MKS drafted the manuscript, and JBK finalized the manuscript. All authors ap-
proved the final manuscript.

Funding
This paper was supported by Konkuk University in 2018. The funder did not play any role in this study.

Availability of data and materials
The package presented in this manuscript is available at: https://github.com/jkimlab/TAMA.
The integrated databases and simulated metagenome datasets are available at: http://bioinfo.konkuk.ac.kr/TAMA.
The CAMI datasets are available at: https://data.cami-challenge.org.
The real metagenome datasets are available at: https://www.ebi.ac.uk/metagenomics. Project IDs are available at the
Supplementary Table S5.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 February 2020 Accepted: 5 May 2020

References
1. Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea.

Mar Ecol Prog Ser. 1983:257–63.
2. Jaeger CH, Monson RK, Fisk MC, Schmidt SK. Seasonal partitioning of nitrogen by plants and soil microorganisms in an

alpine ecosystem. Ecology. 1999;80(6):1883–91.
3. Allison MJ, Maloy SE, Matson RR. Inactivation of Clostridium botulinum toxin by ruminal microbes from cattle and

sheep. Appl Environ Microbiol. 1976;32(5):685–8.
4. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80.
5. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nature reviews. Genetics. 2012;

13(4):260.
6. McFall-Ngai MJ. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev

Microbiol. 2014;68:177–94.
7. Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD. Importance of systems biology in engineering microbes for

biofuel production. Curr Opin Biotechnol. 2008;19(3):228–34.
8. Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of ‘unculturable’bacteria. FEMS Microbiol Lett. 2010;

309(1):1–7.
9. Scholz MB, Lo C-C, Chain PS. Next generation sequencing and bioinformatic bottlenecks: the current state of

metagenomic data analysis. Curr Opin Biotechnol. 2012;23(1):9–15.
10. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic

sequences using discriminative k-mers. BMC Genom. 2015;16(1):236.
11. Wood DE, Salzberg SL, et al. Genome Biol. 2014;15(3):R46.

Sim et al. BMC Bioinformatics          (2020) 21:185 Page 16 of 17

https://github.com/jkimlab/TAMA
http://bioinfo.konkuk.ac.kr/TAMA
https://data.cami-challenge.org
https://www.ebi.ac.uk/metagenomics


12. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences.
Genome Res. 2016;26(12):1721–9.

13. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief
bioinform. 2019;20(4):1125–36.

14. Gardner PP, Watson RJ, Morgan XC, Draper JL, Finn RD, Morales SE, et al. Identifying accurate metagenome and
amplicon software via a meta-analysis of sequence to taxonomy benchmarking studies. PeerJ. 2019;7:e6160. https://doi.
org/10.7717/peerj.6160.

15. Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed of metagenome analysis tools. Sci Rep.
2016;6:19233.

16. Piro VC, Matschkowski M, Renard BY. MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling.
Microbiome. 2017;5(1):101.

17. Uritskiy G, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis.
Microbiome. 2018;6. https://doi.org/10.1186/s40168-018-0541-1.

18. Zakrzewski M, Bekel T, Ander C, Pühler A, Rupp O, Stoye J, et al. MetaSAMS--a novel software platform for taxonomic
classification, functional annotation and comparative analysis of metagenome datasets. J Biotechnol. 2013;167(2):156–65.
https://doi.org/10.1016/j.jbiotec.2012.09.013.

19. Khoshdel A, Attia J, Carney S. Basic concepts in meta-analysis: a primer for clinicians. Int J Clin Pract. 2006;60(10):1287–94.
20. Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A, Group NM-aI. Accuracy of neutrophil gelatinase-

associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis.
Am J Kidney Dis. 2009;54(6):1012–24.

21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.
22. Group GM-aTG. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient

data from 12 randomised trials. Lancet. 2002;359(9311):1011–8.
23. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical assessment of metagenome

interpretation—a benchmark of metagenomics software. Nat Methods. 2017;14(11):1063.
24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
25. Nikolenko SI, Korobeynikov AI, Alekseyev MA. BayesHammer: Bayesian clustering for error correction in single-cell

sequencing. BMC Genom. 2013;14(1):S7.
26. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics. 2011;28(4):593–4.
27. Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;

47(W1):W256–W9. https://doi.org/10.1093/nar/gkz239.
28. Piro VC, Lindner MS, Renard BY. DUDes: a top-down taxonomic profiler for metagenomics. Bioinformatics. 2016;32(15):2272–80.
29. Freitas TAK, Li P-E, Scholz MB, Chain PS. Accurate read-based metagenome characterization using a hierarchical suite of

unique signatures. Nucleic Acids Res. 2015;43(10):e69.
30. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;

7:11257.
31. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, et al. Metagenomic species profiling using

universal phylogenetic marker genes. Nat Methods. 2013;10(12):1196.
32. Meyer F, Bremges A, Belmann P, Janssen S, McHardy AC, Koslicki D. Assessing taxonomic metagenome profilers with

OPAL. Genome Biol. 2019;20(1):51.
33. Escobar-Zepeda A, Sanchez-Flores A, Quirasco BM. Metagenomic analysis of a Mexican ripened cheese reveals a unique

complex microbiota. Food Microbiol. 2016;57:116–27. https://doi.org/10.1016/j.fm.2016.02.004.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sim et al. BMC Bioinformatics          (2020) 21:185 Page 17 of 17

https://doi.org/10.7717/peerj.6160
https://doi.org/10.7717/peerj.6160
https://doi.org/10.1186/s40168-018-0541-1
https://doi.org/10.1016/j.jbiotec.2012.09.013
https://doi.org/10.1093/nar/gkz239
https://doi.org/10.1016/j.fm.2016.02.004

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Overview of TAMA
	Read preprocessing step
	Taxonomy analysis step
	Meta-analysis step
	Simulated metagenome read generation for performance evaluation
	Evaluation of read classification performance
	Evaluation of species prediction and abundance estimation
	Real metagenome read datasets

	Results
	Evaluation of TAMA using simulated metagenome datasets
	Evaluation of TAMA compared to another meta-analysis tool
	Evaluation of TAMA using CAMI metagenome datasets
	Application to cheese metagenomes
	Application to human gut metagenome

	Discussion
	Conclusion
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher’s Note

