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Background
Flow [1] and mass cytometry [2] allow researchers to simultaneously assess expres-
sion patterns of a large number of proteins on individual cells, allowing deep interro-
gation of cellular responses. The goal of such studies is to improve our understanding 
of the response mechanisms on a single cell basis by defining protein expression 
patterns that are associated with a particular stimulus or experimental condition. 
Finding differentially expressed proteins can help identify how cells function across 

Abstract 

Background: Flow and mass cytometry are important modern immunology tools for 
measuring expression levels of multiple proteins on single cells. The goal is to better 
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Results: Differential analysis of marker expressions can be difficult due to marker cor‑
relations and inter‑subject heterogeneity, particularly for studies of human immunol‑
ogy. We address these challenges with two multiple regression strategies: a boot‑
strapped generalized linear model and a generalized linear mixed model. On simulated 
datasets, we compare the robustness towards marker correlations and heterogeneity 
of both strategies. For paired experiments, we find that both strategies maintain the 
target false discovery rate under medium correlations and that mixed models are 
statistically more powerful under the correct model specification. For unpaired experi‑
ments, our results indicate that much larger patient sample sizes are required to detect 
differences. We illustrate the CytoGLMM R package and workflow for both strategies 
on a pregnancy dataset.

Conclusion: Our approach to finding differential proteins in flow and mass cytom‑
etry data reduces biases arising from marker correlations and safeguards against false 
discoveries induced by patient heterogeneity.
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experimental conditions. Some examples from our own work include: compari-
son between influenza strains [3], comparison between pregnant and non-pregnant 
women [4], comparison between healthy controls and HIV+ individuals [5], compari-
son between multiple sclerosis patients treated with daclizumab beta or placebo [6], 
and comparison between Beninese sex workers and healthy controls [7].

Statistical workflows that analyze data generated by flow and mass cytometry usu-
ally begin by clustering cells into both known and novel cell types. [8] provide an 
informative benchmark comparison study of many of the current clustering algo-
rithms. The cluster step is followed by a differential expression analysis between and 
within cell types. The most popular differential analysis tools are: Citrus [9], the 
Bioconductor workflow by [10], cydar [11], CellCnn [12], and diffcyt [13].

We can classify differential analysis methods into marginal regression—analyses 
that focus on individual markers—and multiple regression—analyses that work on 
multiple markers simultaneously. The Bioconductor workflow by [10], cydar, 
and diffcyt are marginal regression methods. The advantage of marginal regres-
sion approaches is that they allow for flexible experimental designs—multiple factors, 
designs with interactions, designs with continuous variables, splines, and others are 
possible. The main disadvantage of this approach is in the separate testing for differ-
ential expression for each protein—when studying a specific protein marker—all the 
other markers are ignored. Therefore these methods are susceptible to biases induced 
by marker correlations.

Citrus and CellCnn are multiple regression methods. Their advantage is that they 
can provide a conditional interpretation of the effect of a protein onto the outcome, and 
thus reduce the bias due to marker correlations. A disadvantage is that Citrus sum-
marizes protein expressions by taking the median for each cell type which can lead to a 
decrease in statistical power. The power decrease comes from the reduction in cell sam-
ple size from thousands of cells to one cell per sample. On the other hand, CellCnn 
uses a neural network for which it is currently unclear how to build confidence intervals, 
derive p-values, and control the number of falsely reported markers.

It is helpful to consider an example to further illustrate the differences between the 
marginal and the multiple regression method. Consider two intracellular proteins 
involved in interferon-γ mediated signaling, STAT1 and IRF1. Assume that applying 
a stimulus to STAT1 activates transcription of IRF1. Further assume that the stimulus 
does not directly activate IRF1. If we performed separate differential analyses on protein 
STAT1 and IRF1, we would observe differential expressions for both STAT1 and IRF1, 
even though only STAT1 had been directly activated. In contrast, a multiple regression 
method would report STAT1 as differentially expressed given IRF1, and IRF1 as not dif-
ferentially expressed given STAT1.

CytoGLMM implements multiple regression that accounts for marker correlations 
without the aforementioned limitations. The main difference between our method and 
current methods is that we focus on cell-specific differential analysis and one fixed cell 
type, whereas current methods (Citrus, CellCnn, cydar, and diffcyt) learn cell 
types and perform differential analysis jointly. The narrower field of application allows 
us to define a more specific statistical model with easier to control statistical guaran-
tees. Only the Bioconductor workflow by [10] focuses on specific cell types, but 
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as mentioned before, they employ marginal regression which makes comparison to our 
multiple regression method difficult; as the two methods have different aims.

We present two versions of multiple regression: (1) A Generalized Linear Model 
(GLM) for unpaired samples. A GLM is a regression model that allows for a response 
and error terms that follow different distributions than the normal. (2) A restricted Gen-
eralized Linear Mixed Model (GLMM), which is a GLM that allows for random and 
fixed effects, for paired samples—when the same donor provides two samples, one for 
each condition. GLMs and GLMMs are generalizations of least squares to non-normal 
data. In our case, we will use logistic regression to model the experimental condition 
as unfair coin flips—when the coin flip comes up heads then the cell is declared to be 
stimulated, otherwise it is unstimulated. We model the coin fairness with a linear model 
of marker expressions after applying a transformation that ensures each coin flip has a 
probability of heads between zero and one.

Our models depart from the classic model where the marker expressions are the 
response variables. In our GLMs, the experimental condition is independent of the 
marker expression of interest given the other markers if the regression coefficient is zero 
(Proposition 2.2 in [14]). In contrast, the usual marginal regression analysis does not 
allow for such conditional statements. For instance, it would not allow us to rule out 
markers that are merely correlated with other makers but are independent of the experi-
mental condition—as illustrated with the example earlier.

In summary, our two main contributions are: 

1. We present a conditional differential analysis to avoid biases arising from marker 
correlations by using multiple regression instead of marginal regression.

2. We present two multiple regression strategies that work with the unsummarized 
expression data to maximize statistical power and account for patient heterogeneity 
to safeguard against false discoveries: (1) GLMs with a patient-level bootstrap, and 
(2) GLMMs with a patient-level random effect.

The “Results” section evaluates the statistical properties of both strategies implemented 
in our R package CytoGLMM on different simulated datasets, and illustrates the full 
workflow for real pregnancy data. In  the “Discussion” section, we discuss our results 
in terms of biases and confounders. In the “Methods” section, we review the statistical 
background for GLMs and GLMMs.

Results
We first evaluate the GLM and GLMM procedures for both paired and unpaired sam-
ples on simulated datasets. We then test them on a real pregnancy dataset.

Simulated datasets

We generate simulated data with both cell and donor level variability. We allow for nega-
tive and positive correlations between markers and a wide range of correlation strengths. 
We simulate different scenarios ranging from weak to strong patient/cell variability. To 
make sure that we generate positive counts we use a Poisson noise model after trans-
forming the generated expressions to positive real numbers using the exponential 
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function. This is similar to using the log link function for Poisson GLMs. Overall, there 
are four main parameters: correlation ρB and standard deviation σB at the cell level, and 
correlation ρU and standard deviation σU at the donor level. Additionally, we can regu-
late the number of cells per sample and the number of donors per dataset. The differ-
ential expression signal is induced by shifting the mean vector on the logarithmic scale. 
We study the differential expression of three out of 10 markers after simulating exposure 
of cells to an experimental condition with two levels: stimulated versus unstimulated 
cells. The “Construction of simulated datasets” section provides a detailed mathematical 
description of the statistical model for the simulated datasets.

We perform simulations with a variety of different parameters. All simulations have 
16 samples. For paired samples, those 16 samples come from 8 donors. For unpaired 
samples, those 16 samples come from 16 donors. Each sample has 1000 cells. We com-
pared the observed False Discovery Rate (FDR) and the power. The FDR measures the 
statistical type 1 errors, the expected proportion of falsely declared discoveries over the 
total number of reported discoveries. The statistical power represents the proportion of 
correctly reported discoveries over the total number of true discoveries.

Figures  1 and 2 show a summary averaged over 100 runs for paired sample and 
unpaired sample experiments with effect size δ(1)p − δ

(0)
p = 1.8 and δ(1)p − δ

(0)
p = 15 , 

respectively, and varying standard deviation σ and correlation ρ parameters. The dashed 
lines indicate the target FDR of 0.05.

First, let’s consider the paired samples experiment. The plots on the left show 
results when we vary cell and donor-level correlations at a fixed amount of cell σB = 1 
and donor σU = 1 marker standard deviations. We observe only small differences 
across donor correlations ρU of a small increase of power with increasing correlation. 
In contrast, there are large increases of power as a function of cell correlations ρB . In 
the panel of plots on the right, we set both correlations to zero and vary the marker 
standard deviations. In this setting, we again observe major changes with increasing 
standard deviations at the cell-level σB : the larger the cell-level variability, the lower 
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Fig. 1 Summary of experiments with 1000 cells per sample averaged over 100 runs. The horizontal dashed 
line represents the target FDR. Postfixes BH and BY stand for the respective FDR control procedure. Subscripts 
B and U indicate cell and donor‑level standard deviation σ and correlation ρ , respectively
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the power. This is also true for donor-level variability, though to a much lesser extent. 
FDR is controlled below its target level under medium cell-level marker correlations 
( |ρB| ≤ 0.4 ) except when cell variability is at zero σB = 0 , and donor variability is at 
one σU = 1 . As expected, the Benjamini–Yekutiel (BY) procedure is more conserva-
tive than the Benjamini-Hochberg (BH) procedure, that is both FDR and power are 
lower. Interestingly, power increases with cell-level correlations ρB , and is virtually 
unaffected by donor-level correlations ρU . Overall, GLMM methods are more pow-
erful than GLM methods. Figure 3 shows simulations for power and FDR with vary-
ing numbers of cells per samples and paired samples. Both cell and donor standard 
deviations are set to σB = σU = 1 , and correlations are set to ρB = ρU = 0 . We use the 
same effect size of δ(1)p − δ

(0)
p = 1.8 as in the experiment of Fig. 1. An efficiency gain 
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Fig. 2 Summary of experiments with 1000 cells per sample averaged over 100 runs. The horizontal dashed 
line represents the target FDR. Postfixes BH and BY stand for the respective FDR control procedure. Subscripts 
B and U indicate cell and donor‑level standard deviation σ and correlation ρ , respectively
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is clearly visible when we compare how many paired samples are needed to achieve 
80% power. We observe that with 1000 cells, GLMM-BH needs seven paired samples 
to exceed the 80% power threshold, whereas GLM-BH needs 13 paired samples to 
achieve the same. We can also see that GLMM-BH achieves adequate power with as 
few as 1000 cells per sample. We add results for Citrus to illustrate the power gain. 
Note that we chose the regularization parameter using leave-one-out cross-validation 
and select the parameter with the smallest prediction error. The original Citrus 
implementation chooses the regularization parameter using an FDR calculation. In 
our simulation study, the original procedure yields zero power across all sample sizes.

In the unpaired samples experiment, we only show GLM results as the GLMM results 
have zero power, there is no data to estimate the donor-level random effect term. We 
observe up to 20% FDR with a target FDR of 5%. To have non-zero power we need to 
increase the effect size to 15 (in comparison, for paired experiments the effect size is 
set to 1.8). Furthermore, FDR is only controlled under medium cell-level marker cor-
relations using the more conservative BY procedure, with BH exceeding 0.05 in most 
scenarios except when we have zero donor-level variability σU = 0 . As before, BY comes 
with a loss of power.

Experimental dataset

We reanalyze a published dataset on the maternal immune system during pregnancy 
[15]. The study provides a rich mass cytometry dataset collected at four time points dur-
ing pregnancy in two cohorts. The authors isolated cells from blood samples and stimu-
lated them with several activation factors. The goal was to explain how immune cells 
react to these stimuli, and how these reactions change throughout pregnancy. Findings 
from such experiments might identify immunological deviations implicated in preg-
nancy-related pathologies.

The data were collected at early, mid, late pregnancy, and six weeks postpartum. 
Samples were left unstimulated or stimulated. Stimulation conditions included: 
interferon-α2A ( IFNα ), lipopolysaccharide, and a cocktail of interleukins (ILs) contain-
ing IL-2 and IL-6. They processed the samples on a CyTOF 2.0 mass cytometer instru-
ment, and bead normalized the data to account for signal variation over time from 
changes in instrument performance [16].

In our analysis, we focus on comparing early (first trimester, Yi = 0 ) with late (third tri-
mester, Yi = 1 ) pregnancy samples stimulated with IFNα in the first cohort of 16 women. 
We gate cells into cell types and organize them in a data frame. We follow the gating 
scheme detailed in [15] and define 12 cell types using the R package openCyto [17]: 
memory CD4 positive T cells (CD4+Tmem), naive CD4 positive T cells (CD4+Tnaive), 
memory CD8 positive T cells (CD8+Tmem), naive CD8 positive T cells (CD8+Tnaive), 
γ δ T cells (gdT), regulatory T memory cells (Tregsmem), regulatory T naive cells (Treg-
snaive), B cells, classical monocytes (cMC), intermediate monocytes (intMC), non-clas-
sical monocytes (ncMC), and Natural Killer cells (NK). Out of the 32 protein markers 
measured on each cell, the authors defined 22 markers as gating markers, and 10 as 
functional markers. The functional markers are pSTAT1, pSTAT3, pSTAT5, pNFκ B, 
total I κ B, pMAPKAPK2, pP38, prpS6, pERK1/2, and pCREB (in plots Greek symbols are 
replaced by Latin symbols).
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We plot the maximum likelihood (for GLMs) and the method of moments estimates 
(for GLMMs) with 95% confidence intervals for the fixed effects β (Fig.  4). We trans-
form the raw counts using four different transformations—a log transform and three 
asinh transforms with varying cofactor. The estimates are on the log-odds scale. All 
four transformations show similar trends. The log transform is between the asinh with 
cofactor 1 and 5. We see that pSTAT1 is a strong predictor of the third trimester. With 
the standard cofactor of 5, this means that one unit increase in the transformed marker 
expression makes it between exp(1) = 2.7 to exp(1.5) = 4.5 (95% confidence interval 
for GLMM) more likely to be a cell from the third trimester, while holding the other 
markers constant. pSTAT3 and pSTAT5 have negative coefficients. This means pSTAT3 
and pSTAT5 predict the first trimester, while holding the other markers constant. Only 
pSTAT1, pSTAT3, and pSTAT5 are below an FDR of 0.05. Our results corroborate previ-
ous findings by [15] reporting an increase of pSTAT1 during the third trimester for IFNα 
stimulated samples.

The GLMM method takes 1–2 s for the pregnancy dataset with 178,872 NK cells. The 
GLM requires resampling the data multiple times. For 1000 bootstrap replicates it takes 
5 min for the pregnancy dataset. We obtained these running times on a laptop with an 
2.3 GHz quad-core processor.

Discussion
Our new R package CytoGLMM provides functions which are applicable to a wide range 
of cytometry studies. Besides comparisons on paired samples, where samples are avail-
able for the same subject under different experimental conditions, our CytoGLMM is 
applicable to unpaired samples, where samples are collected on two separate groups of 
individuals.

Our simulation experiments compare multiple regression GLM and GLMM, as imple-
mented in cytoglm and cytoglmm in our R package. In simulated paired samples 
experiments, both GLMM with Benjamini-Hochberg (GLMM-BH) and Benjamini–
Yekutieli (GLMM-BY) procedures control the FDR below the target FDR under cell-
level marker correlations with an autoregressive structure with correlations up to ±0.4 . 
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Fig. 4 Methods comparison between bootstrap GLM (cytoglm) and GLMM (cytoglmm). The horizontal axes 
are on the log‑odds scale. The vertical axes are the protein markers. Each color represents a different data 
transformation prior to the model fits
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GLMM methods are more powerful than GLM methods for paired samples. GLMM 
methods can account for the patient-to-patient variation in the model, whereas GLM 
methods treat this variation as noise, which results in noisier and thus less powerful esti-
mates. For unpaired samples, we are forced to use the nonparametric bootstrap method 
for GLMs because there are no paired samples available to estimate the random effect 
term. In simulated unpaired experiments, only BY controls the target FDR. In prac-
tice, this means that we need a much higher donor samples size to detect a differential 
expression compared to paired experiments.

Interestingly, our power analysis suggests that GLMM-BH achieves adequate power 
with 1000 cells per sample. Not much can be gained by going to 10,000 or more cells. 
Such cell counts are not uncommon in cytometry studies. Our findings suggest that 
CytoGLMM will not detect any differential expression for rare cell types with around 
100 cells per sample. Citrus showed low power in our simulation analysis. This makes 
sense as Citrus was not intended to be used for predefined cell types—its main focus 
is cell type discovery.

Overall, larger cell-level and donor-level correlations increase power and reduce the 
observed FDR. Hypothesis testing under arbitrary dependency structure is still an active 
research topic [14, 18, 19]. What is easier to explain is the reduction in power and FDR 
as a function of increased cell-level variance. Research in measurement error models 
shows that increased uncertainty in measured covariates is linked to biased estimates 
[20, 21]. For example, consider a scatter plot of experimental outcome (vertical axis) and 
one marker expression (horizontal axis). The goal is to fit a line so that we can predict the 
experimental outcome from the marker expression. Now assume that we measured the 
same marker with increased measurement error. This would spread out the the points 
along the horizontal axis, flatten the line fit, tilt it toward zero, and bias the regression 
coefficient towards zero. In GLMMs, donor-level correlations have only a weak impact 
on power and observed FDR because we explicitly model correlations with a random 
effect term.

In addition to corroborating a differential expression of pSTAT1 in the original study 
[15], we also found that pSTAT3 and pSTAT5 were differentially expressed in the NK 
cell population. This additional finding could be a result of the improved power of our 
method, but it could also be a result of the different regression analysis strategy. In the 
original study, the authors analyzed all cell types simultaneously. Such conditioning on 
other cell types could influence the differential expression estimates. In general, biases 
in coefficient estimates of GLMs and GLMMs can occur when we leave out proteins 
from the analysis. Assume that we would like to relate variable protein X to experimen-
tal condition Y  . If there exists a second protein Z both related to X and Y  , then Z is 
called a confounder, and not including it in the analysis can change the coefficients esti-
mates. In the pregnancy data, if we removed pSTAT1 from the analysis, the confidence 
intervals of pSTAT3 and pSTAT5 could change. Such a difference is expected if pSTAT1 
is a confounder. If pSTAT1 is not a confounder, the coefficient estimates for pSTAT3 
and pSTAT5 will be the same whether pSTAT1 is included or not. The change of coeffi-
cients depending on what markers are included in the model can have strong effects. We 
observed in some real datasets that one marker can make other markers change their 
sign depending on whether we include them or not. In the pregnancy data, pSTAT5 flips 
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sign from negative to positive after removing pSTAT1 from the analysis. In such cases, 
we recommend keeping all markers in the analysis to avoid introducing confounding 
biases.

We analyze 10 functional markers in the pregnancy data. CytoGLMM scales compu-
tationally to larger number of markers as GLMM can be implemented with the method 
of moments, and GLM with fast numerical optimization procedures. For example, a 
GLMM analysis on 40 markers, 16 samples, and 10,000 cells per sample takes 10 s on 
a laptop with an 2.3 GHz quad-core processor. There is however a statistical tradeoff as 
the effective sample size will be anywhere between the number of samples and the cells. 
To extend our methodology to more than two groups, we recommend to run a separate 
two-group CytoGLMM analysis on each pair, and combine the p-value tables—using the 
summary function—to control the overall FDR.

Our simulations are limited to a Poisson mixed effect model for protein marker 
expression. Our conclusions are only valid with respect to this model. The real data 
generating process might be different. Two main caveats are to be noted. First, we can 
only encode an experimental design comparing two groups. Second, we require gated 
cell types. To reduce the person-to-person bias of manual gating, we employed the R 
package openCyto [17]. The curse of dimensionality makes it challenging to scale this 
approach to very high dimensional gating schemes. For example, consider 20 gating 
markers and assume that each marker differentiates between two cell populations. This 
seemingly harmless gating procedure can produce 220 or approximately one million pos-
sible cell types. In this setting, even large cell sample sizes might provide unreliable cell 
types estimates.

A possible alternative to GLMMs are Generalized Estimating Equations (GEEs). GEEs 
are statistically more efficient when the covariance structure of the residuals are known. 
In our case, the covariance structure is unknown and needs to be estimated from the 
data. In most immunology studies, we only have a few donors without a given covariance 
structure (e.g. no time dependency), resulting in a hard and possibly unstable covariance 
estimation problem, which could result in an overall loss of efficiency [22].

Conclusions
We presented a conditional differential analysis to avoid biases arising from marker cor-
relations. We built statistical models of the unsummarized expression data to maximize 
statistical power, and modeled patient heterogeneity to safeguard against false discov-
eries. The main difference between our and related procedures is that we assume that 
the cell type is known or can be estimated with high accuracy. This assumption is rea-
sonable in many studies with cytometry data. In our own work, we applied CytoGLMM 
in wide range of immunology studies: In [3], we identified differential expressions in 
CD112 and CD54 between the pandemic A/California/07/2009 and the seasonal A/Vic-
toria/361/2011 influenza virus strains. In [4], we found increased expression of CD38 
on CD56dim and CD56bright NK cells, and NKp46 on CD56dim NK cells in pregnant 
women compared to non-pregnant women. In [5], we found that TIGIT is upregulated 
on NK cells of untreated HIV+ women, but not in antiretroviral-treated women. In [6], 
we found that treatment with daclizumab beta increased expression of NKG2A and 
NKp44, and diminished expression of CD244, CD57, and NKp46 on CD56bright NK 
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cells. Most recently, in [7], we found that in a cohort of Beninese sex workers and healthy 
controls NK cells from highly exposed seronegative individuals had increased expression 
of NKG2A, NKp30 and LILRB1, as well as the Fc receptor CD16, and decreased expres-
sion of DNAM-1, CD94, Siglec-7, and NKp44.

Both the GLM and GLMM method build on generalized linear models that can 
model other data types than binary responses. Therefore it would be possible to extend 
CytoGLMM to continuous response variables. A more challenging next step is extending 
CytoGLMM to include more complicated experimental designs; e.g. twin studies [23].

Methods
Preprocessing

We recommend that marker expressions be corrected for batch effects [10, 24–27] and 
transformed using variance stabilizing transformations to account for heteroskedastic-
ity, for instance with an inverse hyperbolic sine transformation with the cofactor set to 
150 for flow cytometry, and 5 for mass cytometry [2]. This transformation assumes a 
two-component model for the measurement error [28, 29] where small counts are less 
noisy than large counts. Intuitively, this corresponds to a noise model with additive and 
multiplicative noise depending on the magnitude of the marker expression; see [30] for 
details.

Generalized linear model (GLM)

The goal of the GLM is to find protein expression patterns that are associated with the 
condition of interest, such as a response to a stimulus. We set up the GLM to predict 
the experimental condition from protein marker expressions, thus our experimental 
conditions are response variables and marker expressions are explanatory variables. The 
response variable Yi is a binary variable encoding experimental condition as zero or one. 
The response variable can be modeled as a Bernoulli random variable with probability 
πi for each cell. Then we use the logit link to relate the linear model to binary responses. 
The linear model predicts the logarithm of the odds of the i th cell being Yi = 1 instead of 
Yi = 0 . The linear model has one coefficient per protein marker β1, . . . ,βP and an inter-
cept β0 . If πi is 0.5 then the cell could have come from either Yi = 1 or Yi = 0 with equal 
probability. If πi is either very close to one or zero, then the cell is strongly representative 
of a cell observed under Yi = 1 or Yi = 0 , respectively. We observe the protein marker 
expressions xi . For each cell we measure P protein markers.

The response probabilities πi are not observed directly, only Yi = yi and xi are observed. 
Note that xi is observed with errors. Here, we make the approximating assumption that 
the covariates are fixed. Our results will show that this assumption is conservative and 
introduces a regularization of the estimated coefficients. We estimate πi from the data 
using maximum likelihood with the function glm in R. Our logistic regression model, 
which is part of a general class of GLMs, can be summarized in the following form:

Yi ∼ Bernoulli(πi),

log

(

πi

1− πi

)

= x
T
i β .
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For likelihood inference, we use the nonparametric bootstrap and resample entire 
donors with replacement to preserve the cluster structure. At the cell-level, we resam-
ple cells with replacement within each donor. We build percentile confidence intervals 
and compute p-values by inverting the intervals assuming two-sided intervals with equal 
tails [31]. We use the BH [32] and BY [33] procedures to control the FDR. We refer to 
GLM with BH control as GLM-BH, and with BY control as GLM-BY.

Generalized linear mixed model (GLMM)

We make additional modeling assumptions by adding a random effect term in the stand-
ard logistic regression model to account for the subject effect. The covariates xij are the 
same as in the fixed effects GLM, except now we have an additional index j that indi-
cates from which donor the cell was taken. Each cell i maps to a donor j . The additional 
term uj represents regression coefficients that vary by donor. The statistical model can 
be summarized as,

with a multivariate normal distribution and covariance matrix � for the random effect 
term uj,

Analog to our GLM, we make the approximating assumption that the covariates are 
fixed.

The mixed effect model is a compromise between two extremes. On the one hand, 
we could estimate separate regression coefficients for each donor. This corresponds to 
random effects modeled with a multivariate normal distribution with infinite standard 
deviations and no constraint on how coefficients are related to each other. On the other 
hand, we could pool all donors into one group and ignore the donor information. This 
corresponds to a GLM with no random effects, with no additional variability besides the 
fixed effect term. A compromise between these two extremes is to estimate the stand-
ard deviations of the random effects from data, allowing the regression model to learn 
from the other donors. Mixed effects procedures are related to empirical Bayes proce-
dures [13]. The first step of an empirical Bayes procedure would estimate the mean and 
covariance matrix of the random effect term. The second step would fix the random 
effect parameters at their estimated values and estimate the fixed effect parameters. In 
contrast, the mixed effect procedure estimates the parameters of both steps jointly. This 
is possible for flow and mass cytometry data because of the relatively small number of 
proteins.

We use the method of moments as implemented in the R package mbest to estimate 
the model parameters β , uj , and � . For likelihood inference, we use the asymptotic theory 
derived by [34]. The author showed that the sampling distribution of the estimated param-
eters can be approximated by a normal distribution. We use this mathematical alternative 
to the bootstrap method to create approximate confidence intervals and p-values. As in the 

Yij ∼ Bernoulli(πij),

log

(

πij

1− πij

)

= xTij β + xTij uj ,

uj |� ∼ Normal(0,�).
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GLM case, we use the BH and BY procedures to control the FDR. We refer to GLMM with 
BH control as GLMM-BH, and with BY control as GLMM-BY.

Construction of simulated datasets

We construct our simulated datasets by sampling from Poisson GLMs. In prior work, we 
confirmed—with predictive posterior checks—that Poisson GLMs with mixed effects pro-
vide a good fit to mass cytometry data on the same pregnancy dataset [35]. We consider 
one underlying data generating mechanisms described by a hierarchical model for the i th 
cell and j th donor:

Figure 5 shows a graphical representation of the hierarchical model. The stimulus acti-
vates proteins and induces a difference in marker expression. We define the effect size to 
be the difference between expected expression levels of stimulated versus unstimulated 
cells on the log-scale. All markers that belong to the active set C, have a non-zero effect 
size, whereas, all markers that are not, have a zero effect size:

Both covariance matrices have an autoregressive structure,

where �rs is the rth row and sth column of the correlation matrix � . We regulate 
two separate correlation parameters: a cell-level ρB and a donor-level ρU coefficient. 

X ij ∼ Poisson(�ij)

log(�ij) = Bij +U j

Bij ∼

{

Normal(δ(0),�B) if Yij = 0, cell unstimulated

Normal(δ(1),�B) if Yij = 1, cell stimulated

U j ∼ Normal(0,�U ).

{

δ
(1)
p − δ

(0)
p > 0 if protein p is in activation set p ∈ C

δ
(1)
p′ − δ

(0)
p′ = 0 if protein p′ is not in activation set p′ /∈ C .

�rs = ρ|r−s|

� = diag(σ )� diag(σ ),

+ ))X

Bij ∼ Normal(δ(0),ΣB)

Bij ∼ Normal(δ(1),ΣB)

U j ∼ Normal(0,ΣU )

∼ Poisson(exp(

Fig. 5 Graphical representation of the Poisson GLM used to construct the simulated datasets



Page 13 of 14Seiler et al. BMC Bioinformatics          (2021) 22:137  

Non-zero ρB or ρU induce a correlation between condition and marker expression even 
for markers with a zero effect size.

Processing of pregnancy dataset

We reproduce the original gating strategy according to the supplementary mate-
rial (Figure S1) from [15] using the R package openCyto [17]. In our analysis, we 
focus on the 178,872 NK cells. The number of cells per sample vary between 6480 
and 21,348. The full openCyto workflow is available as a vignette on our package 
website: https:// chris tofse iler. github. io/ CytoG LMM/ artic les/ pregn ancy_ datas et. html.
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