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Abstract 

Background:  The clustering of data produced by liquid chromatography coupled to 
mass spectrometry analyses (LC-MS data) has recently gained interest to extract mean‑
ingful chemical or biological patterns. However, recent instrumental pipelines deliver 
data which size, dimensionality and expected number of clusters are too large to be 
processed by classical machine learning algorithms, so that most of the state-of-the-art 
relies on single pass linkage-based algorithms.

Results:  We propose a clustering algorithm that solves the powerful but computa‑
tionally demanding kernel k-means objective function in a scalable way. As a result, it 
can process LC-MS data in an acceptable time on a multicore machine. To do so, we 
combine three essential features: a compressive data representation, Nyström approxi‑
mation and a hierarchical strategy. In addition, we propose new kernels based on 
optimal transport, which interprets as intuitive similarity measures between chromato‑
graphic elution profiles.

Conclusions:  Our method, referred to as CHICKN, is evaluated on proteomics data 
produced in our lab, as well as on benchmark data coming from the literature. From 
a computational viewpoint, it is particularly efficient on raw LC-MS data. From a data 
analysis viewpoint, it provides clusters which differ from those resulting from state-of-
the-art methods, while achieving similar performances. This highlights the comple‑
mentarity of differently principle algorithms to extract the best from complex LC-MS 
data.

Keywords:  Large-scale cluster analysis, Liquid chromatography, Mass spectrometry, 
Proteomics, Wasserstein kernel, Optimal transport
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Background
Liquid chromatography coupled to mass spectrometry (LC-MS) constitute a technologi-
cal pipeline that has become ubiquitous in various omics investigations, such as pro-
teomics, lipidomics and metabolomics. Over the past decade, the MS throughput has 
continuously improved, leading to unprecedented data volume production. To date, pro-
cessing these gigabytes of low level MS signals has become a challenge on its own, for a 
trade-off between contradictory objectives is sought: On the one hand, one needs to save 
memory and computational time with efficient encoding, compression and signal clean-
ing methods  [1]. On the other hand, one needs to avoid too important preprocessing 
that systematically smoothes signals of lower magnitudes, as it is now well-established 
that interesting biological patterns can be found near the noise level  [2]. To face this 
challenge, a recent and efficient investigation path has been to apply cluster analysis to 
LC-MS data. Cluster analysis refers to a large family of unsupervised statistical learning 
and multivariate analysis techniques which share a common goal: Aggregating similar 
data items into clusters, so that within-cluster similarities are larger than between clus-
ter ones. By doing so, it becomes possible to consider the various clusters independently, 
and thus to reduce the computational footprint without any quality loss. Moreover, as 
each cluster contains similar data elements, it facilitates the extraction of repetitive but 
small biological patterns.

State of the art

To date and contrarily to the presented work, investigations have mainly focused 
on clustering LC-MS data across the chromatographic (or elution time) dimension, 
i.e. when the data elements are MS spectra: MS2grouper  [3, 4], Pep-Miner  [5], Pep-
Merger [6], the MS-Clustering/ MS-Cluster/Pride-Cluster/spectra-cluster series [7–10], 
Bonanza  [11], CAMS-RS  [12], MaRaCluster  [13], N-cluster  [14], and msCRUSH  [15]. 
All these approaches propose to improve peptide identification by benefiting from the 
aforementioned trade-off: By grouping similar fragmentation spectra into a consensus 
representation, one clearly reduces the data volume. Moreover, peaks corresponding to 
random noise should not reinforce between spectra, while on the contrary, small but 
chemically consistent peaks should [16].

Clustering across the mass-to-charge ratio (m/z) dimension, i.e. when the data ele-
ments are chromatographic profiles (depicting the signal changes along the elution time 
at a given m/z value), is also insightful for many reasons: First, it proposes an original 
framework to construct and extract precursor ion chromatograms, which integra-
tion is essential for quantitative analysis  [17]. Second, cluster centroids naturally pro-
vide consensus elution profiles which are of interest for retention time alignment [18]. 
Finally, elution profiles are also essential to disentangle chimeric spectra  [19]. Notably 
if the clustering is sufficiently accurate, it can be insightful to disentangle multiplexed 
acquisitions (e.g. Data Independent Acquisition [20], or DIA), without relying on spec-
tral libraries  [21, 22]. To date, these practical problems have been tackled in the prot-
eomics literature by applying various heuristics which differ to some extend from the 
cluster analysis framework. For instance, in DIA-Umpire  [23], peptide fragments’ elu-
tion profiles are clustered according to their correlations with precursor profiles, so 
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that formally, the approach is more that of classification (i.e. supervised) than of clus-
tering (i.e. unsupervised). Similarly, in many quantification algorithms (Maxquant [24], 
OpenMS [25], MsInspect [26], Xnet [17]) cluster analysis aims to extract isotopic enve-
lopes, i.e. to group the elution profiles of several isotopes of a given molecule, within a 
closed neighborhood of m/z values. As a consequence, two identical profiles in different 
m/z regions are not grouped together. Although this behavior (that will be referred to as 
the envelope assumption simplification in the rest of the article) concurs with the objec-
tive of isotopic envelope reconstruction, it makes the heuristic strongly attached to one 
objective; and non applicable to other cluster analysis problems. In contrast, we believe 
generic clustering algorithms would also be of interest, as different tuning would make 
them appropriate to deal with different objectives: e.g. by adding must-link/must-not-
link constraints [27] so as to guide the demultiplexing task as in the DIA-Umpire case; 
or by incorporating an m/z difference in the similarity definition, in the case of isotopic 
envelope extraction; and so on.

Moreover, a refine analysis of the algorithms underlying all these (either spectrum or 
chromatogram) clustering techniques let appear a strong filiation between them: All 
rely on agglomerative and linkage-based methods, be it previously published algorithms 
(HAC [28, 29], DBSCAN [30] or UPGMA [31]) or ad-hoc procedures developed in the 
specific context of LC-MS data clustering (proposed in MS2grouper, Pep-Miner, Pep-
Merger, the MS-Cluster series, Bonanza, CAMS-RS, N-cluster and XNet). Despite their 
unquestionable efficiency, some diversity would help. Cluster analysis is as much an art 
as a science [32] and there does not exist such thing as the perfect clustering – at least, 
on real data. Most of the time, data analysts need to rely on a toolbox of various algo-
rithms to extract the best of their data [33]. With this respect, MS-based omics would 
benefit from differently principled and complementary algorithms which have dem-
onstrated their efficiency in data science [34]. For instance, spectral clustering [35–37] 
(which should not be confused with the cluster analysis of mass spectra [38]), mean shift 
algorithm [39, 40], and variants of the k-medoids [41] and k-means [42, 43] are of prime 
interest.

Finally, one observes a difference between algorithms dedicated to spectrum cluster-
ing and those dedicated to chromatogram clustering: While the former ones are mainly 
implemented in an independent manner, the latter ones are all embedded in computa-
tional pipelines (DIA-Umpire [23], Maxquant [24], OpenMS [25], MsInspect [26]). The 
only exception is Xnet [17], which makes it a unique literature reference for algorithmic 
and low-level comparisons. In addition, Xnet is the most recently published algorithm, 
and it displays interesting performances on a benchmark dataset.

In a nutshell, Xnet is a Bayesian algorithm which aims to cluster elution profiles into 
isotopic envelopes. More precisely, it starts from the construction of a network with 
chromatograms as nodes. Then, the network is decomposed into preliminary clusters. 
The edges within each cluster are scored by estimating the likelihood of two parameters: 
the correlation between chromatograms and their m/z separation. Finally, the edge vali-
dation is carried out using the scores and a chromatogram apex match verification. This 
leads to the final isotopic envelope construction.

Xnet has many strengths: First, it is a parameter free clustering method – the number 
of clusters can be inferred during the learning process. Second, the time complexity of the 
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algorithm is linear with respect to the number of chromatograms in the data. However, it 
also has weaknesses: First, it cannot work on raw data and requires an important preproc-
essing step, referred to as ion chromatogram extraction, which denoizes the LC-MS map 
and aggregates independent measurements into well-formed traces (i.e. lists of peak inten-
sities corresponding to a same ion, identified in consecutive mass spectra). Concretely, 
starting from a raw file, it is first necessary to extract non trivial information and to store 
them into an input CSV file with the following columns: m/z ratios, retention times, inten-
sities and trace labels. In addition to be time consuming, it can arguably be considered that 
excluding the trace construction from the algorithm amounts to transferring a bottleneck 
question to another preliminary processing, or to a human annotator. Second, it strongly 
relies on the envelope assumption simplification, making it impossible to group elution pro-
files which m/z difference exceeds a predefined threshold. The third weakness is related to 
the generalization capabilities: As acknowledged in [17], there is not enough data to accu-
rately train the probability model underlying Xnet, making it necessary to complement it 
with a Bayesian prior. This obviously questions the applicability to datasets that significantly 
differ from the ones that served to tune the prior. Finally, Xnet does not provide a consen-
sus chromatogram for each cluster: Its output is a CSV file that only assigns a cluster index 
to each line of the input CSV file.

Objectives and contributions

The objective of this article is twofold: First is to propose a new cluster analysis pipeline 
adapted to the challenging problem of clustering multiplexed chromatographic profiles 
resulting from data independent acquisitions. The second objective is to build this pipe-
line around an algorithm which is not agglomerative and linkage-based. Concretely, we 
focused on k-means objective function, for two reasons: First, until recently, it was con-
sidered by the proteomics community as non-applicable to data as big as LC-MS data [7], 
while recent theoretical progresses have made this scaling-up possible  [44] (this explains 
the historical predominance of agglomerative linkage-based clustering, less computation-
ally demanding); Second, k-means can be reformulated to fit the reproducing kernel Hilbert 
space theory [45] (leading to the so-called kernel k-means framework [46]), which provides 
new opportunities to define similarity measures that capture the biochemical specificities 
of LC-MS data (a challenge that has consistently been pinpointed as essential over the last 
fifteen years [3, 5, 6, 11–13]).

The contributions of this article are the following: First, it introduces the use of Wasser-
stein-1 (W1) distance (a.k.a. earth mover’s distance, a.k.a. optimal transport distance) to 
account for similarities between elution profiles. Second, it shows that combining Nyström 
method and random Fourier features leads to adramatic data compression level that makes 
the k-means objective function minimizable on raw and high resolution proteomics data 
with a multi-core machine. Finally, it demonstrates the applicability and interest of the 
method to process proteomics data from DIA experiments.

Methods
Materials

To conduct our study, we have relied on three datasets. The first one, hereafter referred 
to as UPS2GT, is a publicly available dataset [23]. To be used as a benchmark for Xnet, 
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this dataset had been preprocessed and manually annotated with isotopic envelopes that 
can serve as ground truth  [47]. Moreover, the data had been converted into centroid 
mode, i.e. a compressed version of the original profile data. In the profile mode, each 
peak of the mass spectrum is represented by intensities reported for several consecu-
tive m/z values, so as to account for the measurement imprecision. In contrast, the cen-
troid mode summarises all the values of the profile mode into a single m/z value, located 
at the center of the measurement distribution. It leads to significantly smaller memory 
footprint, at the price of blurring the differences between true signal and noise.

The second dataset, hereafter referred to as Ecoli-DIA, is the raw output of a DIA anal-
ysis of an Escherichia Coli sample (containing over 15,000 peptides1 which signals are 
multiplexed). To avoid any distortion or information loss, it was stored using the pro-
file mode. The resulting file has an important memory footprint of 3.6 GB. Thus, even 
though chromatogram clustering operates on fraction of the data only (the so-called 
MS1 acquisitions, see "Ecoli datasets: Data preparation"   section), it requires adapted 
software tools and methods.

Finally, to account for the rapid increment of data size in proteomics (resulting from 
using ever longer LC and ever more resoluted MS acquisitions), we have considered a 
third dataset, exactly similar to the Ecoli-DIA dataset, but acquired as Full-MS instead of 
as DIA. This means that 100% of the acquisition time was dedicated to MS1 signals, so 
as to mimick the extraction of a much larger DIA dataset resulting from more time- and 
m/z-resoluted acquisitions. This so-called Ecoli-FMS dataset has a memory footprint of 
3.2 GB. Even though of equivalent size, this dataset is in fact 16 bigger than Ecoli-DIA 
(four times more MS1 spectra which are four times more resoluted), see "Ecoli datasets: 
Data preparation" section.

UPS2GT benchmark dataset

The UPS2GT dataset  [47] resulted from the liquid chromatography coupled to mass 
spectrometry analysis of 48 human proteins of the Proteomics Dynamic Range Standard 
(UPS2) on a AB Sciex TripleTOF 5600 instrument using data dependent acquisition with 
an MS1 ion accumulation time of 250 ms [23].

The 28,568,990 detected points in the resulting LC-MS map were annotated according 
to their intensity value, either as informative or as noisy. Over 1,2 million informative 
points were segmented into 57,140 extracted ion chromatograms referred to as traces. 
Then, the traces were grouped into 14,076 isotopic envelopes. These envelopes consti-
tute the dataset ground truth (therefore, the objective of the clustering task would be to 
re-build the envelopes from the traces). The final fully annotated data were stored in a 
CSV file, where each row depicts one LC-MS point with four pieces of information: its 
mass to charge ratio, retention time, intensity, trace label and envelope label. The points 
that were assumed noise were given -1 or 0 as trace label.

1  We consider that a peptide is characterized by a triplet: its amino acid sequence, a list of post-translational modifica-
tions and their localization on the sequence. Accordingly, different isotope measurements can be grouped into a single 
peptide definition.
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Ecoli datasets: wet‑lab analysis

Escherichia Coli bacteria were lysed with BugBuster reagent (Novagen, final protein 
concentration 1 µg/µL). Around 560 µ g of proteins were stacked in the top of a 4 - 12% 
NuPAGE ZOOM gel (Life Technologies) and stained with R-250 Coomassie blue. Gel 
was manually cut in pieces before being washed by six alternative and successive incuba-
tions in 25 mM NH4HCO3 for 15 min, followed by 25 mM NH4HCO3 containing 50% 
(v/v) acetonitrile. Gel pieces were then dehydrated with 100% acetonitrile and incubated 
with 10 mM DTT in 25 mM NH4HCO3 for 45 min at 56 ◦ C and with 55 mM iodoaceta-
mide in 25 mM NH4HCO3 for 35 min in the dark. Alkylation was stopped by the addi-
tion of 10 mM DTT in 25 mM NH4HCO3 (incubation for 10 min). Gel pieces were then 
washed again by incubation in 25  mM NH4HCO3 followed by dehydration with 100% 
acetonitrile. Modified trypsin (Promega, sequencing grade) in 25  mM NH4HCO3 was 
added to the dehydrated gel pieces for incubation at 37  ◦ C overnight. Peptides were 
extracted from gel pieces in three sequential extraction steps (each 15 min) in 30 µ L of 
50% acetonitrile, 30 µ L of 5 % formic acid, and finally 30 µ L of 100% acetonitrile. The 
pooled supernatants were aliquoted and dried under vacuum.

The dried extracted peptides were resuspended in 5 % acetonitrile and 0.1% trifluoro-
acetic acid and 500ng were analyzed by online nanoliquid chromatography coupled to 
tandem mass spectrometry (LC-MS/MS) (Ultimate 3000 RSLCnano and the Q-Exactive 
HF, Thermo Fisher Scientific). Peptides were sampled on a 300 µ m 5mm PepMap C18 
precolumn (Thermo Fisher Scientific) and separated on a 75 µ m 250 mm C18 column 
(Reprosil-Pur 120 C18-AQ, 1.9 µ m, Dr. Maisch HPLC GmbH). The nano-LC method 
consisted of a 120 minute multi-linear gradient at a flow rate of 300 nl/min, ranging 
from 5 to 41% acetonitrile in 0.1% formic acid. The spray voltage was set at 2 kV and 
the heated capillary was adjusted to 270◦ C. For the Ecoli-FMS dataset, survey full-scan 
MS spectra (m/z from 400 to 1,400) were acquired with a resolution of 240,000 after 
the accumulation of 3 · 106 ions (maximum filling time 200 ms). For the Ecoli-DIA data-
set, survey full-scan MS spectra (m/z from 400 to 1,400) were acquired with a resolu-
tion of 60,000 after the accumulation of 3 · 106 ions (maximum filling time 200 ms) and 
30 successive DIA scans were acquired with a 33Th width and a resolution of 30,000 
after the accumulation of 2 · 105 ions (maximum filling time set to auto). The HCD colli-
sion energy was set to 30%. MS data were acquired using the software Xcalibur (Thermo 
Fisher Scientific).

Ecoli datasets: data preparation

The output of the LC-MS/MS experiments were converted from the proprietary RAW 
format into mzXML files using ProteoWizard [48]. It led to files of 11.4 GB (Ecoli-DIA) 
and of 10.2 GB (Ecoli-FMS), containing several pieces of information: discretized spec-
tra under the form of coupled lists of m/z and intensity values; as well as metadata about 
the experiment (number of spectra, retention time range, etc).

In the case of the Ecoli-FMS dataset, all the spectra are peptide mass spectra, also 
termed MS1. However, the Ecoli-DIA datasets contains two types of spectra: precursor 
spectra (MS1) and fragmentation spectra (MS2). Thus, to work on the elution profiles, 
we have extracted the MS1 signals from the Ecoli-DIA file. Then, for both files, we have 
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reconstructed chromatographic signals from MS1 spectrum intensities. As the proposed 
method aims to work on data as raw as possible (i.e. without preliminary denoising, 
smoothing and so on), we converted each mzXML file into an intensity matrix such as 
the ones of Fig. 1a (Ecoli-DIA) and of Additional file 1 (Ecoli-FMS), where each row cor-
responds to a spectrum and each column to an elution profile (despite possible m/z fluc-
tuations that may hamper the signal continuity). We concretely constructed each data 

Fig. 1  Data matrix, Nyström approximation and pre-image illustrations. a Ecoli-DIA data matrix. Each 
matrix column corresponds to a chromatographic profile for a fixed m/z value. Maximum Intensity for 
columns and for rows is depicted in bar plots. b Nyström kernel approximation. The matrix C represents 
the similarity between each data point and the random sample. The matrix W corresponds to the pairwise 
similarity evaluation between selected data points. c Pre-image problem. Consensus chromatogram 
construction amounts to solve a pre-image problem, i.e. to map the feature space (right) back to the space 
of chromatograms (left). Blue points depict the elution profiles (left) and their images in the feature space 
(right). The red points are the cluster centroid (right) and the corresponding consensus chromatogram (left). 
The yellow circles represent the cluster centroid and consensus chromatogram neighborhoods. Due to the 
mapping non-linearity, the mean chromatogram may lie outside the cluster, while the correct consensus 
chromatogram should belong to it
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matrix using the LC-MS analysis time-stamps and a non-uniform sampling of the m/z 
range (see Additional  file  2 for a detailed description). Concretely, the resampled m/z 
values are given by the following recursive formula:

where mi is the ith sampled m/z value and ResEXP is the instrument resolution used in the 
experiment ( ResFMS = 240, 000 and ResDIA = 60, 000 ). Finally, we have linearly interpo-
lated the intensity values at each node mi of the grid:

where m and I pairs with sub-indexes “ left ”, “ right ” refer the left and right neighbor-
ing peaks. This is followed by the deletion of the few empty columns. The resulting 
Ecoli-DIA data matrix is depicted in Fig. 1a: it contains around 3,300 rows and 190,000 
columns and it has a footprint of 4.8 GB. As expected, the Ecoli-FMS data matrix (Addi-
tional  file 1) is bigger: 14,000 rows, 700,000 columns and 82 GB. The bar plots in the 
margins of both figures represent the intensity distribution across the matrix columns 
and rows. They show that the Ecoli-FMS and Ecoli-DIA matrices have the same struc-
ture and intensity range, despite different size.

Methodology overview

The proposed methodology is composed of three consecutive parts, hereafter detailed: 

1.	 Profile similarity definition

	 As frequently discussed in the literature  [3, 5, 6, 11–13], the choice of a similarity 
measure that reflects the biochemical semantics of LC-MS data is essential to achieve 
efficient processing. In this article, we relied on Wasserstein-1 distance  [49, 50, 51] 
(or W1, detailed in the “Metric choice” section) and we transformed it into a similar-
ity by applying a negative exponential function: If xi and xj are two chromatograms 
(or columns from the data matrix), their similarity thus reads: 

 where dW1 is the W1 distance and where γ is a neighborhood parameter, which 
tuning authorizes up/down scaling the similarity values. The use of a similarity 
measure of the form of a negative exponential of a distance is convenient, since it 
makes it possible to apply the kernel trick  [52] (see "Kernel-trick"   section), i.e. to 
apply a machine learning algorithm as if it were operating in a so-called feature space 
(depicting a non-linear data transform which respects the semantic of the chosen 
similarity measure).

2.	 Data compression
	 Applying the kernel trick can be rather computationally demanding: For a data-

set of size N, it requires the computation of a kernel (or similarity) matrix of size 

(1)mi+1 −mi =
0.015

ResEXP
m

3
2
i ,

(2)Ii = Ileft + (mi −mleft) ·
Iright − Ileft

mright −mleft
,

(3)k(xi, xj) = e−γ ·[dW1
(xi ,xj)]p
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N × N  . Thus, with between 105 and 106 chromatograms in the Ecoli datasets, com-
puting and storing the kernel matrix is simply not tractable. The purpose of Nyström 
method [53] (see "Nyström approximation" section) is to replace the kernel matrix by 
a low rank approximation, as illustrated in Fig. 1b. By relying only on the similarities 
between each data element and a randomly selected subset, it provides a dramatic 
reduction of the computational burden at the price of a small and controlled loss 
of accuracy. Even though Nyström approximation allows for an efficient computa-
tion of the kernel matrix, it does not accelerate the clustering algorithm itself, which 
requires multiple traversing of the entire dataset (i.e. N elements). To cope for this, 
it has recently been proposed in the compressive learning framework [54] to sum-
marize the entire dataset by a relatively small vector of fixed size, referred to as data 
sketch, and to have the algorithm operating on his sketch only, irrespective of the 
original data. Concretely, we built the data sketch as an average of random Fourier 
features of the chromatographic profiles in the feature space (see "Random Fourier 
feature sketching" section).

3.	 Cluster and centroid definitions
	 Lloyd algorithm  [55] (i.e. the most classical algorithm to cluster data according to 

the k-means objective function) cannot directly be applied on sketched data. Fortu-
nately, it is possible to rely on the Compressive k-means (CKM) algorithm proposed 
in  [56] (see "Cluster computations"   section). However, CKM only returns a set of 
cluster centroids and does not cluster the data per se. Therefore, traversing the entire 
(original) dataset to perform the assignment of each chromatogram to its closest 
centroid (according to the W1 distance) is necessary (see "Cluster assignment"  sec-
tion). CKM complexity does not depend on the original data size (as it operates on 
the data sketch) which makes it well-scalable. However, its complexity grows rapidly 
with the number of clusters, which is an issue as thousands of clusters can be sought 
in LC-MS data. To cope for this, we implemented a hierarchical clustering scheme, 
where each cluster is recursively divided into a small number of sub-clusters until the 
desired number of clusters is obtained (see "Cluster assignment"  section). This pro-
cedure provides a set of clusters with centroids only defined in the feature space. To 
recover the corresponding consensus chromatograms, one has to solve a pre-image 
problem. We practically did so by computing the mean of the elution profiles neigh-
boring each centroid (see "Pre-image computation"  section).

To the best of the authors’ knowledge, this work is the first one to combine Nyström 
method and compressive learning with random Fourier features on a problem as difficult 
as the clustering of LC-MS data, which combines high-dimensionality and a very large 
number of potential clusters in addition to the traditional difficulties of raw biological 
data (non-linearities, low signal-to-noise ratio, etc.). From this point on, we refer to the 
proposed method as CHICKN (standing for Chromatogram HIerarchical Compressive 
K-means with Nyström approximation).

Profile similarity definition

Metric choice

Originally, the Wasserstein-1 (W1) metric was defined to compute optimal transport 
strategies, which explains why it is also referred to as the earth mover’s distance. It has 
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witnessed a recent gain of interest in machine learning as an efficient way to measure a 
distance between two probability distributions [57, 58]: Essentially, if one sees probabil-
ity distributions as earth heaps, the most energy efficient way to move one earth heap 
in place of the other makes an interesting distance estimate. In this work, we leveraged 
a similar analogy between an earth heap and a chromatographic elution profile. Con-
cretely, this approach is insightful since it accounts for two distinct components of what 
makes chromatographic elution profiles similar or not: their time separation as well as 
their difference of shape. Let us also note that this distance has recently been applied to 
LC-MS data, yet, to spectra rather than to chromatograms [51].

In general, the W1 distance between distributions P and Q is computed by solving 
Kantorovich minimization problem, namely:

where J (P ,Q) denotes all joint distributions ξ(x, y) that have marginals P , Q . However, 
in the 1-dimensional discrete setting where distributions P and Q are replaced by chro-
matograms x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R

n , the W1 distance boils down to a 
difference between empirical cumulative functions:

where Fx(j) =
∑
i≤j

xi
n∑

k=1

xk
 is the jth component of the cumulative distribution function of 

chromatogram x.

Kernel trick

Converting distances between data vectors into similarities by means of a negative expo-
nential function is a good way to derive a similarity measure endowed with the positive 
semi-definite (or PSD) property.2 This property is essential to the application of the ker-
nel trick [59], which notably explains why kernels of the form k(xi, xj) = e−γ ·[d2(xi ,xj)]p , 
with p = 1 (the Laplacian kernel) or p = 2 (the Gaussian kernel) and with d2 depicting 
the Euclidean distance are classically used.

Concretely, let X = [x1, . . . , xN ] ∈ R
n×N be the data matrix composed of N chromato-

grams. The kernel trick actually consists in using the similarity measure to implicitly 
map the data onto a feature space that better represents them. The mapping is deemed 
“implicit” as it does not require the computation of coordinates of the data point images 
� = [φ(x1), . . . ,φ(xN )] , where φ denotes the mapping function. Two conditions must be 
met for this trick to work: First, the algorithm must rely on similarity measures only (i.e. 
once the similarities are computed, the values of the xi ’s are not used any more). Second, 
the similarity measure reproduces the inner product of the feature space: 
k(x, y) =

〈
φ(x),φ(y)

〉
 . According to Mercer’s theorem [60], any PSD similarity measure 

(4)dW1(P ,Q) = inf
ξ∈J (P ,Q)

∫
�x − y�dξ(x, y)

(5)dW1(x, y) =
n∑

j=1

|Fx(j)− Fy(j)|,

2  Positive semi-definiteness or PSD-ness, means the resulting similarity matrix will have only non-negative eigenvalues 
(if the eigenvalues are positive, the matrix is called positive definite or PD, see Additional file 3, Section 1).
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satisfies the second condition. From that point on, we refer to 
K = �T� =

[
k(xi, xj)

]
i,j=1,...,N

 as the kernel matrix.

However, when using a distance like dW1 , which does not derive from a norm inducing 
an inner product on the data space (like for instance d2 ), then the PSD-ness is not guar-
anteed [61]. In this work, we have investigated both the Laplacian W1 and the Gauss-
ian W1 kernels: While we exhibit a formal proof of the Laplacian W1 kernel PD-ness 
(see Additional file 3, Section 3), we only have empirical evidence in the Gaussian case 
(see Additional file  3, Section  2). As in practice, both kernels lead to similar ranks in 
pairwise similarities, the resulting clusters only marginally differ. Owing to its popularity 
in life science applications, as well as to its easier tuning (interpretation and stability of 
the hyperparameter) the article thus focuses on the Gaussian case. Notably, as computa-
tional costs are necessarily higher with p = 2 than p = 1 , the displayed runtimes are an 
upper bound for both cases. However, for qualitative analysis, results with p = 1 are also 
depicted in various additional files (see below).

Data compression

Nyström approximation

Brute force computation of a kernel matrix has a quadratic complexity, so that it does 
not easily scale-up. To cope for this, a classical solution is to apply Nyström approxima-
tion. This approach relies on the fast decaying property of the kernel spectrum (the set 
of kernel matrix eigenvalues): the smallest eigenvalues of the kernel matrix can safely be 
removed (intuitively, alike principal component analysis). Concretely, one approximates 
the kernel matrix K ∈ R

N×N as following:

with C = KP ∈ R
N×l and W = P⊤KP ∈ R

l×l , where P ∈ R
N×l is constructed from an 

N × N  identity matrix where (N − l) randomly selected columns are removed. The 
larger l, the better the approximation, but the heavier the computations. Finally, accord-
ing to  [53], an additional rank-s truncated singular value decomposition (SVD) is of 
interest to increase numerical stability. This leads to Algorithm 1, which complexity3 is 
O(N · n · l + N · l2) . 

(6)K ≈ CW−1C⊤,

3  As a recall, O(f (n)) indicates that with an input data of size n, the running time will not exceed C.f(n) where C is a 
constant factor (i.e. independent of n).
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It provides the following approximation of the kernel matrix: K ≈ �̃⊤�̃ where the 
matrix �̃ =

[
φ̃(x1), . . . , φ̃(xN )

]
 is obtained by applying the feature mapping 

φ̃(xi) = (�1u1i, . . . , �susi) , where �j and uji, j = 1, . . . , s and i = 1, . . . ,N  are the s highest 
eigenvalues and eigenvectors (columns of matrix Us ) of K (see Algorithm 1). Moreover, it 
is demonstrated in  [62] that the approximation accuracy is guaranteed when Nyström 
sample size l is on the order of 

√
N  . It was also shown in [53] that the target dimension s 

scales to O(
√
l · k) , where k is the number of clusters, and the intermediate rank r is 

equal to l2.

Random Fourier feature sketching

The sketching procedure of [54] is closely related to random Fourier features [63] , which 
seminal idea is to rely on Bochner’s theorem [64] to approximate any shift-invariant (i.e. 
k ′(x, y) = κ(x − y) ) PD kernel (by leveraging the fact it is a Fourier transform of some 
non-negative measure µ):

Elaborating on this, [54] proposed to apply a similar random Fourier map

(where Fourier frequencies w1, . . . ,wm are randomly sampled from some distribu-
tion � ) and to average it over all data points to approximate the data distribution itself, 
instead of the kernel. Concretely, applying ϕ(·) onto the Nyström extended data �̃ (that 
is Z = [ϕ(φ̃(x1)), . . . ,ϕ(φ̃(xN ))] ∈ C

m×N ), led us to computing the data sketch as:

The critical step of this data compression method lies in the frequency distribution esti-
mation. It has been empirically shown in [54] that � = N (0, 1

σ 2 I) is a suitable choice for 
it mimicks well the fast decaying property of real life signals. Then, σ 2 can be estimated 
from a small data fraction using nonlinear regression. Applying this frequency distribu-
tion law allows to promote more informative sketch components and to eliminate small 
sketch values, which are usually related to noise. The key computational benefit of the 
compression is the independence between the data sketch length m and the data size N: 
m should be of the order of k · s [54], where s is the target dimension in Nyström approx-
imation and k is the number of clusters.

Cluster and centroid definitions

Cluster computations

CKM (the compressive implementation of the k-means clustering presented in  [56]) can 
be used to compute the cluster centroids from the data sketch SK (�̃) introduced in Eq. (9). 
Briefly, and in contrast with classical Lloyd’s algorithm, it is a greedy heuristic based on 

(7)k ′(x, y) = Ew∼µ

(
e−iw⊤(x−y)

)
.

(8)ϕ(x) =
1

√
m

[
e
−iw⊤

j x
]m
j=1

,

(9)SK (�̃) =
1

N
√
m

[
N∑

i=1

e
−iw⊤

j φ̃(xi)

]m

j=1

∈ C
m
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orthogonal matching pursuit, which searches for a data representation as a weighted sum of 
cluster centroids by minimizing the difference between corresponding sketches:

The CKM involves two main steps summarized in Algorithm  2. First, across several 
iterations, it alternates between expanding the cluster centroid set with a new ele-
ment, whose sketch is the most correlated to the residue; and recomputing the centroid 
weights using non-negative least-squares minimization. The second step consists in the 
global minimization of (10) with respect to cluster centroids and their weights. 

Cluster assignment

The CKM algorithm only provides the cluster centroids and does not assign data points to 
clusters. Nevertheless, this can be achieved afterwards by finding the centroid which has 
the highest similarity value to each data point. Concretely, a cluster centroid c in the feature 
space can be defined using Nyström extension as follows:

where y is a cluster centroid in the input (chromatograms) space, and where 
kc = [k(x1, y), . . . , k(xN , y)] is an unknown vector of similarities between y and all given 
chromatograms. The columns of matrix Us contain s eigenvectors of K corresponding to 
its s highest eigenvalues (the diagonal matrix �s ). The estimation of kc can be achieved by 
minimizing the difference between c and φ̃(y):

(10)�SK (�̃)−
k∑

i=1

αiSK (ci)�22

(11)c ≈ φ̃(y) = �−1
s UT

s kc

(12)min
y∈Rn

∥∥∥∥�
−1
s UT

s kc −
c

�c�

∥∥∥∥
2
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The importance of the normalization term in (12) has been highlighted in  [65] as an 
energy-preserving term to balance Nyström approximation. The solution of (12) can be 
found using the Moore-Penrose pseudo-inverse:

Finally, the chromatographic profile xi, i = 1, . . . ,N  is associated to cluster j if

The most important CKM feature is its constant execution time regardless of the data 
size. However, its computational complexity grows cubically with the number of clus-
ters, so that it is not realistic to process LC-MS data where tens of thousands of clusters 
are classically expected. To cope for this, a divisive hierarchical scheme can be instru-
mental: Starting from a small number of clusters, one iteratively splits each cluster into k 
sub-clusters until a sufficiently large number of clusters ktotal is achieved. However, this 
strategy requires, for each independent call of the clustering algorithm, an update of the 
data sketch as well as a complete assignment to clusters. Thus, to practically improve its 
computational efficiency, we leveraged the expected decrease of the cluster size at each 
iteration to optimize the code, and we decided to compute all the data sketches from the 
same frequency samples, either on the entire dataset (at first step) or on the cluster to be 
re-clustered (at the following iterations). Finally, it appeared these repetitive computa-
tions of the cluster sketches and assignments did not hamper the efficiency of the whole 
process.

Pre‑image computation

The combination of Nyström approximation and of random Fourier features leads to an 
additional difficulty: To recover the signal of each consensus elution profile, it is nec-
essary to compute its reverse mapping from the feature space back to the input space. 
This is referred to as a pre-image problem and it is ill-posed: only an approximation of 
the cluster centroids in the input space can be obtained. The conventional fixed point 
iteration method [66] cannot be applied due to the use of the W1 distance. Similarly, the 
reconstruction of a consensus chromatogram as the mean of the cluster chromatograms 
is not adapted, due to large scale non-linearities between the input and feature spaces, as 
illustrated in Fig. 1c.

To correct for this, we decided to compute a local (i.e. small-scale) mean by consider-
ing only a subset of the closest chromatograms. To determine the cluster centroid neigh-
bourhood N (c) , we proceeded similarly to the cluster assignment step, by choosing the 
chromatograms in the cluster J (c) with the highest similarities to the cluster centroid:

where similarities k(c, ·) were estimated using Eq. (13). Concretely, N (c) was defined by 
selecting the q closest neighbors (so that q = |N (c)| ). The tuning of parameter q is dis-
cussed with that of other parameters in the “Parameter tuning” section.

(13)kc ≈ Us�s
c

�c�
≈ �̃T c

�c�
.

(14)cj = arg max
c∈{c1,...,ck }

〈
φ̃(xi),

c

�c�

〉

(15)N (c) = {x1, . . . , xq} ⊂ J (c) | k(c, x) > k(c, y) ∀x ∈ N (c), y ∈ J (c) \N (c),
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Performance metrics

For experiments annotated with a ground truth (like UPS2GT dataset), clustering 
accuracy can be evaluated with the Rand index (RI). The Rand index measures the 
percentage of correctly clustered pairs of signals over the total number of pairs. 
Let us denote as U = {U1, . . . ,Uk} the obtained clusters and as V = {V1, . . . ,Vq} the 
ground truth clusters. A pair of signals is considered as correctly clustered: true pos-
itive (TP) or true negative (TN), if signals are assigned to the same cluster in U and 
V or on the contrary, to different clusters in U and V. A pair of signals is called false 
positive (FP) (resp. false negative (FN)), if signals are grouped in U (resp. V) but not 
in V (resp. U). Then, the Rand index is given by:

The maximum value of the Rand index is 1 (perfect match with the ground truth). Addi-
tionally, it is possible to evaluate how often different chromatograms are grouped in the 
same cluster; and how often similar chromatograms were assigned to different clusters. 
To do so, one classically relies on the Precision and Recall metrics, respectively:

For datasets without ground truth annotation (like both Ecoli datasets), it is possible 
to rely on the Davies - Bouldin (DB) index. Let us denote as J (cj) the jth cluster with 
the cluster centroid cj , and as {J (c1), . . . ,J (ck)} the set of obtained clusters. The within 
cluster distance reads:

The DB index is defined through the ratio of the within cluster distances to the between 
cluster distance dW1(ci, cj):

It should be noted that the distance metric in the DB index and in the clustering algo-
rithm must be the same, in our case the W1 distance in the original space. Moreover, the 
smaller the DB index, the better the clustering (as a good clustering minimizes cluster 
overlaps).

Finally, the computational load can easily be approximated by the recorded execu-
tion time, i.e. the difference between the end and start times, both of which being 
accessible in R with the Sys.time() function. For sake of brievety, execution times 
are reported for the Gaussian W1 kernel only, as Laplacian similarities are necessar-
ily faster to compute (no squared distance to evaluate).

(16)RI =
TP + TN

TP + TN + FP + FN

(17)Precision =
TP

TP + FP
Recall =

TP

TP + FN

(18)Sj =
1

|J (cj)|
∑

xi∈J (cj)

dW1(xi, cj)

(19)DB =
1

k

k∑

i=1

max
i �=j

Si + Sj

dW1(ci, cj)
,
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Results
Objectives of the experimental assessment

Many independent elements deserve evaluations: The first one is the practical interest 
of W1 distance in the context of LC-MS data. The second one is the computational load 
of our complete algorithm in function of the parameter tuning (on the one hand, an effi-
cient compression technique is used; on the other hand, one targets the clustering of raw 
data into a high number of clusters, making its efficiency a challenge). The third one is 
the clustering result itself. However, a classical evaluation of the clustering performances 
will be of little interest: In fact, all k-means related algorithms (including their kernelized 
versions) have been extensively studied [44], so that their strengths and weaknesses are 
now well-documented. For instance, k-means optimizers can easily be trapped into local 
minima and cannot naturally deal with outliers, which are both significant drawbacks; 
however, they scale up well to very-high dimensional data, which definitely is an asset 
for LC-MS applications. In contrast, highlighting the differences of our approach with 
respect to linkage-based agglomerative clustering and showing that despite noticeable 
differences, one obtains clusters which are meaningful, is of real practical interest to 
computational mass spectrometry experts.

As reported in the “Background” section, comparisons with Xnet is mandatory. How-
ever, considering the reported specificities (trace extraction preprocessing, envelope 
assumption simplification, etc.), comparing Xnet and CHICKN workflows may appear 
as somewhat arbitrary. To cope for this, we have made the following choices: First, we 
have focused on the core of each algorithm, as represented in Fig. 2a. Second, we have 
adapted the UPS2GT and Ecoli datasets to be processed by each algorithm: The UPS2GT 
data are already formatted into a CSV file meeting Xnet requirements. To construct 
a data matrix suitable to CHICKN from the UPS2GT data, we simply loaded the data 
points according to their retention time and trace labels in the matrix columns (similarly 
to Xnet, we excluded point with trace indices -1 and 0, as assumed to be noise). This 
led to a data matrix containing 57,140 columns and 6,616 rows. Conversely, to build the 
CSV files from Ecoli datasets, we stored any non-zero entry of the data matrix in a row, 
the column index being used in place of the trace labels.

Wasserstein distance validation

W1 distance was proposed to discriminate between signals that represent different 
elution profiles. To assess this choice, we compared it with two distances amongst the 
most widely used in mass spectrometry signal processing: The first one is the classical 
Euclidean distance. The second one is the peak retention time difference (or �RT): It 
corresponds to the difference between the time stamps at which each signal reaches 
its highest intensity value. Based on the Ecoli-FMS dataset (which provides the finest 
temporal sampling), we examined two situations presented in Fig.  3: In the first one, 
we selected 3 signals with different shapes, that we precisely aligned so that their pair-
wise � RT was zero; in other words, only the shape difference makes it possible to dis-
criminate them. Conversely, in the second situation, an elution profile was translated to 
mimic a case where only the � RT was meaningful. In both situations, the second chro-
matogram (chr2) stands as an in-between the first (chr1) and the third chromatogram 
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(chr3). As illustrated by the distance ratios given in the tables embedded in Fig. 3, both 
the Euclidean and the � RT distances are meaningful in one case: The Euclidean distance 
captures the shape information, while � RT captures the time translation effect. How-
ever, none of these classically used distances is able to capture both the shape and the 
translation simultaneously. On the contrary, W1 distance is efficient on both situations, 
making it a suitable distance to construct a similarity measure adapted to LC-MS data.

Fig. 2  Xnet and CHICKN comparison. a The method workflows. To allow for fair comparisons, we have 
focused on the core algorithms, depicted within the dotted rectangle. b–d The execution time comparison 
for Ecoli and for the UPS2GT datasets. The CHICKN execution time is decomposed into the data compression 
time (blue) and the clustering time (pink). Note that XNet had to be run on 5% of the Ecoli-DIA dataset 
and 10% of the Ecoli-FMS dataset only, to avoid “out of memory” issues. The experiments on Ecoli-DIA were 
performed on a laptop, while other datasets were processed with a multi-core machine
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Parameter tuning

Unlike Xnet, CHICKN is governed by eight parameters. Four of them are involved 
in the data compression: Nyström sample size (l), target rank (s), kernel parameter 
( γ ) and sketch size (m). Three parameters are involved in the hierarchical clustering: 
number of clusters at each iteration of the hierarchical clustering (k), upper bound of 
the total number of expected clusters ( ktotal ) and maximum number of levels in the 
hierarchy (T). The remaining parameter is the neighbourhood size in the consensus 
chromatogram computation (q). However, all parameters except γ and q are inter-
related (see the “Data compression” section as well as  [53, 62]) and can be expressed 
through k, ktotal and N (the dataset size) as follows:

These theoretical results can nonetheless be discussed. Notably, tuning the sketch size 
m to a larger value may be of interest if contrarily to our case, the computational effi-
ciency is not the only targeted goal. Thus, we have performed complementary investiga-
tion to relate the clustering performance (in terms of DB index) to the sketch size (see 
Additional file 4, leftmost figure). Oddly enough, it appears the DB index increases (i.e. 
the performances deteriorates) when the sketch size increases (leading to a more refined 
representation of the data). However, it appears to be an indirect consequence: when 
increasing m, more differences between the signals are represented, making it possible 
to define a larger number of smaller clusters (see Additional file 4, rightmost figure).

(20)

l ≈
√
N ,

s ≈
√
k · N 1/4,

m ≈ k3/2 · N 1/4,

T = ⌊log(ktotal, k)⌋.

Fig. 3  Distance metrics for chromatographic data analysis. Comparison of Wasserstein-1, Euclidean and RT 
difference distances on real chromatographic profiles from the Ecoli-FMS dataset
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Finally, four parameters remain ( γ , q, k and ktotal ). Concretely, we tuned the kernel 
parameter γ as an average of the power of p distances to the ν nearest neighbors for all 
chromatographic profiles:

where xi1 , . . . , xiν are ν neighbors of xi (selected among the l points of the Nyström sam-
ple) and p ∈ {1, 2} depending on the kernel type. Practically, we observed that tuning 
ν to 32 guaranteed each data point to be sufficiently connected to the rest of the data-
set, as advised in [37]. Moreover, we observed that γ was rather stable with respect to ν , 
for both Laplacian W1 and Gaussian W1 kernels. However, as expected, the stability is 
higher with the latter than with the former (see Additional file 5).

For q (in the consensus chromatogram computation) we observed that the shape 
cluster problem (see “Pre-image computation”  section) could only occur with sig-
nificantly large clusters (few tenth of elements). Thus, as preliminary stability anal-
ysis indicated us that the consensus chromatogram shapes were preserved across 
various values of ν (see Additional file  6), we decided to bound q with ν and to set 
q = min(ν, cluster size).

A known drawback of k-means objective function is the requirement to set the 
maximum number of expected clusters (knowing some clusters can remain empty). 
In our case, this is achieved by tuning k and ktotal . Yet, it should be noted that increas-
ing k leads to decreasing T for a fixed value of ktotal so that a trade-off between T and 
k must be sought. With this respect, we have evaluated different scenarios with k = 
2, 4, 8 and 16. CHICKN execution times (excluding the data compression step, which 
remains constant whatever the various scenario) on the smallest (UPS2GT) and larg-
est (Ecoli-FMS) datasets are depicted in Additional file  7. This experiment pointed 
out the importance of tuning k to a small enough value, which is coherent with the 
observation that the original CKM algorithm does not scale up well with the number 
of clusters. Practically, working with k = 2 or 4 appeared to be the most efficient.

In the case of UPS2GT, the expected number of isotopic envelopes is known (i.e. 
14,076). Thus, it is easy to tune ktotal accordingly (i.e. 214 = 47 = 16, 384 ). However, 
knowing that CHICKN does not rely on the envelope assumption simplification, it 
can be expected to find a much lower number of clusters: broadly, all the isotopic 
envelopes corresponding to different charge states of a same peptide can be expected 
to cluster together. Therefore, it also makes sense to tune ktotal to 45 = 1, 024 ; i.e. close 
enough from the expected number of identifiable peptides in the sample (around 700, 
according to [23]).

Tuning ktotal for any real life data (i.e. unlabeled) is much more complicated. How-
ever, the Escherichia Coli sample is well studied, and based on prior biological/ana-
lytical knowledge, 15,000 different peptides can be expected, broadly. Consequently, 
for both Ecoli datasets, ktotal = 16, 384 seems reasonable. Finally, even though it 
is not as sensible from a biological viewpoint, we have decided to also consider 
ktotal = 46 = 4, 096 , which provides an even ground for computational load compari-
sons (see next section for details).

(21)γ =
1

N · ν

N∑

i=1

ν∑

j=1

[dW1(xi, xij )]
p,
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To summarize, three different ways to tune ktotal are insightful: 1024 for the UPS2GT 
dataset only (as it matches the number of expected peptides); 4096 on all datasets (for 
computational benchmarcks); and 16,384 on all datasets (number of isotopic envelopes 
in UPS2GT and number of expected peptides in Ecoli datasets).

Finally, we fixed the remaining parameter values using the formulas in Eq. (20), as 
summarized in Table 1.

Computational load

We have compared the execution times of CHICKN and Xnet cores (see Fig. 2a). Previ-
ously reported comparisons showed us that CHICKN execution time largely depends 
on k. However, it only has a sub-linear complexity with respect to ktotal : As illustrated 
in Additional file  8, multiplying ktotal by 4 only results in a threefold (resp. twofold) 
increase in the CHICKN run-time for the Ecoli-FMS (resp. UPS2GT) dataset. As reduc-
ing ktotal to limit the execution time will therefore be of little interest, experiments here-
after reported only focused on the influence of k. Despite CHICKN being more efficient 
when run with k = 2 and 4 (see “Parameter tuning” section), we also included com-
parisons with k = 8 and 16 to investigate the consequences of sub-optimal parameter 
tuning. The corresponding tests are referred to as CHICKN2, CHICKN4, CHICKN8 
and CHICKN16. Therefore, to rely on an even basis for comparisons, we focused on 
ktotal = 4, 096 : it is a power of 16, contrarily to 1024 and 16,384 (which are even not a 
power of 8).

Since CHICKN algorithm embeds a compressive k-means algorithm which may con-
verge towards different local minima depending on the stochasticity of several steps, 
each scenario was repeated 10 times and the average execution time was reported. In 
contrast, Xnet being deterministic, it was executed once. In [17], Xnet exhibits impres-
sive computational times on pre-processed and adequately formatted data. However, 
raw LC-MS data stored in a matrix format are more cumbersome. Thus, our first experi-
ment was to compare the efficiency of Xnet and of CHICKN on the Ecoli-DIA dataset, 
using a laptop machine with the following characteristics: HP Pavilion g6 Notebook PC 
with Intel(R) Core(TM) i5-3230M CPU @ 2.60 GHz, 8 Gb of RAM, 4 cores, running 
under Ubuntu 18.04.4 LTS OS. Xnet produced an “out-of-memory” error when try-
ing to cluster more than 10,000 columns (i.e. 5% of the Ecoli-DIA dataset) in a single 
batch. This is why Fig. 2b compares the computational time of CHICKN2, CHICKN4, 
CHICKN8 and of CHICKN16 on the entire Ecoli-DIA dataset to that of Xnet on only 
5% of the same dataset. On this figure, different colors are used to discriminate between 
the clustering step per se and CHICKN preliminary data compression step. Let us note 
that the compression step is time consuming, however, it also includes the computa-
tions of all the W1 similarities. This as-a-matter-of-factly illustrates the computational 
cost of relying on more elaborated metrics to capture the semantics of data as complex 
as LC-MS ones. Except for CHICKN16, which has already been pointed as suboptimal, 
CHICKN is always faster for a dataset 20 times larger.

This first experiment clearly showed CHICKN could be used on a simple laptop, 
even with large datasets, in long but acceptable times (half an hour to two hours, 
broadly). Then, to reduce the execution times of our multiple experiments, but also to 
allow Xnet working on a larger dataset, we moved to a larger station using 10 cores of 



Page 21 of 30Permiakova et al. BMC Bioinformatics           (2021) 22:68 	

an Intel Xeon CPU E5-2470 v2 @ 2.40 GHz, 94 GB of RAM and running with CentOS 
Linux release 7.4.1708. As depicted in Fig. 2c, on such a machine, CHICKN was able 
to process Ecoli-FMS within 5h30 (most of them being necessary to perform the pre-
liminary compression), despite its huge size. On the contrary, with the same machine, 
Xnet only processed 10% of it in a comparable time (almost 8 hours). Moreover, larger 
fractions of the dataset were not processable, as leading to memory failure.

To explain this discrepancy, we noticed that Xnet spent a considerable time to con-
struct the preliminary network. The nature of Ecoli data (raw data without any trace 
pre-processing and recorded with the highly resoluted profile mode, see “Materi-
als”  section) contrasts with that of UPS2GT, on which Xnet is really efficient. As it 
appears on Fig. 2d, CHICKN is clearly not as fast as Xnet to process UPS2GT: The 

Fig. 4  Statistical result analysis. a Rand index, b Precision, c Recall and d–e DB index depending on the k 
and ktotal parameters; CHICKN2 and CHICKN4 tests are depicted in purple and light blue respectively; For the 
UPS2GT dataset, additional comparisons with Xnet (in red) are provided
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Xnet analysis took less then 40 s, while CHICKN computation times varied from 2 to 
7 min depending on values of parameter k (from 2 to 16).

As a whole, these experiments illustrate the utmost importance of prior preprocessing 
methods when studying LC-MS data. In this context, algorithms working on raw data, 
such as CHICKN, are real assets.

Cluster evaluation

Figure 4 reports the Rand index, Precision and Recall (UPS2GT dataset) as well as the 
DB index (Ecoli datasets) with different clustering strategies: CHICKN2 and CHICKN4 
(with ktotal ∈ {1, 024 ; 4, 096 ; 16, 384} and with p = 2 ), as well as Xnet (on UPS2GT only, 
for computational reasons). A similar figure for p = 1 is available in Additional file 9.

First, it can be noted that the Rand index is hardly informative (Fig. 4a): All clustering 
methods exhibit an index of almost 1, and it is necessary to go three (and sometimes 
four) decimals to notice a difference. Such high values are a direct consequence of the 
huge number of expected clusters in UPS2GT datasets, which comes with an excessively 
large number of true negative pairs (almost 99 % of all possible pairs). In this context, 
the Rand index obtained with “only” 1024 expected clusters is particularly highlighting: 
Despite 16 times less clusters, it achieves an equivalent index. This indicates that, rela-
tively, the provided clustering is probably of better quality.

However, contrarily to the Rand index, Precision and Recall are informative to com-
pare with Xnet, as the true negative pair count does not level the scores. With this 
regard, it clearly appears on Fig. 4b that the Precision is incomparably better with Xnet. 
Although foreseeable (ground truth with 14,076 envelopes whereas CHICKN sought a 
thousand of peptides), this requires a deeper analysis: Concretely, Xnet tends to over-
cluster (which artificially improves the Precision index), as it provided 17,153 clusters 
covering 93% of the dataset (7% of the elution profiles are excluded by Xnet) where the 
ground truth labels proposed only 14,076 of them (on 100% of the dataset). In addi-
tion, Xnet priors were trained on the same UPS2GT dataset as for evaluation, so that 
high performance are expectable. With this regard, it is particularly noteworthy that the 
Recall (Fig.  4c) varies the other way around. Concretely, it is best for CHICKN4 with 
ktotal = 1, 024 despite this number being completely different from the one derived from 
the ground truth. In addition to be in line with our observations on the Rand index, this 
concurs with the peptide-level knowledge of the dataset: CHICKN was supposed to 
group together differently charged peptides, which it did (see Additional files 10 and 14 
as well as  below), as it provided only 510 (CHICKN4)/ 740 (CHICKN2) clusters on the 
entire UPS2GT dataset, hereby leaving 300 to 500 empty clusters4; and leading to a num-
ber of clusters in line with the expected number of peptides in the sample. Overall, the 
differences between Xnet and CHICKN on UPS2GT seem to be more related to the dif-
ference of objectives (finding isotopics envelopes vs. finding peptide-related clusters), 
as already discussed. Interestingly, this interpretation is confirmed by the Ecoli dataset 
experiments.

4  More generally, the capability of CHICKN to adapt the cluster sizes to the data distribution is illustrated on Additional 
file 11.
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In absence of ground truth for both Ecoli datasets, we chose the tuning minimizing 
the DB index (see Fig.  4d, e): ktotal = 16, 384 for Ecoli-FMS and for Ecoli-DIA. With 
such a tuning, we obtained around 11,600 (resp. around 9,400) non-empty clusters for 
Ecoli-FMS (resp. Ecoli-DIA). This number is obviously lower than the expected number 
of identifiable peptides (between 15 and 20 thousands), however under-clustering was 
clearly supported by empirical observations (see above, as well as Additional file 4, right-
most figure). This clearly means that CHICKN could not separate too many peptides 
with too similar elution profiles. However, this can be easily explained by the difference 
of complexity between the UPS2GT and the Ecoli samples: while the former is fairly 
simple (a handful of spiked proteins), the latter ones are complex real life samples for 
which the discriminative power of the liquid chromatography is clearly challenged (as 

Fig. 5  Xnet and CHICKN clusters for UPS2GT dataset. Each of the four lines represent a series of 
chromatograms in the context of their Xnet and CHICKN Cluster. On the plot of the leftmost column, a series 
of chromatograms with similar shapes are represented in different colors (2 or 3) according to the distinct 
Xnet clusters they belong to. In the second column, each elution profile is represented with the same color, 
according to its m/z position, hereby illustrating that Xnet clusters similar signals in different clusters because 
of a too large m/z difference. The plot of the third column represents the CHICKN cluster which encompasses 
all the Xnets cluster profiles of the leftmost column (in green), as well as other signals (in gray) falling in 
the same CHICKN cluster, hereby illustrating CHICKN builds meaningful patterns irrespective of the m/z 
information that is essential to isotopic envelope construction. In the rightmost column, the m/z positions of 
the signals of the third columns, depicited with the same color code
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illustrated in the next section). This is notably why fragmentation spectra are classically 
used to identify as many as 15 to 20 thousand peptides. However, achieving to discrimi-
nate half of this number of peptides with MS1 processing only is noticeable.

Finally, let us note, that, in general, relying on k = 4 provided slightly better scores. We 
assume that k = 4 was a trade-off between cluster diversity ( k > 4 ) and computational 
efficiency ( k = 2 ), as discussed above.

Discussions
Cluster interpretability

Beyond evaluation metrics, it is insightful to compare algorithms according to the inter-
pretability of the clusters they can provide. Figure 5 represents different elution profiles 
from UPS2GT (their shape as well as their m/z position) in the context of the clusters 
they fall into, according to CHICKN and Xnet. The envelope assumption simplification 
clearly appears: As expected, Xnet splits into different clusters elution profiles that are 
arguably similar for the reason they have too different m/z values. In contrast, CHICKN 
promotes the inner coherency of clusters as it aggregates related Xnet clusters together. 
Notably, Additional files 10 and 14 show a subset of 12 clusters provided by CHICKN, 
each gathering at least 2 differently charged ions from a same peptide (all of them being 
identified and manually validated with the associated MS2 spectra). Interestingly, the 
multiple isotopes of each ion also appear to be grouped, as illustrated by the manifold 
of profile co-clustered with each ion. Morevoer, a refine analysis of CHICKN clusters 
shows that, globally, they contain similar chromatograms, which is coherent both with 
the clustering metrics provided above, and with the expected behavior of the W1 kernel. 
However, some clusters also contain noise signals, as for examples, the first two lines of 
Fig. 5. Although undesirable, this is a direct consequence of (i) the grouping capabilities 
of CHICKN, which captures similarities between slightly different but largely overlap-
ping signals (third line); and (ii) the possibility to run CHICKN on raw data, which also 
contains many spurious signals that need be spread across various meaningful clusters.

Similar conclusions regarding CHICKN behavior can be derived from the Ecoli data-
sets (let us focus on the Ecoli-FMS one, as it displays elution profile signals with higher 
sampling resolution, due to the Full-MS acquisition). The majority of clusters (Fig. 6 for 
the Gaussian W1 kernel and Additional file  12, for the Laplacian W1 one) containing 
high intensity signals depicts meaningful consensus chromatograms, as well as similar 
profiles even though corresponding to different m/z values. However, we observed that 
some clusters could be separated into several sub-clusters to improve readability (see 
Additional file 13). It could intuitively be interpreted as the necessity to increase ktotal . 
However, two observations goes against this: First, from a signal viewpoint, as the phe-
nomenon mainly impacts lower intensity profiles, it also highlights the difficulty of find-
ing consensus patterns near the noise level, which equally affects most of the clustering 
algorithms. In this context, over-clustering is usually not considered a viable solution. 
Second, from an analytical viewpoint, the clustering algorithm cannot be expected to 
separate beyond the chromatographic capabilities (as in Additional file  13, where few 
different profiles have too important overlap to expect discrimination).

Finally, it is worthy focusing on consensus chromatograms: interestingly enough, most 
of those observed in Fig. 6 and in Additional file 12 have meaningful shapes that are not 
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Fig. 6  Examples of well-formed clusters for the Ecoli-FMS dataset. 12 clusters proposed by CHICKN 
(represented as time series), where each chromatogram is represented in gray, and where the consensus 
chromatogram is represented in red. The numbers above each example indicate the cluster ID and the 
number of chromatograms it encompasses

Table 1  Summary of the different combinations of parameter tuning

Dataset γ l s m k T

ktotal = 1, 024 ktotal = 4, 096 ktotal = 16, 384

UPS2GT 5.96e−06 240 22 44 2 10 12 14

6.9e−06 240 31 124 4 5 6 7

Ecoli-DIA 9.06e−06 432 30 60 2 – 12 14

9.27e−06 432 42 168 4 – 6 7

Ecoli-FMS 7.07e−07 863 42 84 2 – 12 14

7.03e−07 863 59 236 4 – 6 7
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deteriorated by the presence of noisy signals in the cluster, which can be interpreted as 
a positive consequence of our method to compute the cluster centroids pre-image based 
on a restricted neighborhood (see “Pre-image computation” section).

Implementation and code availability

CHICKN algorithm was implemented in R. The W1 distance computations and the 
gradient descent were accelerated using C and interfaced with R thanks to Rcpp. The 
data compression procedure and the hierarchical strategy were parallelized with Rcpp-
Parallel, foreach and doParallel. To access and manipulate large data matri-
ces, we relied on the File-backed Big Matrix class of the bigstatsr package  [67]. A 
File-backed matrix allows to overcome the memory limitation by storing the data on the 
disk, using a binary memory-mapped file.

For practitioners, the proposed algorithm is available through an R package, available 
on Gitlab [68], as well as on the CRAN [69].

Conclusion
We have presented two complementary contributions to the cluster analysis of LC-MS 
data. First, we have proposed a unique combination of hierarchical strategy, of Nyström 
approximation and of random Fourier features based compression technique to scale up 
the kernel k-means clustering to the large size, the large dimensionality and the large 
number of expected clusters of LC-MS data. Second, we have proposed to rely on the 
optimal transport framework (Wasserstein-1 distance) to define a similarity measure 
and we have shown it is insightful to capture the semantics of elution profiles in LC-MS 
data. On a more theoretical front, we have established the Wasserstein-1 distance could 
lead to a positive-definite Laplacian kernel, and exhibit a path for further investigations 
about a Gaussian one.

We have demonstrated these contributions could help extracting other structures than 
isotopic envelopes, even on multiplexed data acquired with Data Independent Acquisi-
tion protocol. However, the experimental assessment of these contributions is difficult 
to interpret. On the one hand, when compared to the canonical application of isotopic 
envelope extraction, CHICKN does not outperform the state-of-the-art algorithm (better 
Recall and worse Precision, as it tends to under-cluster rather than over-cluster). How-
ever, it provides an important advantage: it can be run on raw data and does not require 
costly preprocessing. As for an application-independent evaluation, it clearly appears that 
CHICKN is able to extract patterns from the data which are not accessible to linkage-
based algorithms. Put together, we interpret this as following: Although cluster analysis 
has made important progresses in the theoretical front over the past 50 years, process-
ing LC-MS data remains a challenge which requires research efforts. It is still necessary 
to propose complementary and differently principled algorithms that will help make 
LC-MS practitioners extract the best from their data. In this context, new kernels could 
be defined; and numerous state-of-the-art clustering algorithms recently developed in the 
machine learning community could advantageously be applied to LC-MS data.
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The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-021-03969​-0.   
Below is the link to the electronic supplementary material.

Additional file 1: Ecoli-FMS data matrix. Figure depicting the matrix built thanks to the mass spectrum interpolation 
of Ecoli-FMS data. Each matrix column corresponds to a chromatographic profile for a fixed m/z value. Maximum 
Intensity for columns and for rows is depicted in bar plots.

Additional file 2: Preprocessing details. Detailed explanations of Eq. (1) (interpolation needs, justification of the 
method and parameter tuning).

Additional file 3: Kernel positive (semi-)definiteness. Empirical evidences (Gaussian W1 case) and formal demonstra‑
tion (Laplacian W1 case) of the P(S)D-ness of the proposed kernels.

Additional file 4: Sketch size influence on the clustering. Influence of the sketch size on performances clustering of 
the Ecoli-DIA dataset, in function of the computational cost and the number of clusters.

Additional file 5: Kernel hyperparameter stability. Figure showing the stability of the hyperparameter γ of Laplacian 
and Gaussian W1 kernels with respect to the neighborhood maximum size ν.

Additional file 6: Consensus chromatogram stability. A set of 10 figures exemplifying the stability of the pre-image 
computation through the averaging of a neighborhood of varying size.

Additional file 7: Influence of k on the execution time of CHICKN. Figure depicting CHICKN execution time as a 
function of k, the number of clusters at each iteration, for both UPS2GT (blue) and Ecoli-FMS (red) datasets.

Additional file 8: Influence of ktotal on the execution time of CHICKN. Figure depicting CHICKN execution time as a 
function of ktotal, the maximum number of clusters, for both UPS2GT (blue) and Ecoli-FMS (red) datasets.

Additional file 9: Performance evaluation for the Laplacian W1 kernel. This figure is the same as Fig. 4, yet with p = 1 
instead of p = 2. The performances on the UPS2GT dataset are a bit lower than with the Gaussian W1 kernel (equiva‑
lent Rand index, better precision, lower recall), making it unable to compete with Xnet. However, on raw data such 
as Ecoli-DIA (i.e., on data CHICKN should work with), the Laplacian W1 kernel exhibit slightly better DB index than its 
Gaussian counterpart; however, this is hardly significant, making us conclude that strict performance should not be 
the criterion to choose the kernel.

Additional file 10: Differently charged ions of a same peptide tend to cluster together. A subset of clusters was 
manually inspected so as to label as many profiles with the corresponding identified ion. Although this labelling can‑
not be exhaustively conducted due to the largely incomplete coverage of MS/MS analysis, it could be established 
that ions of a same peptide cluster together in many cases.

Additional file 11: Cluster size distribution. Histograms of the cluster size distribution resulting from the application 
of CHICKN on each of the three datasets.

Additional file 12: Examples of well-formed clusters for the Ecoli-FMS dataset. Same figure as Fig. 6 with Laplacian 
W1 kernel.

Additional file 13: Examples of multiplexed clusters for the Ecoli-FMS dataset using CHICKN method. Figure illustrat‑
ing that dividing multiplexed clusters into several sub-clusters would improve the elution profile interpretation. The 
real chromatograms and the consensus chromatograms are depicted in gray and in red, respectively.

Additional file 14: Differently charged ions of a same peptide tend to cluster together. Figure similar to Additional 
File 10. It depicts another subset of CHICKN clusters with chromatographic profiles manually annotated with the cor‑
responding peptide ion. It could be established that ions of a same peptide tend to cluster together.
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