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Abstract

Background: With the rapid development of single-cell genomics, technologies for
parallel sequencing of the transcriptome and genome in each single cell is being
explored in several labs and is becoming available. This brings us the opportunity to
uncover association between genotypes and gene expression phenotypes at single-
cell level by eQTL analysis on single-cell data. New method is needed for such tasks
due to special characteristics of single-cell sequencing data.

Results: We developed an R package SCeQTL that uses zero-inflated negative
binomial regression to do eQTL analysis on single-cell data. It can distinguish two
type of gene-expression differences among different genotype groups. It can also be
used for finding gene expression variations associated with other grouping factors
like cell lineages or cell types.

Conclusions: The SCeQTL method is capable for eQTL analysis on single-cell data as
well as detecting associations of gene expression with other grouping factors. The R
package of the method is available at https://github.com/Xuegonglab/SCeQTL/.

Keywords: Single-cell eQTL, Zero-inflated negative binomial regression, Multi-class
differential expression analysis, Single-cell gene regulation

Background

Expression quantitative trait locus or eQTL analysis is an important approach for
studying the association between variations in the genotype and gene expression,
which may help to reveal the underlying regulation relationship. Technologies that can
sequence in parallel both the genomes and transcriptomes of single cells are being de-
veloped recently [6, 8]. These technologies give us an opportunity to uncover the asso-
ciation between genetic variations and genes expression at single-cell level, which can
help reveal detailed gene regulation mechanisms in processes like tumorigenesis and
cell differentiation.

Methods for identifying eQTLs have been well studied for microarray data and bulk
RNA-seq data. Typical methods of eQTL mapping include linear regression and
ANOVA, where the expression level is taken as the dependent variable and the geno-
type at a single-nucleotide variation (SNV) site is the explaining factor [7, 16]. Most of
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those methods are based on the assumption that expression levels or its logarithms fol-
low normal distribution, Poisson distribution or negative binomial distribution [17].
The Krux method used a non-parametric way to identify eQTL and claim their method
is more robust [15]. These existing methods including the non-parametric ones can
lose their power when applied on single-cell RNA-seq data because of the special char-
acteristics of single-cell sequencing data, especially the excess of zero values.

The phenomenon of excess of zero values is common in single-cell RNA-seq
(scRNA-seq) data [2, 9]. There are mainly two reasons. Because the amount of
total RNAs in a single cell is extremely small, there is high probability that the
RNA capture, reverse transcription and amplification steps may miss some tran-
scripts, causing the expression of some expressed genes not observed in the se-
quencing data. This is usually called “drop-out” events. Another reason is that
gene expression is a stochastic process at single-cell level [11]. This results in vari-
ations of gene transcription status between cells besides variations in gene expres-
sion abundances. The possibility for a gene to have a real zero expression level or
to be in the “off” status of transcription is much higher in single cells than in the
pooled transcriptomes of many cells in bulk RNA-seq data [5, 10]. There are two
types of heterogeneity in gene expression: heterogeneity in the “on-off” status of a
gene’s transcription, and heterogeneity in the abundance of expressed genes. Study-
ing such heterogeneities is one of the major purposes of single-cell sequencing. Be-
cause of these special properties, when we analyze eQTLs on scRNA-seq data, we
also face two possible types of differences in gene expression associated with vari-
ation in genotypes: differences in the transcription status of a gene and differences
in expression levels of an expressed gene. We call them as “status difference” and
“expression level difference”, respectively. We developed SCeQTL to analyze these
two types of differences that may be associated with genotype variations. The
method can also be applied to analyze associations of gene expression with other
types of groupings such as cell lineages or cell types.

Results

Zero-inflated generalized linear model

We model scRNA-seq data as the outcome of two processes. One is that tran-
scripts are captured in the sequencing and the corresponding gene gets non-
negative expression values. The other is that transcripts are missed or the gene is
not expressed in the cell, which will result in zero values in the data. The second
process causes scRNA-seq data to have excess zero values. We find the negative
binomial (NB) distribution can fit the non-zero parts of scRNA-seq data well in a
way similar to bulk RNA-seq data (Fig. 3 and Fig. 4a), but there can be a high
probability of a gene being zeros in the single-cell data.

Therefore, we use a zero-inflated negative binomial (ZINB) regression to model the
scRNA-seq data as we have done in [10]. For gene expression g and genotype s, there is
probability p that the transcription is off and we have the observation of a zero value in
a cell, and probability 1 - p that the gene is expressed with values being described as
following a negative binomial distribution. We call the probability p as zero ratio for
simplicity. We write these as
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N 0 with probability p
8™\ NB(u, 8) with probability 1-p’

where y and 6 are the mean and shape parameter of the negative binomial distribu-
tion. We call a SNV to be an eQTL of a gene if the zero ratio p and/or the mean of
negative binomial distribution g is significantly correlated with the genotype of the
SNV in a way that

In (fip) =a;+ ;s

and/or
In(p) = az + fos,

where s is the genotype (or other distinguishing factor to group the cells), parameters
ay, ay, B1, Br and the shape parameter 0 are to be estimated from the data. Using max-
imum likelihood method to estimate the parameters, we get the log-likelihoods of the
full model that includes the genotype as the explaining factor (5, =0 or 5, # 0) and of
the reduced model that does not include the genotype (51 =0 or 3, = 0).

The generalized linear model contains two parts: distribution hypothesis and link
function. In distribution hypothesis, the probability density function (pdf) of over-
dispersed exponential families is

7 T -A)
p(xln) = h(x,0)e >
where # is a natural parameter, T(x) is a sufficient statistic, and A(#) is used to guaran-
tee the integral of pdf to be 1. Link function describes how the expectation of corre-
sponding variable is related to the linear combination of independent variables:

E(Y) =pu =g (XB)
where g is the link function. For NB distribution, the link function is
XB = In(u).

According to the generalized linear model theory [12], the deviance, which is —2
times the log-likelihood ratio of the reduced model compared to the full model, follows
an approximate chi-square distribution with k degree of freedom. The k is the differ-
ence between parameter numbers of the full model and the reduced model. We use the
deviance as the test statistic to test for whether 5; =0 or 85 = 0. By these two hypothesis
tests, we can identify whether the gene expression have association with the genotype
(or other factor used to group cells) and what kind of association it is. We call this
method as SCeQTL and developed a software package in R to implement it (https://
github.com/XuegongLab/SCeQTLY/).

Simulation experiments

Single-cell parallel sequencing technologies of both the genome and transcriptome are
currently only available in very few labs, and the current genomic coverage of such
technologies may not be sufficient for genotyping analysis yet. So it is still hard to find
public datasets including both single-cell genomic sequencing data with sufficient depth
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and single-cell RNA-sequencing data of the same single cells. Therefore, we first
did a series of simulation experiments to study the performance of SCeQTL. Both
genotype and phenotype data were simulated simultaneously under different effect
size. We applied SCeQTL and the widely used Matrix eQTL [16] on the simulation
data for comparison. Matrix eQTL is a highly-efficient method for eQTL analysis
designed for bulk data.

We simulated genotype and gene expression data of 1500 cells of three SNVs and 20
genes in each simulation experiment. Considering the probable effect of different fre-
quencies of three genotypes (denoted by s =0, 1, 2), we generated three SNVs (denoted
as SNV 1-3) with different genotype frequencies, and conducted four experiments (de-
noted as Experiment 1-4) for each SNV. These experiments aimed to mimic four sce-
narios: transcription status set at same or different level while expression values change
with genotypes, and expression values set at same or different level while transcription
status change with genotypes. Under each scenario, we experimented on changes across
different effect sizes. Ten significant gene-SNV pairs were randomly generated for each
SNV, and were taken as the ground truth in performance analysis. Gene expression
metrics were generated by ZINB model of different parameters. We define three types
of genes that are associated with genotypes in the simulation model: genes whose ex-
pression values differ among genotypes (Ges), genes’ transcription status differs among
genotypes (Gts), and both transcription status and expression values differ among ge-
notypes (Gs). Table 1 shows the overall design of the simulation data.

For each experiment, we get the ROC curves of both methods by calculating the false
positive rate and true positive rate by comparing the detection result with the simula-
tion model. We use Area Under Curve (AUC) of ROC curves to demonstrate perform-
ance of the two methods. Larger AUC value means higher accuracy. Figure 1
summarizes the experiment results. It shows that different proportions of genotypes do

Table 1 Simulation experiments description

SNVs Experiments Unchanged Changed parameters  Number of
parameters experiments
SNV 1 Experiment  Zero ratios set to the same (0.5). a;=0 B> ranges from 0 to 13
(freq. of 1 Differences in NB means among _ 0.6, with increasing
s=0/1/2: three genotypes increase. =0 step of 0.05 across
0.25/0.5/ =6 experiments.
0.25) ) ) )
Experiment  Zero ratios set at different levels a;=0 13
2 (0.5, 0.57 and 0.65). Differences
in NB means among three pi=03
genotypes increase. a,=6
Experiment  NB means set at the same level a,=6 B; ranges from 0 to 13
3 (403.43). Differences in zero _ 0.6, with increasing
ratios among three genotypes B2=0 step of 0.05 across
increase. a,;=0 experiments.
Experiment  NB means set at different levels a,=6 13
4 (403.43, 601.85 and 897.85).
Differences in zero ratios among Ba=04
three genotypes increase. a;=0
SNV 2 Same as in SNV 1
(0.16/0.48/
0.36)
SNV 3 Same as in SNV 1
(0.09/0.42/

049)
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Fig. 1 AUC values of Experiment 1-4 for SNV 1-3. a AUC values of Experiment 1 for SNV 1-3. b AUC values
of Experiment 2 for SNV 1-3. ¢ AUC values of Experiment 3 for SNV 1-3. d AUC values of Experiment 4 for
SNV 1-3

not affect results. Further checking the results in four experiments of the same SNV,
we can see that when only one aspect (zero ratio or NB mean) differs (Fig. 1a, c), per-
formance of the two methods largely overlaps: AUC value first rises, then holds with ef-
fect sizes increasing. A minor difference shown in Fig. 1a is that the power of SCeQTL
rises earlier and more dramatically at smaller effect sizes. This indicates higher sensitiv-
ity of SCeQTL than Matrix eQTL for detecting Ges.

In more complicated situations when both transcription status and expression values
are different (Fig. 1b, d), AUC value of SCeQTL keeps steady and high, while that of
Matrix eQTL drops drastically at certain effect sizes. This suggests the superiority of
SCeQTL in terms of power when detecting Gs. An explanation is that, in Fig. 1b, the
increase of zero ratio gradually offset the divergence of NB mean in three genotypes
with B, increasing; and in Fig. 1d, the increase of NB mean gradually offset the diver-
gence of zero ratio with f; increasing. Both cases resulted in similar mean in three ge-
notypes which Matrix eQTL cannot distinguish. But once the influence of zero ratio or
NB mean became dominant, the power of Matrix eQTL would recover, as is shown in
the right part of curves in Fig. 1b and the left part of curves in Fig. 1d.

Figure 2 shows gene expression distributions of three example significant eQTLs
which cannot be detected by Matrix eQTL. Figure 2a shows expression levels of a Ge
referred to the point in Fig. 1a when $, = 0.05. SCeQTL can detect the slight difference
in NB mean, but Matrix eQTL cannot. Figure 2b and c display similar situations when
detecting Gs. They correspond to the point in Fig. 1b when $, = 0.15 and Fig. 1d when
p1=0.5, respectively. Again, SCeQTL found the differences very significant, while
Matrix eQTL found them insignificant. They could support our analyses above.

Real data experiments

Currently public datasets with both genotype and transcriptome sequenced in the same
single cells are still rare, and those only few available datasets still have very limited
coverage in SNVs. We therefore used a real RNA-seq dataset without cell-level geno-
type but with multiple groups of cell attributes to further study the performance of
SCeQTL. The data we used is a scRNA-seq dataset of human preimplantation embryo
cells of different embryo days [14]. We split the cells into three groups according to the
embryonic day (E5, E6 and E7) to mimic cells of three genotypes. We use this dataset
to show that SCeQTL not only works for single-cell eQTL applications, but also can be
applied to the more general scenarios of detecting gene expression variations that are
associated with other types of grouping factors of cells.

Page 5 of 12
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Fig. 2 Examples of Ges and Gs for SNV 2 where SCeQTL found significant, but Matrix eQTL did not. a Ge
(genel14) in Experiment 1, corresponding to the point in Figure 1a when B, =0.05. Only expression levels
are different. b G (gene5) in Experiment 2, corresponding to the point in Figure 1b when 3, =0.15. Both
transcription status and expression levels are different. (c) G (genel1) in Experiment 4, corresponding to the
point in Figure 1d when 8; =0.5. Both transcription status and expression levels are different

We first checked whether the non-zero expression data were fitted well with our
model using the ‘checkdist’ function in our package. We randomly picked some
genes and drew Q-Q plot to compare gene expression distribution with several dis-
tributions. Figure 3 and Figure 4a shows that negative binomial distribution is ap-
propriate for modeling the non-zero part of the data, while the lines in Q-Q plot
of other distributions are far away from the diagonal. The histogram in Figure 4b
shows that the drop-out event is very common in single-cell RNA-seq data and
needs to be considered.

We applied both SCeQTL and Matrix eQTL [16] on these data for comparison.
We first conducted experiments to study the distribution of p-values of the two
methods under the null hypothesis of no eQTL. Figure 5 show the p-value distri-
butions under null hypothesis, which were obtained by randomly generating and
permuting the “genotype” (the embryonic days in this experiment) and use two
methods to calculate the p-values. The p-value distribution of SCeQTL is close to
uniform distribution between 0 and 1, while the p-value distribution of Matrix
eQTL has clear deviation from uniform.

On the eQTL results in the experiment of true embryonic day with gene expression,
we found that results of the two methods largely overlapped, but there were noticeable
cases on which SCeQTL worked better. Figure 5¢ shows an example that non-zero part
had significant difference but Matrix eQTL didn’t find it. The p-values obtained by
SCeQTL and Matrix eQTL are 9.37 x 10~ and 0.002, respectively. The test has been
done for all the 23,981 genes in this dataset. This eQTL is very significant for SCeQTL
but will not significant for Matrix eQTL after multiple-test correction. One reason is
that the negative binomial distribution fit the single-cell data better than normal distri-
bution. On the other hand, the zero values in scRNA-seq data caused the means of the
three groups to be almost equal, so that Matrix eQTL could not detect the difference.
Figure 5d gives an example that zero ratios have significant differences among the com-
pared groups (0.76, 0.26 and 0.26) but non-zero parts shown by the boxplots are almost
same. The p-values with SCeQTL and Matrix eQTL are 1.09 x 10~** and 0.004, respect-
ively. Matrix eQTL can’t detect differences of this type either.
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Fig. 3 Q-Q plot of scRNA-seq data with (a) Negative Binomial distribution (b) Poisson distribution (c)
Normal distribution (d) Log-normal distribution

We also experimented on this dataset using cell lineage as the factor to distinguish three
cell groups, and found SCeQTL could successfully find results that can be confirmed with
biological knowledge on embryonic cell lineages. By dividing the samples by cell lineages
EPI (epiblast), TE (trophectoderm) and PE (primitive endoderm), we applied SCeQTL to
find genes that vary among different cell lineages. Among all 23,981 genes, SCeQTL found
about 20 genes with p-value less than 107*°, 70 genes with p-value less than 10>° and 200
genes with p-value less than 107%°. In these genes that are significantly associated with cell
lineages, we found some have been reported as lineage specific genes in the literature. For
example, for EPI-specific genes PRDM14, GDF3, TDGF1, NODAL, SOX2 and NANOG,
their p-values are 57 x 107 | 4.7x107%, 6.5 x 107, 4.0 x 107}, 5.1 x 10~>” and 4.8 x
107%%; for TE-specific genes GATA2, GATA3 and DAB2, their p-values are 4.1 x 107%,
6.7 x 1072° and 3.3 x 1072; and for PE-specific genes HNF1B, PDGFRA and GATAA4, their
p-values are 5.7 x 107>%, 1.7 x 1072* and 2.0 x 107, respectively. All these lineage-specific
genes ranked at top 200 in our result. It is worth noting that quite a lot of these genes
have shown obvious transcription status differences in our SCeQTL analysis, which may

imply that gene transcription in single cells are undergone on-off regulation in many
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scenarios. To double check the reliability of the SCeQTL discoveries, we manually
checked some of the results and found most significant genes truly have differences
among the compared groups. Figure 6 shows three examples. P-values of SCeQTL in the
examples are 4.1 x107°°, 4.8 x 107> and 1.5x 107>® respectively. These experiments
showed the potential for discovering associations in single cells that cannot be identified
using existing eQTL methods. The biological implication of those associations can be im-
portant and deserve further investigations.

Discussion

A limitation of the proposed SCeQTL method is that the computation cost is rela-
tively high if applied for eQTL analysis at whole-genome scale. It can take a few
minutes to analyze a few hundred gene-SNV pairs on a single computing node.
This is mainly due to the iterative procedures in estimating the parameters. How-
ever, for most single-cell studies, the cells are from the same tissue sample or
closely related samples. We can expect that the number of SNVs among the cells
that need to be studied for eQTL analysis is not too large to make the computing
cost of SCeQTL a severe issue in practical applications. This will also not be an
issue when we use SCeQTL to analyze the association of gene expression with
other factors as we did in the application examples.

The analysis of the associations of genotypic variations with gene expression as
well as alternative splicing [18] is a fundamental step for understanding the com-
plex gene regulation system of human in health and disease. Cells are the basic
units where the regulation happens. The broad existence of heterogeneities in gene
expression both in quantity and in alternative splicing isoforms among cells is im-
portant in human physiology and pathology. This gives a strong motivation why
functional genomics studies are moving quickly into single-cell levels. This is also
true for the study of gene regulations. The current single-cell genomics technolo-
gies are still at their early stages and not widely available for large-scale studies of
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gene regulations within single cells, but technologies are developing and evolving
rapid toward these goals. We hope the proposed SCeQTL method and software
provides a ready and effective tool for this development.

Conclusions

We proposed a new method for eQTL analysis on single-cell genomic and transcrip-
tomic parallel sequencing data and developed a software package SCeQTL to imple-
ment the method. Experiments showed that the method can reveal associations that
cannot be identified with existing eQTL methods developed for bulk data. It can also
be applied on tasks of finding the association of gene expression with other grouping
factors that distinguish cells into different types. It provides an effective tool for explor-
ing gene regulation relationships at single-cell level.

Methods

Data preprocessing

Multiple steps of data pre-processing are necessary before using SCeQTL. Firstly, we
remove the effect of the library size. We use the normalization method in DEseq [1] for
this normalization. The median of the ratios of observed counts is used to measure the
sequencing depth.

s; = median; L T
IT.84)"

where gj; is the expression level of gene i in sample j. The denominator is obtained
by calculating the geometric mean across non-zero samples. As discussed in [1],
this method is more robust than just taking the sum of all genes as sequencing
depth since otherwise the highly expressed gene would dominant the result, which
is often seen in single-cell gene expression data. All samples are normalized by the
size factor, and we round down the resulted expression values to fit our read-
counts model.

Next, single-cell RNA-seq data are noisy and we need to remove genes and variants
which are not suitable for the analysis. Genes with read counts less than a certain
threshold (by default, <=1) are treated as not expressed and are therefore removed. We
only consider genes whose variances are greater than a certain threshold (by default,
>=5). For genomic variants, only variants with at least two genotypic groups in the
dataset and each genotype has at least 5 samples (cells) are further considered.

When we enter the iteration of analyzing every gene-variant pairs, pairs that don’t
have enough non-zero values (by default, <=5) in one genotype are reported. The esti-
mation of distribution parameters can be far away from true values in this situation.
And we find that in real data, there are samples whose expression level is much higher
than the others. If we include these samples into consideration, the mean of negative
binomial distribution will be overestimated. So we treat these samples as outlier and
use robust z score as defined below to remove them (by default, > = 4), where MAD
stands for the median absolute deviation:
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gij—median j (gij)

MAD; (g, )

Zrobust =

Parameter estimation
The package ‘pscl’ [19] is used to estimate the parameter and calculate the log-
likelihood. The package uses the EM algorithm or BEGS algorithm to iteratively update

the parameter estimation.

Covariates correction

It is common that some hidden covariates may exist in the sampled population, such as
age, gender, or other clinical variables. It is important to remove the effect of them
from the eQTL study, as otherwise a high percentage of results will be false discoveries.
SCeQTL allows user to define a covariate vector x as possible confounding factors to
be considered in the analysis. With covariate vector x € R", the models become

P n
ln (E) =01 + Bls + ZiZIYHXh

In(p) = az + Bys + Zi:1Y2iXi7

where extra parameter vectors y; and y, to be estimated. The hypothesis test process is
the same as non-covariates one. As a special consideration in single-cell studies, poten-
tial correlations among single cells from the same individual or from the same cell type
can be modeled in this covariate vector to make sure that the associations detected
with SCeQTL are not due to those factors.

Multiple test correction

We provide two ways to control the false discovery, Benjamini-Hochberg (BH) method
[3] and the g-value method. The g-value method is implemented by R package ‘qvalue’
(http://github.com/jdstorey/qvalue). Since several publications come up with other
methods for multiple test correction in eQTL mapping [4, 13], users can also select
whether to let SCeQTL to report p-value or false discovery rates and set the threshold
according to other correction methods.
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