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Background
Patients with diabetes visit the hospital when their eyesight worsens. They often have 
proliferative diabetic retinopathy (DR) or vitreous hemorrhage. Currently, doctors 
can detect symptoms early by using retinal ophthalmoscopy, and they can improve 

Abstract 

Background:  Doctors can detect symptoms of diabetic retinopathy (DR) early by 
using retinal ophthalmoscopy, and they can improve diagnostic efficiency with the 
assistance of deep learning to select treatments and support personnel workflow. 
Conventionally, most deep learning methods for DR diagnosis categorize retinal oph‑
thalmoscopy images into training and validation data sets according to the 80/20 rule, 
and they use the synthetic minority oversampling technique (SMOTE) in data process‑
ing (e.g., rotating, scaling, and translating training images) to increase the number of 
training samples. Oversampling training may lead to overfitting of the training model. 
Therefore, untrained or unverified images can yield erroneous predictions. Although 
the accuracy of prediction results is 90%–99%, this overfitting of training data may 
distort training module variables.

Results:  This study uses a 2-stage training method to solve the overfitting problem. 
In the training phase, to build the model, the Learning module 1 used to identify the 
DR and no-DR. The Learning module 2 on SMOTE synthetic datasets to identify the 
mild-NPDR, moderate NPDR, severe NPDR and proliferative DR classification. These two 
modules also used early stopping and data dividing methods to reduce overfitting by 
oversampling. In the test phase, we use the DIARETDB0, DIARETDB1, eOphtha, MESSI‑
DOR, and DRIVE datasets to evaluate the performance of the training network. The 
prediction accuracy achieved to 85.38%, 84.27%, 85.75%, 86.73%, and 92.5%.

Conclusions:  Based on the experiment, a general deep learning model for detecting 
DR was developed, and it could be used with all DR databases. We provided a simple 
method of addressing the imbalance of DR databases, and this method can be used 
with other medical images.
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diagnostic efficiency by using deep learning techniques to select treatments and support 
personnel workflow [1].

The determination of retinopathy severity requires extensive professional knowledge. 
Depending on physician experience, interpretations of the same data set can vary, caus-
ing errors. Therefore, images must be quantified. The comparison of preoperative and 
postoperative data can help physicians judge whether an operation is successful. In addi-
tion, diagnoses can be confirmed using machine learning and deep learning and required 
treatments can be clearly identified. These techniques can help physicians make accurate 
diagnoses and identify lesions [2, 3].

The results obtained from optical coherence tomography, ophthalmoscopy, and the 
automatic classification of multicategorical anomalies based on deep learning are similar 
to those obtained from clinical classification, the accuracy of these imaging methods is 
only 70–85% [4–7]. A deep learning training model may have tens or hundreds of thou-
sands of parameters. Small training data sets may affect the model’s diagnostic accuracy, 
especially when data sets with unbalanced classifications are used. In 2015, EyePACS 
and the California Healthcare Foundation organized a competition for data scientists on 
the Kaggle platform [8]. DR data used were divided into five categories: 0 (no DR), 1 
(mild DR), 2 (moderate DR), 3 (severe DR), and 4 [proliferative DR (PDR)]. The train-
ing image distribution ratio used in the competition was 25,810 to 2443 to 5292 to 873 
to 708. This is a typical case of unbalanced data, meaning that as long as the prediction 
result is “no DR,” the model’s final diagnostic accuracy is 73% [9].

Related work
Abnormal samples in medical images are less common than normal samples and 
often valuable; therefore, studying unbalanced data is crucial. Unbalanced data can 
be addressed using oversampling (e.g., the synthetic minority oversampling technique 
(SMOTE)) [10, 11], under sampling [12], weighted sampling [13], and cross-valida-
tion (e.g., k-fold cross-validation) [14–16]. In k-fold cross-validation, training data are 
divided into k equal parts. Each time, only one aliquot is used as the test data set, and 
the remaining data are used as the training set. Gradually, each aliquot is used as the 
test dataset, and the k average is used as the final accuracy of the database. It was con-
cluded that when the data are divided into five equal parts, and the model’s accuracy 
rate can reach 92.24% [16]. Another deep learning method of preventing data imbal-
ance is random oversampling, which increases the number of training images through 
the translation, rotation, deformation, scaling, and noise addition by using a small set 
of images. In this method, the number of classification libraries is balanced, which 
increases the accuracy of the deep learning model. For example, 16,500 digital images 
were generated using 9316 images from the Kaggle competition database through over-
sampling, and an accuracy rate of 86.1% was obtained through k-fold cross-validation 
[13]. Another study employing the Kaggle competition database screened 10,000 images 
of specific differences to perform training verification and prediction; 99.05% accuracy 
was achieved [17]. Another study used the Diabetic Retinopathy Images Database. Of 
216 images in the database, 125 were good, 69 were poor, and 22 were abnormal during 
deep learning training, and the prediction accuracy rate was 99.98% [18]. Other methods 
of addressing data imbalance in deep learning (such as undersampling) are rarely used. 
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The detection rate of DR with or without exudate classification reached 98% in a study 
[19]. Most articles divide the data set into a learning subset and a test subset (80% and 
20% respectively), and then use techniques such as subsampling or synthetic secondary 
oversampling (SMOTE) for resampling, in order to obtain a perfectly balanced training 
set, and achieve a prediction accuracy of 93–99% [20–22].

The aforementioned methods for processing unbalanced data can produce high diag-
nostic rates. When the parameters of the deep learning model are sufficiently complex, 
the training model will record the features of all pictures in the training data set, so 
untrained samples usually lead to recognition errors. Therefore, some scholars pointed 
out that oversampling may lead to overfitting of the model [19, 20].

There are methods to avoid overfitting, such as: (a) collecting more data: more data 
can help models training better; (b) stopping training early: when the validation loss 
rises, you can stop training immediately. Because after that, more training may make 
the model worse; (c) normalizing L1 and L2: prevent the model from being affected by 
the parameters with higher weight coefficients, which will lead to overfitting; (d) divid-
ing data set: divide data sets into three groups, keep the holdout data as the test set to 
estimate the generalization performance of model. In this study, we apply the stopping 
training early and dividing the dataset into three parts to avoid the overfitting.

To prove that oversampling will lead to overfitting of the model. We apply the SMOTE 
algorithm to synthesize several types of images in the open training database of the Kag-
gle competition, and we trained and validated datasets at 80:20 training-to-validation set 
ratio; then, we fine-tuned a pretrained AlexNet [23, 24] convolutional neural network 
(CNN) to classify these datasets. The final trained network achieved 96.2% accuracy for 
the trained and validated set and the confusion matrix in Fig. 1 (left). It indicates that 
nearly all DR classifications achieved more than 90% accuracy. Classifications of 0 (no 
DR) and 3 (severe DR) achieved 98% accuracy. However, when this training model clas-
sified untrained images (53,576), its accuracy was only 71.6% and the confusion matrix 
of this scenario is presented in Fig. 1 (right). For categories other than 0 (no DR), the 

Fig. 1  The confusion matrix on the training set (left) and test set (right) of the EyePACS data set using the 
pre-trained AlexNet model with DR category
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accuracy rate was only 5.9–31.0%. This huge gap between trained model and test set 
show the result of overfitting from oversampling.

This study used the classic method of preventing overfitting by dividing the data sets 
into three groups (i.e., training, validation, and test sets) and used a two-stage training 
approach to mitigate overfitting caused by SMOTE. Subsequently, we provide a com-
plete description of the DR databases and experimental data used to validate our pro-
posed method.

Methods
Data, hardware, and software

We used six public datasets for model training and testing. The EyePACS [25] dataset 
was applied with pre-trained NASNet-Large [26] to tune the hyper-parameters. The 
DIARETDB0 [27], DIARETDB1 [28], eOphtha [29], MESSIDOR [30], DRIVE [31], were 
used to evaluate the model’s performance.

EyePACS is a free platform that includes retinopathy images. A clinician rated DR in 
each image on a scale of 0–4, where 0 indicates no DR, 1 indicates mild DR, 2 indicates 
moderate DR, 3 indicates severe DR, and 4 indicates PDR. In our study, images with 
classifications of 0, 1, 2, 3, and 4 were represented by 65,343, 6205, 13,153, 2087, and 
1914 training samples, respectively.

The DIARETDB0 data set consisted of fundus images. We tested their algorithms by 
using 130 image communities capture using a 50° field of view. Of these images, 110 pre-
sented signs of DR, and 20 were normal.

The DIARETDB1 database were captured using a 50° field of view. Of these images, 5 
were normal and 84 presented signs of DR.

The eOphtha is a free database that provides color fundus images, of which 47 had 
exudates and 35 were normal.

The MESSIDOR (Methods to Evaluate Segmentation and Indexing Techniques in 
the field of Retinal Ophthalmology) data set includes 1251 digital color images of the 
posterior pole obtained using a Topcon TRC NW6 nonmydriatic retina camera with 
three color charge-coupled devices. Images were captured at resolutions of 1440 × 960, 
2240 × 1488, or 2304 × 1536 pixels using an 8-bit color plane.

The DRIVE (Digital Retinal Images for Vessel Extraction) [31] data set was established 
to facilitate comparative research on blood vessel segmentation in retinal images. Reti-
nal images were obtained from a Dutch DR screening program. The screening popula-
tion consisted of 400 patients with diabetes aged 25–90 years. Of 40 randomly selected 
images, 33 did not present signs of DR, and 7 presented signs of early, mild DR.

The deep learning machine presented in Fig. 2 with the following specifications was 
used to train our model:

•	 Workstation: Supermicro GPX XS8-24S1-4GPU; central processing unit: Intel Xeon 
Platinum 8165 processor *2; random-access memory: 128-GB DDR4 ECC 2666; 
graphics processing unit (GPU), 16-GB NVIDIA TESLA P100 *3.

•	 Operating system and software: Windows 10 (64 bit), Matlab2019a Deep Learning 
Toolbox, Compute Unified Device Architecture (CUDA) Toolkit 10.1, CUDA Deep 
Neural Network v7.6.0 (May 20, 2019).
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Methodological overview

We divided all the data sets into two parts, the training phase used the EyePACS data-
set; and the test phase used the DIARETDB0, DIARETDB1, eOphtha, MESSIDOR, and 
DRIVE datasets.

In training phase, the main cause was to build the Diabetic Retinopathy detection 
model, the Deep Learning module 1 used the preprocessed EyePACS dataset and pre-
trained NASNET-Large to identify the DR and no-DR. The Deep Learning module 
2 apply the SOMTE synthetic samples to identify the mild-NPDR, moderate NPDR, 
severe NPDR and proliferative DR. When validation loss rises, these 2 modules stop 
training immediately to perform the hyperparameters tuning then restart the training to 
avoid the model worse.

In test phase, the test data sets input the Deep Learning module 1 to identify DR and 
no-DR categories, then the DR images use Deep Learning module 2 for the classification 
to mild-NPDR, moderate NPDR, severe NPDR and proliferative DR. The overall system 
flowchart for classifying DR categories is presented in Fig. 3.

Step 1: Preprocessing

Normalization of fundus images: The resolutions of the original fundus images were 
inconsistent (e.g., 4752 × 3168, 3888 × 2592, and 2592 × 1944 pixels). However, if images 
were adjusted to a uniform 331 × 331-pixel resolution, the eyeball sphere would be 
deformed, resulting in low-resolution images in deep learning training. Therefore, we 
first converted color images into grayscale through binarization. Subsequently, con-
nected-component labeling was performed to mark all connected areas of the image 
and identify the largest connected area, which was focused on the eyeball in the fundus 
images. Finally, the original color images were cropped according to the range of the 
maximum connected region to obtain images cropped at the edges of the eye.

Pretrained deep neural network selection: Transfer learning was used to establish 
a diagnostic model for medical imaging analysis, and we selected the pretrained 

Fig. 2  Deep learning machine
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NASNet-Large CNN to classify our images. According to MATLAB 2019a documen-
tation [32], transfer learning with the pretrained NASNet-Large CNN can achieve 
85% classification accuracy in 16 training modules. Therefore, this study used this 
NASNet-Large pretrained learning module and normalized the resolution of the fun-
dus images to 331 × 331 pixels.

Step 2: Deep learning module

Unbalanced data processing: Traditional SMOTE data processing involves the rota-
tion, scaling, and translation of training images to increase the number of training 
samples. SMOTE may cause variable importance distortion in the training module. 
Therefore, SMOTE was not used in the first step of deep learning training to address 
data imbalance. We first used a decision tree and NASNet-Large transfer learning to 
initially classify DR into no-DR (65,343 sheets) and DR (23,359 sheets) categories. 
Second, the DR category was classified into four categories based on NPDR and PDR. 
Finally, the five-stage classification of DR severity was used in combination with the 
two aforementioned diagnostic models.

Fine tuning

In hyperparameter adjustment, this research applies 2 phase experiment. First, exe-
cute the 56 epochs to separate the performance of SDGM and ADAM under the 
learning rate by 0.0001 and 0.001. Figure  4 shows the accuracy of models with dif-
ferent optimization algorithms and learning rates. Therefore, we set the optimization 
algorithm as ADAM, and the learning rate is 0.001 as the parameters of deep learning 
model. Second, apply ADAM with learning rate 0.001 for the 2 days period training 
as the minibatch value turning. If the performance drops, adjust the minibatch value 
downward (32, 24, 16, 12, 8). In the end we find out the best parameters for the model.

Fig. 3  Flowchart of classifying DR severity into five stages
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Results
This study used the classic method of preventing overfitting by dividing the data sets 
into three groups (i.e., training, validation, and test sets) and used a two-stage training 
approach to mitigate overfitting caused by SMOTE.

2‑stages method (this study proposed)

We used the NASNet-Large deep CNN to pretrain the model, which contained 
EyePACS images with no DR (65,343 sheets) and DR (23,359 sheets). The Deep Learn-
ing module 1 achieved an accuracy of 0.85 in terms of no DR and DR classification. The 
combined Deep Learning module 1 and Deep Learning module 2 trained network had 
an accuracy of 0.83 in classifying DR into five categories of severity (0, no DR; 1, mild 
NPDR; 2, moderate NPDR; 3, severe NPDR; and 4, proliferative DR). Finally, we used 
the DIARETDB0, DIARETDB1, eOphtha, MESSIDOR, and DRIVE data sets to evaluate 
network performance.

Internal training and validation of EyePACS data

Deep learning module 1 (DLM1): First, we split the EyePACS dataset (88,702 images) 
into training arrays (70,944 images, 80%) and validation arrays (17,758 images, 20%) 
with a batch size of 32 images. Each epoch underwent approximately 2217 iterations 
(70,944/32). Training was run for 36 epochs, and a maximum of 79,812 iterations was 
obtained in 33,415  min of training time. The primary outcome measures of accuracy, 
sensitivity, specificity, and precision for the classification scores were 85.00%, 84.89%, 
85.29%, 94.17%, respectively. The final trained network DLM1 achieved 85.0% accuracy 
for the trained and validated set and the confusion matrix in Fig. 5.

Deep learning module 2 (DLM2): Then, we used SMOTE to train the model by 
using the EyePACS data set for four disease severity classifications. The DR level 1 to 
4 (respectively 13,153, 13,153, 13,153 and 13,153) images are rotated, zoomed, and 
translated to increase the number of images through the SMOTE method. At the 
beginning of training, we divide all the data into three subsets: training set (31,568 
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images, 60%), validation set (10,522 images, 20%) and test set (10,522 images, 20%). 
The final trained network had an accuracy over test data is 84.19%. The confusion 
matrix in a 4-class classification for the test set and EyePACs database for DLM2 
model is shown in Fig.  6. Table  1 reveals the sensitivity, specificity, accuracy, Mat-
thews correlation coefficient and total accuracy of the DLM2 model in the DR 1–4 
classification. According to Table  1, in the DR 1–4 classification, its sensitivity and 
specificity have good performance.

Deep learning module (DLM): In order to complete the final trained network, 
we combine the DLM1 and DLM2 and had an accuracy of 83.93% for DR 0–4 
classification.

Fig. 5  Confusion matrix for the training and validation sets for DLM1 model

Fig. 6  Confusion matrix for the test set (left) and EyePACs database (right) for DLM2 model
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External Test of DIARETDB0, DIARETDB1, eOphtha, MESSIDOR, and DRIVE data

After internal validation, the general deep learning module for detecting DR was vali-
dated externally by using 130 images from the DIARETDB0 data set, 89 images from 
the DIARETDB1 data set, 463 images from the eOphtha data set, 1251 images from the 
MESSIDOR data set, and 40 images from the DRIVER data set that were not included 
in the EyePACS data set. To enable accurate validation, external validation was per-
formed without alterations to the general deep learning model for DR detection. The 
results are summarized in Table 2. The outcome measures of accuracy, sensitivity, speci-
ficity, and precision for the classification of the DIARETDB0 images were 85.38%, 100%, 
82.73%, and 51.28%, respectively. The same outcome measures for the classification of 
the DIARETDB1 images were 84.27%, 100%, 83.53%, and 22.22%, respectively. Those 
for the classification of the eOphtha images were 85.75%, 89.18%, 81.03%, and 86.59%, 
respectively. Those for the classification of the MESSIDOR images were 86.73%, 91.39%, 
83.12%, and 80.74%, respectively. Finally, those for the classification the DRIVE images 
were 92.5%, 93.94%, 85.71%, and 96.88%, respectively.

1‑stage method (conventional study).

We used the NASNet-Large deep CNN to pretrain the model, which contained 
EyePACS images with no DR (65,343 sheets), mild NPDR (6205 sheets), moder-
ate NPDR (13,153 sheets), severe NPDR (2087 sheets) and proliferative DR (1914 
sheets). In order to balance the number of DR images to achieve effective feature deep 
learning, the DR level 1 to 4 (respectively 16,335, 16,335, 16,335 and 16,335) images 

Table 1  Sensitivity, specificity, accuracy, Matthews correlation coefficient and  total 
accuracy of DR level 1 to 4 for the DLM2 model

Sensitivity (%) Specificity (%) Precision (%) Matthews 
correlation 
coefficient

1: mild NPDR 82.56 90.90 76.65 0.7179

2: moderate NPDR 80.75 89.57 90.89 0.6976

3: severe NPDR 80.50 95.81 65.32 0.6953

4: proliferative DR 85.53 96.36 67.70 0.7373

Total accuracy is 81.60%

Table 2  The performance of the two-stage method for no-DR and DR categories

DataBase Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Train & validation set

 EyePACs 85.00 84.89 85.29 94.17

Test set

 DIARETDB0 85.38 100 82.73 51.28

 DIARETDB1 84.27 100 83.53 22.22

 e-ophtha 85.75 89.18 81.03 86.59

 MESSIDOR 86.73 91.39 83.12 80.74

 DRIVER 92.50 93.94 85.71 96.88



Page 10 of 14Chen et al. BMC Bioinformatics           (2021) 22:84 

are rotated, zoomed, and translated to increase the number of images through the 
SMOTE method. The final trained network had an accuracy of 89.79% in classifying 
DR into five categories of severity.

To enable accurate validation, external testing was performed without alterations 
to the general deep learning model for DR detection. The results are summarized in 
Table 3. The outcome measures of accuracy, sensitivity, specificity, and precision for 
the classification of the DIARETDB0 images were 61.54%, 100%, 54.55%, and 28.57%, 
respectively. The same outcome measures for the classification of the DIARETDB1 
images were 47.19%, 75.00%, 45.88%, and 6.12%, respectively. Those for the classifica-
tion of the eOphtha images were 67.82%, 54.10%, 86.67%, and 84.80%, respectively. 
Those for the classification of the MESSIDOR images were 59.39%, 99.81%, 28.09%, 
and 51.81%, respectively. Finally, those for the classification the DRIVE images were 
87.50%, 100%, 28.57%, and 86.84%, respectively.

Summary
We adopted a 2-stage training method to classify the data into normal and abnor-
mal in deep learning module 1, and then used the SMOTE in deep learning module 
2 to solve the problem of imbalance training data. This study used a 2-stage training 
method initially to reduce oversampling, early stopping and data dividing methods 
to avoid overfitting. In a conventional study using the 1-stage training method, the 
SMOTE will generate 238,013 synthetic samples under an unbalanced data set. This 
research proposes a 2-stage training method to generate 29,253 images to meet the 
requirements of a balanced data set. Comparing the number of the above two syn-
thetic samples, the method proposed reduces the number of images by nearly 87.7% 
and reduces the possibility of overfitting.

According to our experiments, 2-stages training method is better than the 1-stage 
training method and the diagnostic model’s prediction accuracy for unseen images 
(test set) was approximately 85.38%–86.73% similar to the 2015 the team (Min-Pool-
ing) that won the championship in the Kaggle Diabetic Retinopathy Detection com-
petition in 2015. Therefore, this diagnostic model can be used for DR detection with 
images provided by different hospitals or research institutions. It can be used as a 
general deep learning model for detecting DR.

Table 3  The performance of the one-stage method for no-DR and DR categories

DataBase Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Train & validation set

 EyePACs 89.79 91.20 85.87 94.75

Test set

 DIARETDB0 61.54 100 54.55 28.57

 DIARETDB1 47.19 75.00 45.88 06.12

 e-ophtha 67.82 54.10 86.67 84.80

 MESSIDOR 59.39 99.81 28.09 51.81

 DRIVER 87.50 100 28.57 86.84
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Discussion
EyePACS provided DR images for this experiment. Images in the dataset were obtained 
using different camera makes and models, which may affect the visual appearance of the 
left and right lenses. Furthermore, image and label noise, such as artifacts, blurred focus, 
underexposure, or overexposure may be present. Therefore, image processing tech-
niques must be used to extract useful features from these images for further analysis.

The experiment revealed that the failure rate of image cropping at the edge of the eye-
ball is high. After several tests, a GRAYTHRESH function [33] with a gray value of + 200 
was used, and the obtained binarized images could be used to perfectly detect the edge 
of the eyeball. This step made the available recognition rate even more crucial. In the 
NASNet model, weights were pretrained using ImageNet. The default input size for the 
NASNet-Large model was 331 × 331 pixels. However, according to the NASNet-Large 
model, training larger images (e.g., 3504 × 2336 pixels) that are adjusted to 331 × 331 
pixels would cause image distortion; therefore, we used the fixed radius method for 
image cropping during image preprocessing to ensure that the image outline was not 
deformed. Figure 7 presents examples of preprocessing.

Increased convergence can be achieved with a large minibatch size. In addition 
to the effect on computational throughput, minibatch size affects training accu-
racy for resource use. To investigate this, we trained the NASNet-Large CNN with 
the EyePACS data set for 54 epochs, and three NVIDIA TESLA P100 16-GB GPUs 
were used during deep learning to explore the effect of different minibatch sizes 
on the accuracy rate. Table 4 presents the verification accuracies of these runs. The 

Fig. 7  Examples of image preprocessing

Table 4  Performance of  the  NASNet-Large deep CNN with  different minibatch 
configurations in the first iteration

GPU Mini-batch

8 12 16 24 32 36

NVIDIA GTX-
1080Ti-11 GB GPU × 2

70.5% 71.5% – – – –

NVIDIA Tesla-
P100-16 GB GPU × 3

70.5% 71.5% 72.5% 73.5% 75.4% –
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minibatch accuracy of 32 is significantly better than the minibatch accuracy of 16. In 
addition, 88,702 data points in the EyePACS training set, 88,949,818 NASNet-Large 
parameters, and 1244 layers of depth were used. The experiment confirmed that three 
TESLA P100 16-GB GPUs should use minibatches of less than 32. Minibatches of 
more than 32 cause data loss from GPU memory.

In this article, for the multi-category diagnosis of diabetic retinopathy, we use a 
two-stage training model architecture. In the first stage, we do not use artificial meth-
ods to increase the number of data sets, and integrate the original images of 2, 3, 
and 4 categories into 1 category to obtain a larger number of 1 category. The no-DR 
and DR diagnostic models can avoid over-fitting problems caused by over-sampling. 
Finally, the sensitivity and specificity of the tested model rarely ignore true positives, 
and rarely identify other things that are not the target of the test as positive. This 
approach of this two-stage training model significantly alleviates the problem of cat-
egory imbalance and improves the generalization performance of the deep learning 
module.

Conclusions
In this experiment, a general deep learning model for detecting DR was developed for 
application in all DR databases. Our research provides a straightforward method of 
addressing imbalance in DR databases that can be applied to other medical images in 
the future.
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