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Background
Each year, almost 10 million individuals in the United States suffer from macular degen-
eration, also known as age-related macular degeneration (AMD), and more than 200,000 
people develop choroidal neovascularization, a severe blinding form of advanced AMD 

Abstract 

Background:  To diagnose key pathologies of age-related macular degenera‑
tion (AMD) and diabetic macular edema (DME) quickly and accurately, researchers 
attempted to develop effective artificial intelligence methods by using medical images.

Results:  A convolutional neural network (CNN) with transfer learning capability is 
proposed and appropriate hyperparameters are selected for classifying optical coher‑
ence tomography (OCT) images of AMD and DME. To perform transfer learning, a 
pre-trained CNN model is used as the starting point for a new CNN model for solving 
related problems. The hyperparameters (parameters that have set values before the 
learning process begins) in this study were algorithm hyperparameters that affect 
learning speed and quality. During training, different CNN-based models require dif‑
ferent algorithm hyperparameters (e.g., optimizer, learning rate, and mini-batch size). 
Experiments showed that, after transfer learning, the CNN models (8-layer Alexnet, 
22-layer Googlenet, 16-layer VGG, 19-layer VGG, 18-layer Resnet, 50-layer Resnet, and a 
101-layer Resnet) successfully classified OCT images of AMD and DME.

Conclusions:  The experimental results further showed that, after transfer learning, the 
VGG19, Resnet101, and Resnet50 models with appropriate algorithm hyperparameters 
had excellent capability and performance in classifying OCT images of AMD and DME.
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[1, 2]. Additionally, nearly 750,000 individuals aged 40 or older suffer from diabetic mac-
ular edema (DME) [3], a vision-threatening form of diabetic retinopathy that causes fluid 
accumulation in the central retina. Many researchers have attempted to develop effective 
artificial intelligence algorithms by using medical images to diagnose key pathologies of 
AMD and DME quickly and accurately.

Naz et  al. [4] addressed the problem of automatically classifying optical coherence 
tomography (OCT) images to identify DME. They proposed a practical and relatively 
simple approach to using OCT image information and coherent tensors for robust clas-
sification of DME. The features extracted from thickness profiles and cysts were tested 
using 55 diseased and 53 normal OCT scans in the Duke Dataset. Comparisons revealed 
that the support vector machine with leave-one-out had the highest accuracy of 79.65%. 
For identifying DME, however, acceptable accuracy (78.7%) was achieved by using a sim-
ple threshold based on the variation in OCT layer thickness. Najeeb et al. [5] used a com-
putationally inexpensive single layer convolutional neural network (CNN) structure to 
classify retinal abnormalities in retinal OCT scans. After training using an open-source 
retinal OCT dataset containing 83,484 images from patients, the model achieved accept-
able classification accuracy. In a multi-class comparison (choroidal neovascularization 
(CNV), DME, Drusen, and Normal), the model achieved 95.66% accuracy. Nugroho [6] 
used various methods, including histogram of oriented gradient (HOG), local binary 
pattern (LBP), DenseNet-169, and ResNet-50, to extract features from OCT images and 
compared the effectiveness of handcrafted and deep neural network features. The evalu-
ated dataset contained 32,339 instances distributed in four classes (CNV, DME, Drusen, 
and Normal). The accuracy values for the deep neural network-based methods (88% and 
89% for DenseNet-169 and ResNet-50, respectively) were superior to those for the non-
automatic feature models (50% and 42% for HOG and LBP, respectively). The deep neu-
ral network-based methods also obtained better results in the underrepresented class. 
In Kermany et al. [7], a diagnostic tool based on a deep-learning framework was used 
to screen patients with common treatable blinding retinal diseases. By using transfer 
learning, the deep-learning framework could train a neural network with a fraction of 
the data required in conventional approaches. When an OCT image dataset was used 
to train the neural network, accuracy in classifying AMD and DME was comparable to 
that of human experts. In a multi-class comparison among CNV, DME, Drusen, and 
Normal, the framework achieved 96.1% accuracy. In Perdomo et al. [8], an OCT-NET 
model based on CNN was used for automatically classifying OCT volumes. The OCT-
NET model was evaluated using a dataset of OCT volumes for DME diagnosis using a 
leave-one-out cross-validation strategy. Accuracy, sensitivity, and specificity all equaled 
93.75%. The above results of research in AMD indicate that automatic classification 
accuracy needs further improvement.

Therefore, the motivation of this study was to find CNN-based models and their appro-
priate hyperparameters that use transfer learning to classify OCT images of AMD and 
DME. The CNN-based models were used for transfer learning included an 8-layer Alexnet 
model [9], a 22-layer Googlenet model [10], 16- and 19-layer VGG models (VGG16 and 
VGG19, respectively; [11]), and 18-, 50- and 101-layer Resnet models (Resnet18, Resnet50, 
and Resnet101, respectively; [12]). The algorithm hyperparameters included optimizer, 
mini-batch size, max-epochs, and initial learning rate. The experiments showed that, after 
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transfer learning, the VGG19, Resnet101, and Resnet50 models with their appropriate 
algorithm hyperparameters had excellent performance and capability in classifying OCT 
images of AMD and DME.

This paper is organized as follows. The research problem is described in Sect. 2. Section 3 
describes the research methods and steps. Section 4 presents and discusses the results of 
experiments performed to evaluate performance in classifying OCT images of AMD and 
DME. Finally, Sect. 5 concludes the study.

Problem description
AMD and DME

The macula, which is located in the center of the retina, is essential for clear visualization 
of nearby objects such as faces and text. Various eye problems can degrade the macula and, 
if left untreated, can even cause loss of vision. Age-related macular degeneration is a medi-
cal condition that can cause blurred vision or loss of vision in the center of the visual field. 
Early stages of AMD are often asymptomatic. Over time, however, gradual loss of vision 
in one or both eyes may occur. Loss of central vision does not cause complete blindness 
but can impair performance of daily life activities such as recognizing faces, driving, and 
reading. Macular degeneration typically occurs in older people. The classifications of AMD 
are early, intermediate, and late. The late type is further classified as “dry” and “wet” [13]. 
In the “dry” type, which comprises 90% of AMD cases, retinal deterioration is associated 
with formation of small yellow deposits, known as Drusen, under the macula. In the “wet” 
AMD type, abnormal blood vessel growth (i.e., CNV) occurs under the retina and macula. 
Bleeding and fluid leakage from these new blood vessels can then cause the macula to bulge 
or lift up from its normally flat position, thus distorting or destroying central vision. Under 
these circumstances, vision loss may be rapid and severe. A DME is characterized by break-
down of blood vessel walls in the retina resulting in accumulation of fluid and proteins in 
the retina. The resulting distortion of the macula then causes visual impairment or loss of 
visual acuity. One precursor of DME is diabetic retinopathy, in which blood vessel damage 
in the retina causes visual impairment [5].

OCT images of AMD and DME

In this study, all OCT images of AMD and DME used in the experiments were obtained 
from Kermany et al. [14]. The images were divided into four classes: CNV, DME, Drusen, 
and Normal. Figure 1 shows representative images of the four OCT classes.

Considered problem

The considered problem was how to classify large numbers of different OCT images of 
CNV, DME, Drusen, and Normal efficiently and accurately. Since OCT images of CNV, 
DME, Drusen, and Normal can differ even for the same illness, a specialist or machine 
learning is needed to assist the physician in classifying the images.

Methods
The research methods and steps were collecting data, processing OCT images of AMD 
and DME, selecting a pre-trained network for transfer learning, classifying OCT images 
of AMD and DME by CNN-based transfer learning, comparing performance among 
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different CNN-based transfer learning approaches, and comparing performance with 
other approaches in classifying OCT images of AMD and DME. The detailed steps were 
as follows.

Collecting data and processing OCT images of AMD and DME

The OCT images of AMD and DME in Kermany et al. [14] were split into a training set 
and a testing set of images. The training set had 83,484 images, including 37,205 CNV 
images, 11,348 DME images, 8,616 Drusen images, and 26,315 images of a normal eye 
condition. The testing set used for network performance benchmarking contained 968 
images, 242 images per class. To maintain compatibility with the CNN-based architec-
ture, each OCT image was processed as a 224 × 224 × 3 image, where 3 is the number of 
color channels.

Selecting pre‑trained network for transfer learning

Transfer learning is a machine learning method in which a model developed for a 
task is reused as the starting point for a model developed for another task. In trans-
fer learning, pre-trained models are used as the starting point for performing com-
puter vision and natural language processing tasks. Transfer learning is widely used 
because it reduces the computation time, the computational resources, and the exper-
tise needed to develop neural network models for solving these problems [15]. In his 
NeurIPS 2016 tutorial, Ng [16] highlighted the potential uses of transfer learning 
and predicted that, after supervised learning, transfer learning will be the next major 
commercial application of machine learning. In transfer learning, a pre-trained model 
is used to construct a predictive model. Thus, the first step is to select a pre-trained 

CNV

DME

Drusen

Normal

Fig. 1  Representative optical coherence tomography images of the CNV, DME, Drusen, and Normal classes. 
CNV choroidal neovascularization, DME diabetic macular edema
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source model from available models. The pool of candidate models may include mod-
els developed by research institutions and trained using large and complex datasets. 
The second step is to reuse the model. The pre-trained model can then be used as 
the starting point for a model used to perform the second task of interest. This may 
involve using all or parts of the model, depending on the modeling technique used. 
The third step is to tune the model. Depending on the input–output pair data avail-
able for the task of interest, the user may consider further modification or refinement 
of the model.

The widely used commercial software program Matlab R2019 by MathWorks has been 
validated as effective for pre-training neural networks for deep learning. The starting 
point for learning a new task was pretraining, in which the image classification network 
was pretrained to extract powerful and informative features from natural images. Most 
pre-trained networks were trained with a subset of the ImageNet database [17] used in 
the ImageNet Large-Scale Visual Recognition Challenge [18]. After training on more 
than 1 million images, the networks could classify images into 1000 object categories, 
e.g., keyboard, coffee mug, pencil, and various animals. Transfer learning in a network 
with pre-training is typically much faster compared to a network without pre-training.

Classifying OCT images of AMD and DME by CNN‑based transfer learning

Fine-tuning a pre-trained CNN with transfer learning is often faster and easier than 
constructing and training a new CNN. Although a pre-trained CNN has already 
learned a rich set of image features, it can be fine-tuned to learn features specific to 
a new dataset, in this case, OCT images of AMD and DME. Fine-tuning a network is 
slower and requires more effort than simple feature extraction. However, since the 
network can learn to extract a different feature set, the final network is often more 
accurate. The starting point for fine tuning deeper layers of the pre-trained CNNs for 
transfer learning (i.e., Alexnet, Googlenet, VGG16, VGG19, Resnet18, Resnet50, and 
Resnet101) was training the networks with a new data set of OCT images of AMD 
and DME. Figure 2 is a flowchart of the CNN-based transfer learning procedure.

Comparison of transfer learning performance in different CNN models

In the experiments, Alexnet, Googlenet, VGG16, VGG19, Resnet18, Resnet50, and 
Resnet101 were used to classify OCT images of AMD and DME in five independent 
runs. The results recorded for the training set and the testing set included (1) the accu-
racy in each run of the experiment, (2) the average accuracy for five independent runs, 
and (3) the standard deviation in the accuracy for five independent runs. Accuracy was 
defined as the proportion of true positive or true negative results for a population.

Select and load 
pre-trained 

network

Replace
final layers

Predict and 
assess network 

accuracy

Deploy 
results

Train 
network

Fig. 2  Flowchart of CNN-based transfer learning procedure
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Classification performance in comparison with other approaches

The accuracy, precision, recall (i.e., sensitivity), specificity, and F1-score values were used 
to compare performance with other approaches. Precision was assessed by positive pre-
dictive value (number of true positives over number of true positives plus number of 
false positives). Recall (sensitivity) was assessed by true positive rate (number of true 
positives over the number of true positives plus the number of false negatives). Specific-
ity was measured by true negative rate (number of true negatives over the number of 
false positives plus the number of true negatives). The F1-score, a function of precision 
and recall, was used to measure prediction accuracy when classes were very imbalanced. 
In information retrieval, precision is a measure of the relevance of results while recall is 
a measure of the number of truly relevant results returned. The formula for F1-score is

Results
The proposed CNN-based transfer learning method with appropriate hyperparameters 
was experimentally used to classify OCT images of AMD and DME. The OCT images in 
Kermany et al. [14] were used to train models and to test their performance. The experi-
mental environment was Matlab R2019 and its toolboxes developed by The MathWorks. 
The network training options were the options available in the Matlab toolbox for CNN-
based transfer learning with algorithm hyperparameters, i.e., ‘Optimizer’, ‘MiniBatch-
Size’, ‘MaxEpochs’ (maximum number of epochs), and ‘InitialLearnRate’.

The experimental data for OCT images of AMD and DME included a training set and 
a testing set. To maintain compatibility with the CNN-based architecture, each OCT 
image was processed as a 224 × 224 × 3 image, where 3 is the number of color channels. 
Table 1 shows the training and testing sets of OCT images of AMD and DME.

For training, different CNN-based models require different algorithm hyperparam-
eters. The hyperparameter values are set before the learning process begins. Table  2 
shows the selected CNN-based models with algorithm hyperparameters. The training 
option was use of ‘sgdm’, a stochastic gradient descent with a momentum optimizer. 
MiniBatchSize used a mini-batch with 40 observations at each iteration. MaxEpochs set 
the maximum number of epochs for training. InitialLearnRate was an option for drop-
ping the learning rate during training.

For each CNN-based model, Table  3 shows the accuracy in each experiment, the 
average accuracy for all experiments, and the standard deviation (SD) in accuracy in 

(1)F1 - score = 2×
precision× recall

precision+ recall

Table 1  Training and testing set of OCT images of AMD and DME

Class Training set Testing set Total images

Normal 26,315 242 26,557

CNV 37,205 242 37,447

DME 11,348 242 11,590

Drusen 8616 242 8858

Total images 83,484 968 84,452
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classifying OCT images of AMD and DME. Data are shown for five independent runs of 
the experiments performed in the training set and in the testing set.

Table 3 shows that the average accuracy in the testing set ranged from 0.9750 to 0.9942 
when using the CNN-based models with appropriate hyperparameters for transfer 
learning. For the testing set, the VGG19, Resnet101, and Resnet50 models had aver-
age accuracies of 0.9942, 0.9919, and 0.9909, respectively, which were all very high (all 
exceeded 0.99). Moreover, the SDs in accuracy obtained by VGG19 and Resnet101 were 
all 0.0005. That is, the VGG19 and Resnet101 had the most robust performance in clas-
sifying OCT images of AMD and DME.

Figure 3 shows how model training progressively improved accuracy in VGG19. The 
selected training option was sgdm optimizer. MiniBatchSize used a mini-batch with 40 
observations at each iteration. Iterations per epoch were 2087(= 83,484/40), which was 
the number of training images/MiniBatchSize. MaxEpochs, the maximum number of 
epochs, were set to 3. Therefore, maximum iterations were 6261(= 2087 × 3), which was 
iterations per epoch × MaxEpochs. The blue line shows the progressive improvement in 

Table 2  Selected CNN-based models with algorithm hyperparameters

CNN-based model Hyperparameters

Optimizer MiniBatchSize MaxEpochs InitialLearnRate

Alexnet sgdm 40 5 10–4

Googlenet sgdm 40 5 10–4

VGG16 sgdm 40 3 10–4

VGG19 sgdm 40 3 10–4

Resnet18 sgdm 40 5 10–4

Resnet50 sgdm 40 5 10–4

Resnet101 sgdm 40 5 10–4

Table 3  Accuracy of  CNN models and  standard deviation (SD) for  classification of  OCT 
images of AMD and DME in five independent runs of the experiments

CNN-based model Image set Experiments

1 2 3 4 5 Average accuracy SD

Alexnet Training set 0.9521 0.9479 0.953 0.9545 0.9508 0.9517 0.0025

Testing set 0.9576 0.9928 0.9752 0.969 0.9804 0.9750 0.0131

Googlenet Training set 0.9527 0.9525 0.9536 0.9539 0.9527 0.9531 0.0006

Testing set 0.9845 0.9855 0.9793 0.9855 0.9845 0.9839 0.0026

VGG16 Training set 0.9592 0.9602 0.9602 0.9573 0.9602 0.9594 0.0013

Testing set 0.9773 0.9959 0.9959 0.9783 0.9959 0.9887 0.0099

VGG19 Training set 0.9618 0.9593 0.961 0.9593 0.961 0.9605 0.0011

Testing set 0.9938 0.9938 0.9948 0.9938 0.9948 0.9942 0.0005

Resnet18 Training set 0.9521 0.9509 0.9513 0.9507 0.9508 0.9512 0.0006

Testing set 0.9866 0.9886 0.9804 0.9866 0.9814 0.9847 0.0036

Resnet50 Training set 0.9565 0.9507 0.9568 0.9572 0.9568 0.9556 0.0028

Testing set 0.9917 0.9907 0.9897 0.9907 0.9917 0.9909 0.0008

Resnet101 Training set 0.9592 0.9584 0.9595 0.9595 0.9587 0.9591 0.0005

Testing set 0.9917 0.9917 0.9917 0.9917 0.9928 0.9919 0.0005
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accuracy for the training set, and the black line shows the progressive improvement in 
accuracy for the testing set.

Figures  4 and 5 show how model training progressively improved accuracy in 
Resnet101 and Resnet50, respectively. The training option was sgdm optimizer. Mini-
BatchSize used 40 observations at each iteration. Iterations per epoch were 2087. Max-
Epochs were set to 5. Therefore, the maximum iterations were 10,435(= 2087 × 5). The 
blue line shows the progressive improvement in accuracy when using the training set, 
and the black line shows the progressive improvement in accuracy when using the test-
ing set.

The accuracy metric was used to measure the transfer learning performance of the 
CNN-based models. Precision, recall, specificity, and F1-score were further used to 
validate classification performance. The results were depicted by creating a confusion 
matrix of the predicted labels versus the true labels for the respective disease classes. 
Tables 4, 5 and 6 show the confusion matrices used in multi-class comparisons of Nor-
mal, CNV, DME, and Drusen for VGG19, Resnet101, and Resnet50 for the testing data.

Fig. 3  Progressive improvement in accuracy of VGG19

Fig. 4  Progressive improvement in accuracy of Resnet101
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Fig. 5  Progressive improvement in accuracy of Resnet50

Table 4  Confusion matrix for  Normal, CNV, DME, and  Drusen obtained by  VGG19 
in Experiment #5

True Labels

Normal CNV DME Drusen Precision F1-score Average recall 
and specificity

Predicted labels

 Normal 242 0 0 0 1.0000 1.0000

 CNV 0 242 1 3 0.9837 0.9918

 DME 0 0 241 1 0.9959 0.9959

 Drusen 0 0 0 238 1.0000 0.9917

Recall 1.0000 1.0000 0.9959 0.9835 0.9948

Specificity 1.0000 0.9945 0.9986 1.0000 0.9983

Average precision 
and F1-score

0.9949 0.9948

Accuracy 0.9948

Table 5  Confusion matrix for  Normal, CNV, DME, and  Drusen obtained by  Resnet101 
in Experiment #5

True Labels

Normal CNV DME Drusen Precision F1-score Average recall 
and specificity

Predicted labels

 Normal 242 0 1 1 0.9918 0.9959

 CNV 0 241 2 2 0.9837 0.9897

 DME 0 1 239 0 0.9958 0.9917

 Drusen 0 0 0 239 1.0000 0.9938

Recall 1.0000 0.9959 0.9876 0.9876 0.9928

Specificity 0.9972 0.9945 0.9986 1.0000 0.9976

Average precision 
and F1-score

0.9928 0.9928

Accuracy 0.9928
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Table 4 shows that, in Experiment #5, VGG19 achieved an accuracy of 0.9948 with an 
average precision of 0.9949, an average recall of 0.9948, an average specificity of 0.9983, 
and an average F1-score of 0.9948.

Table  5 shows that, in Experiment #5, Resnet101 achieved an accuracy of 0.9928 
with an average precision of 0.9928, an average recall of 0.9928, an average specificity 
of 0.9976, and an average F1-score of 0.9928.

Table 6 indicates that, in Experiment #5, Resnet50 achieved an accuracy of 0.9917 
with an average precision of 0.9918, an average recall of 0.9917, an average specificity 
of 0.9972, and an average F1-score of 0.9917.

Next, the performance of the proposed CNN-based transfer learning approach in 
classifying OCT images of AMD and DME was compared with the results reported 
in Kermany et  al. [7], Najeeb et  al. [5], and Nugroho [6]. Table  7 shows the confu-
sion matrix for Normal, CNV, DME, and Drusen obtained by Kermany et al. [7]. The 
model in Kermany et al. [7] achieved an accuracy of 0.9610 with an average precision 

Table 6  Confusion matrix for  Normal, CNV, DME, and  Drusen obtained by  Resnet50 
in Experiment #5

True labels

Normal CNV DME Drusen Precision F1-score Average recall 
and specificity

Predicted labels

 Normal 242 0 1 0 0.9959 0.9979

 CNV 0 240 1 4 0.9796 0.9856

 DME 0 2 240 0 0.9917 0.9917

 Drusen 0 0 0 238 1.0000 0.9917

Recall 1.0000 0.9917 0.9917 0.9835 0.9917

Specificity 0.9986 0.9931 0.9972 1.0000 0.9972

Average precision 
and F1-score

0.9918 0.9917

Accuracy 0.9917

Table 7  Confusion matrix for Normal, CNV, DME, and Drusen obtained by Kermany et al. 
[7]

True labels

Normal CNV DME Drusen Precision F1-score Average recall 
and specificity

Predicted labels

 Normal 246 0 0 4 0.9840 0.9762

 CNV 0 242 5 3 0.9680 0.9528

 DME 3 9 237 1 0.9480 0.9595

 Drusen 5 7 2 236 0.9440 0.9555

Recall 0.9685 0.9380 0.9713 0.9672 0.9613

Specificity 0.9946 0.9892 0.9828 0.9815 0.9870

Average precision 
and F1-score

0.9610 0.9610

Accuracy 0.9610
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of 0.9610, an average recall of 0.9613, an average specificity of 0.9870, and an aver-
age F1-score of 0.9610. Table 8 shows the confusion matrix for Normal, CNV, DME, 
and Drusen obtained by Najeeb et al. [5]. The model in Najeeb et al. [5] achieved an 
accuracy of 0.9566 with an average precision of 0.9592, an average recall of 0.9566, an 
average specificity of 0.9855, and an average F1-score of 0.9563.

For the testing set, Table  9 shows the classifier accuracy, average precision,average 
recall/sensitivity, average specificity, and average F1-score obtained by the different CNN-
based models. When the testing set was used in Experiment #5, the accuracies obtained 
by VGG19, Resnet101, and Resnet50 were 0.9948, 0.9928, and 0.9917, respectively, which 
are all very high and were superior to the accuracies obtained by the models in Kermany 
et al. [7], Najeeb et al. [5], and Nugroho [6]. In Experiment #5, other measures (i.e., aver-
age precision, average recall/sensitivity, average specificity, and average F1-score) obtained 
byVGG19, Resnet101, and Resnet50 were higher than those obtained by the models in 
Kermany et al. [7], Najeeb et al. [5], and Nugroho [6]. That is, by using transfer learning with 

Table 8  Confusion matrix for normal, CNV, DME, and Drusen obtained by Najeeb et al. [5]

True labels

Normal CNV DME Drusen Precision F1-score Average recall 
and specificity

Predicted labels

 Normal 237 0 9 0 0.9634 0.9713

 CNV 0 241 20 5 0.9060 0.9488

 DME 0 0 211 0 1.0000 0.9316

 Drusen 5 1 2 237 0.9673 0.9733

Recall 0.9793 0.9959 0.8719 0.9793 0.9566

Specificity 0.9876 0.9656 1.0000 0.9890 0.9855

Average precision 
and F1-score

0.9592 0.9563

Accuracy 0.9566

Table 9  Classifier accuracy, precision, recall/sensitivity, specificity, and  F1-score obtained 
by different CNN-based models for testing set

CNN-based model Accuracy Average precision Average 
recall/
sensitivity

Average 
specificity

Average F1-score

VGG19-Experiment #5 0.9948 0.9949 0.9948 0.9983 0.9948

Resnet101-Experiment #5 0.9928 0.9928 0.9928 0.9976 0.9928

Resnet50-Experiment #5 0.9917 0.9918 0.9917 0.9972 0.9917

Kermany et al. [7] 0.9610 0.9610 0.9613 0.9870 0.9610

Najeeb et al. [5] 0.9566 0.9592 0.9566 0.9855 0.9563

Nugroho [6]-ResNet 0.8926 0.91 0.89 NA 0.89

Nugroho [6]-DenseNet 0.8802 0.90 0.88 NA 0.88
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appropriate hyperparameters, the proposed CNN-based models VGG19, Resnet101, and 
Resnet50 had excellent performance and capability in classifying OCT images of AMD and 
DME.

Discussions
In this study, the appropriate algorithm hyperparameters for CNN-based transfer 
learning were very important for classifying OCT images of AMD and DME. This 
phenomenon was demonstrated by experiments in which the VGG19, Resnet50, and 
Resnet101 models achieved a classification accuracy exceeding 99%. If an inappro-
priate combination of algorithm hyperparameters is used, the classification accuracy 
will be reduced. For example, the algorithm hyperparameters for Googlenet trans-
fer learning and the results in Table  10 indicates that an appropriate set of hyper-
parameters can provide good performance for transfer learning, where Optimizer 
of sgdm and InitialLearnRate of 10–4 are identical. Therefore, the combination of 
algorithm hyperparameters of the third case (i.e., Optimizer of sgdm, MiniBatch-
Size of 40, MaxEpochs of 5, and InitialLearnRate of 10–4) was selected for the study 
because it achieved high accuracy in the training and testing sets. Tables 11 and 12 
show the algorithm hyperparameters for Resnet50 and Resnet101 transfer learning 
and their respective results. Tables 11 and 12 show that, if all other hyperparameter 

Table 10  Googlenet model with  different algorithm hyperparameters: accuracy 
for training and testing sets

Case number Hyperparameters Accuracy 
for training 
set

Accuracy 
for testing 
setOptimizer MiniBatchSize MaxEpochs InitialLearnRate

1 sgdm 80 5 10–4 0.9409 0.9680

2 sgdm 60 5 10–4 0.9495 0.9835

3 sgdm 40 5 10–4 0.9527 0.9845

4 sgdm 40 4 10–4 0.9472 0.9607

5 sgdm 20 3 10–4 0.9494 0.9452

6 sgdm 20 2 10–4 0.9480 0.9804

Table 11  Resnet50 model with different algorithm hyperparameters: accuracy for training 
and testing sets

Case number Hyperparameters Accuracy 
for training 
set

Accuracy 
for testing 
setOptimizer MiniBatchSize MaxEpochs InitialLearnRate

1 sgdm 40 3 10–4 0.9509 0.9824

2 sgdm 40 5 10–4 0.9568 0.9917

Table 12  Resnet101 model with  different algorithm hyperparameters: accuracy 
for training and testing sets

Case number Hyperparameters Accuracy 
for training 
set

Accuracy 
for testing 
setOptimizer MiniBatchSize MaxEpochs InitialLearnRate

1 sgdm 40 3 10–4 0.9527 0.9876

2 sgdm 40 5 10–4 0.9587 0.9928
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are identical (Optimizer of sgdm, MiniBatchSize of 40, and InitialLearnRate of 10–4), 
changing MaxEpochs from 3 to 5 improves accuracy for the test set by more than 
0.99. Therefore, this combination of algorithm hyperparameters (i.e., Optimizer 
of sgdm, MiniBatchSize of 40, MaxEpochs of 5, and InitialLearnRate of 10–4) was 
selected for Resnet50 and Resnet101 transfer learning in classifying OCT images of 
AMD and DME.

Figure 6 displays four sample images with predicted labels and the predicted probabili-
ties of images with those labels. The results for four randomly selected sample images 
were very similar to the results for the predicted category, and the probabilities of pre-
diction approached 100%, indicating that the model established by CNN-based transfer 
learning had high classification ability.

Presently, CNN-based transfer learning is very efficient and stable [19, 20]. The key 
to successful image classification is ensuring that the original images are correctly clas-
sified. This phenomenon was demonstrated by experiments in this study in which the 
CNN-based model achieved a classification accuracy exceeding 99%. Therefore, CNN-
based transfer learning with appropriate hyperparameters has the best performance in 
classifying OCT images of AMD and DME.

Conclusions
This study used CNN-based transfer learning with appropriate algorithm hyperparam-
eters for effectively classifying OCT images of AMD and DME. The main contribution 
of this study is the confirmation that suitable CNN-based models with their algorithm 
hyperparameters can use transfer learning to classify OCT images of AMD and DME. 

Fig. 6  Four sample images with predicted labels and predicted probabilities of images with those labels
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Various metrics were used to verify the usability of the adopted CNN-based models. As 
Table  3 shows, the average accuracies of models VGG19, Resnet101, and Resnet50 in 
the testing set were 0.9942, 0.9919, and 0.9909, respectively, which were all very high 
(greater than 0.99). Moreover, the SDs of accuracy obtained by VGG19 and Resnet101 
were all 0.0005. That is, VGG19 and Resnet101 were robust models for classifying OCT 
images of AMD and DME. Table 9 shows that, when the testing set was used in Experi-
ment #5, the accuracies of VGG19, Resnet101, and Resnet50 were 0.9948, 0.9928, and 
0.9917, respectively, which were all higher than the accuracies obtained by the models in 
Kermany et al. [7], Najeeb et al. [5], and Nugroho [6]. Other measures (average precision, 
average recall/sensitivity, average specificity, and average F1-score) obtained by VGG19, 
Resnet101, and Resnet50 in Experiment #5 were also higher than those obtained by the 
models in Kermany et al. [7], Najeeb et al. [5], and Nugroho [6]. That is, the CNN-based 
models VGG19, Resnet101, and Resnet50 obtained by transfer learning with appropri-
ate algorithm hyperparameters were effective and useful for classifying OCT images of 
AMD and DME.
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