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Background
Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is 
a widely used technology for genome-wide mapping of the location of histone modifica-
tions (HMs) or DNA-associated proteins such as transcription factors (TFs) and chro-
matin regulators (CRs) [1]. Dozens of methods have been developed for quantitatively 
analyzing ChIP-seq data, including peak callers [2, 3] and differential binding tools [4, 
5]. A major challenge in training and evaluating these methods as well as interpreting 
their results is a lack of reliable ground truth data: in most cases, the actual locations 
and strengths of binding sites or regions enriched for certain histone modifications are 
not known and cannot be reliably measured using orthogonal experimental techniques. 
Computational analysis of ChIP-seq is further complicated by multiple sources of noise 
introduced during the experimental process, including inefficiency or non-specificity of 
antibodies, PCR artifacts, and sequencing errors [6, 7].

Accurate simulation of ChIP-seq data can mitigate this challenge, but existing frame-
works [8–11] are either cumbersome to apply genome-wide or do not accurately 
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capture important sources of variation present in real data such as pulldown non-spec-
ificity, fragment length variability, or sequencing errors (Additional file 1: Supplemen-
tary Table 1). Importantly, existing simulation tools are not capable of inferring model 
parameters from real ChIP-seq datasets, making it difficult to choose realistic simulation 
settings.

Here, we present ChIPs (ChIP-seq simulator), a flexible toolkit for rapidly simulating 
ChIP-seq data based on realistic statistical models. ChIPs is a computationally efficient 
command-line solution that allows users to easily specify a wide range of parameters 
modeling key experimental steps and to infer these parameters from existing datasets. 
We demonstrate the applicability of ChIPs for evaluating the impact of various experi-
mental conditions and for benchmarking computational analysis tools.

Implementation
Framework architecture

ChIPs models each major ChIP-seq step (shearing, immunoprecipitation, pulldown, 
PCR, and sequencing) as a distinct module (Fig.  1a). It assumes binding sites for the 
target epitope and their binding scores (probabilities) are known. Notably, for histone 
modifications, we use binding to refer to genomic localization with the target modifica-
tion, although the DNA itself is not typically bound by the modification. Importantly, 
each step is modeled in a way that key parameters can be inferred from existing datasets.

Step 1: Shearing Cross-linked DNA is first sheared to a target fragment length, for 
instance by sonication or enzymatic approaches [12]. ChIPs models fragment lengths 
using a gamma distribution (Fig.  1a; top) based on empirical observation of fragment 
distributions which have long right tails. The fragment length distribution param-
eters are either trivially inferred from paired end read alignments or are approxi-
mated from single end data using a heuristic method (Additional file 1: Supplementary 
Methods, Supplementary Figure 1).

Step 2: Immunoprecipitation Sheared cross-linked DNA is subject to immunoprecipi-
tation, during which an antibody is used to enrich the pool of fragments for those bound 
to the epitope of interest. To model this imperfect process, we quantify the ratio, α , of 
the probability of pulling down a bound versus unbound fragment. This modeled ratio 
is specific to each ChIP-seq experiment and depends on the antibody specificity as well 
as the fraction of the genome bound by the factor of interest. Let f be the fraction of the 
genome bound by the factor of interest and s be the fraction of pulled down reads that 
originate from true binding sites. We can approximate α using Eq. 1. A detailed deriva-
tion of this ratio is provided in Additional file 1: Supplementary Methods.

The parameters f and s can be directly inferred from real data based on binding sites or 
enriched regions (peaks) identified by various peak-calling methods (Additional file  1: 
Supplementary Methods, Supplementary Figure 2).

Step 3: PCR PCR is used to amplify pulled down fragments before sequencing. Let 
ni represent the number of reads (or read pairs) with i PCR duplicates (including the 

(1)α =

s(1− f )

(1− s)f
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original fragment). ni is modeled using a geometric distribution, where p gives the 
probability that a fragment has no PCR duplicates. The parameter p is estimated as 
1/n , where n =

∑
∞

i=1
(ini)∑

∞

i=1
ni

.

Step 4: Sequencing Finally, amplified fragments are subject to either paired end or 
single end sequencing. Sequences are based on an input reference genome using the 
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Fig. 1 ChIPs overview. a Overview of the ChIPs model. ChIPs models four steps: shearing (top), pulldown 
(middle), PCR (bottom), and sequencing. Top: the dark blue histogram shows an example fragment length 
distribution from real paired end ChIP-seq data. The red line shows the best fit gamma distribution. Middle: 
pulldown is modeled using two parameters; f (the fraction of the genome bound by the factor) and s (the 
probability that a pulled down fragment is bound. Bottom: The dark blue histogram shows an example of a 
distribution of the numbers of PCR duplicates in real ChIP-seq data. The red line shows the best fit geometric 
distribution. b Schematic of ChIPs modules. The learn module takes an existing ChIP-seq experiment 
(aligned reads and peaks) and learns model parameters (see Additional file 1: Supplementary Table 2). The 
simulation module takes as input a set of peaks and model parameters, simulates a ChIP-seq experiment, and 
returns raw reads in FASTQ format. Model parameters input to the simulation module may either be learned 
from an existing ChIP-seq dataset (dashed arrow) or manually specified to capture planned experimental 
conditions. Purple borders represent input or output files and black boxes denote ChIPs commands. Boxes 
with solid lines denote required inputs. Boxes with dashed borders denote optional inputs. “Exp. params” 
denotes experimental parameters including the number of reads, read length, and number of simulation 
rounds. “Aln reads” denotes aligned reads in BAM format. c Example coverage profiles of real versus simulated 
data. The bottom track shows peaks identified by ENCODE, with normalized peak scores between 0 to 1 
colored based on a gradient from white to red. The middle track shows coverage profiles based on aligned 
reads from ENCODE, and the top track shows coverage profiles based on ChIPs simulations. Coverage 
profiles were generated using IGV. Coverage profiles may also be viewed interactively at https:// tinyu rl. 
com/ y7x6g gdq. d Concordance of read counts between simulated versus real ChIP-seq data. chr22 was 
divided into non-overlapping 5 kb bins. The scatter plot shows the comparison of read counts per bin for 
bins overlapping peaks (dark blue) or background regions (dark red). The x- and y-axes are on a log10 scale. 
The plot shown is for 100 simulated genome copies. e Read count correlation between real and simulated 
data as a function of number of simulated genome copies. For each number of copies, the correlation 
was computed between read counts in 5 kb bins overlapping input peaks. The x-axis is on a log10 scale. f 
Simulation run time as a function of number of simulated genome copies. The x-axis is on a log10 scale

https://tinyurl.com/y7x6ggdq
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coordinates of each fragment. We model the per-base pair substitution, insertion, 
and deletion rates (Additional file 1: Supplementary Table 2).

Implementation details

ChIPs is implemented as an open source C++ project with source code publicly available 
on Github: https:// github. com/ gymre klab/ chips. It consists of two utilities: simreads 
and learn (Fig. 1b). The simreads module takes in ChIP-seq model parameters and 
experimental settings (Additional file 1: Supplementary Table 2), and outputs simulated 
reads. Input parameters can either be set by the user to mimic a future ChIP-seq experi-
ment or learned from existing data using the learn module. The user must addition-
ally specify the number of simulation rounds, which denotes the number of times the 
input reference genome is processed by ChIPs. Notably, this number is related, but not 
directly comparable, to the number of experimentally processed cells, since pulldown 
efficiency is not directly included in our current model. We have found that in most set-
tings 25–100 and 1000 rounds work well for HMs and TFs, respectively. Full implemen-
tation details and methods for benchmarking experiments are provided in Additional 
file 1: Supplementary Methods.

Results
Comparison of ChIPs simulation results to real ChIP‑seq data

We evaluated ChIPs using ChIP-seq data generated by the ENCODE Project [13] for an 
example histone modification H3K27ac in the GM12878 cell line. To evaluate the effect 
of varying the number of simulation rounds, we simulated reads on chromosome 22 
using parameters inferred from real data over a range of simulation rounds (1–10,000). 
Run time for chromosome 22 ranged from 11  s (1 round) to 15  min (10,000 rounds). 
Resulting reads were aligned to the hg19 reference genome using BWA-MEM [14], and 
duplicates were flagged using Picard [15]. Visual inspection of the resulting coverage 
profiles shows high similarity between real and simulated data (Fig. 1c).

Next, we compared read counts in bins of 5kb and found high correlation between 
real and simulated data in bins containing at least one peak (Fig. 1d; Pearson r = 0.91 ; 
p < 10

−200 ; n=1,232 bins; 100 simulation rounds). Further, correlation with ENCODE 
data increased as a function of the number of simulation rounds but plateaued around 
100, suggesting little gain in simulating additional rounds compared to the time tradeoff 
(Fig. 1e–f). We repeated this analysis on multiple additional HMs and TFs in GM12878 
with similar results (Additional file 1: Supplementary Figure 3).

Benchmarking against existing ChIP‑seq simulators

We next benchmarked ChIPs against existing ChIP-seq simulators, which are summa-
rized in Additional file 1: Supplementary Table 1. We focused on two recent methods: 
(1) ChIPulate [9] is a method for simulating TF ChIP-seq data using detailed modeling 
of locus-specific binding energies. ChIPulate only simulates reads at bound regions, and 
does not simulate background fragments outside of peak regions, a key feature of real 
ChIP-seq datasets related to the antibody specificity. (2) isChIP [11] is a command-line 
method for simulating ChIP-seq data based on a set of input peaks, model parameters, 
and sequencing parameters. While isChIP performs a similar task to ChIPs, it is not 

https://github.com/gymreklab/chips
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able to infer model parameters from existing datasets, which is a key feature of ChIPs. A 
more detailed description of model differences between these tools is provided in  Addi-
tional file 1: Supplementary Note.

We used ChIPs, ChIPulate, and isChIP to simulate ChIP-seq data based on six dif-
ferent ENCODE datasets including 3 HMs (H3K4me1, H3K4me3, and H3K27ac) and 3 
TFs (BCLAF1, IKZF1, and NFYA) (Additional file 1: Supplementary Table 3). For each 
dataset, we used the three methods to simulate data for chr22 based on ENCODE peaks 
and with settings meant to capture similar properties of the ENCODE data, including 
read length and read number. We additionally inferred model parameters using our 
learn module and used these models to set appropriate simulation options for each 
tool when possible (Additional file 1: Supplementary Methods). For each tool, we varied 
the number of simulation rounds (similar to the number of cells) from 1 to 10,000. ChIP-
ulate simulations took approximately 80 min to complete regardless of the number of 
simulation rounds, although subsequent simulations reused intermediate files and were 
faster. isChIP consistently achieved the fastest run time (e.g. 0.8  min for 1000 rounds 
on H3K27ac compared to 4.9  min for ChIPs). For both isChIP and ChIPs, simulation 
time was far less than the run time of downstream steps of sequence alignment and peak 
calling.

For each simulated dataset, we compared to real data using two methods. First, 
similar to above, we aligned simulated reads to the hg19 reference genome and com-
pared read counts in 1kb bins containing at least one peak. As expected, correlation 
with ENCODE increases for all tools with additional simulation rounds (Additional 
file  1: Supplementary  Figure  4a). In all evaluated conditions we found that ChIPs 
showed superior correlation with ENCODE data. ChIPs perforomance was virtually 
unchanged when using models based on paired versus single end data (Additional file 1: 
Supplementary Figure 4a).

Second, to evaluate how well each tool captures noise in real data, we examined the 
distribution of read counts in bins with and without peaks (referred to as peak and back-
ground regions, Additional file 1: Supplementary Figure 4b) between simulated and real 
data. We further visualized these trends using simulated coverage profiles and ENCODE 
data using the Integrative Genomics Viewer [16] (Additional file 1: Supplementary Fig-
ure 5). In all cases, data simulated by ChIPs most closely matches read count distribu-
tions in peak versus background regions in the ENCODE data. As expected, almost no 
reads from ChIPulate align to background regions. For isChIP, we found that using the 
default background noise level resulted in far higher signal to noise ratios than in the real 
data. We attempted to more closely match ENCODE data by performing an additional 
experiment with increased background noise. This in some cases alleviated the bias but 
still matched less closely than ChIPs data (Additional file 1: Supplementary Figure 4b).

Taken together, our benchmarking results show that ChIPs most accurately cap-
tures properties of real ChIP-seq data. Further, whereas ChIPs could learn appropriate 
model parameters from existing datasets, the alternative tools first required detailed 
user involvement to determine realistic simulation settings for a particular dataset type. 
While we cannot rule out that further tuning of parameters for each method could 
achieve higher correlation, we found that without a method to infer parameters from 
existing data that it was difficult to choose optimal simulation settings.
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Demonstration of ChIPs applications

We next used ChIPs to evaluate the effects of varying experimental parameters on the 
ability to accurately detect TF or HM peaks. We examined read number, read length, 
PCR duplicate rate, and antibody specificity, and used ChIPs to simulate a series of 
datasets by varying each parameter. We generated two sets of simulated data to capture 
general properties such as peak size distributions characteristic of HMs or TFs (Sup-
plementary Methods). We used MACS2 [2] to call peaks on the resulting datasets after 
alignment and duplicate marking. Each simulated dataset was evaluated based on the 
fraction of peaks recovered by the simulated datasets (recall), the fraction of called peaks 
that were correct (precision), and the combination of precision and recall (F1  score) 
(Fig.  2a–d, Additional file  1: Supplementary  Figure  6). Simulated datasets recapitulate 
expected trends. Peak calling accuracy increases most dramatically as a function of the 
total number of reads, and performance decreases for datasets with larger fragment 
lengths or higher rates of PCR duplicates. Read length and the choice of single versus 
paired end reads have little impact on peak calling performance in mappable regions of 
the genome included in our analysis.

Finally, to demonstrate the ability of ChIPs to generate ground truth data for evaluat-
ing analysis tools, we compared performance of multiple peak calling methods on simu-
lated datasets. We focused on five representative tools: MACS2 [2], GEM [17], MUSIC 
[3], BCP [18], and HOMER [19]. We measured peak calling performance using simu-
lated datasets representative of generic HMs or TFs as described above but with varying 

a

e f

b c d

Fig. 2 Example ChIPs applications. a–d Evaluation of the effects of varying experimental parameters on 
peak calling performance. Results are based on simulation of generic TF and HM datasets for chr21 as 
described in Additional file 1: Supplementary Methods. In each plot the y-axis shows the F1 score computed 
by comparing ground truth peaks to those inferred from simulated datasets using MACS2. a F1 score as a 
function of the total number of reads simulated from chr21. b F1 score as a function of read length. c F1 score 
as a function of PCR duplicates. The x-axis gives the parameter p, which can be interpreted as the percent of 
fragments with no PCR duplicates (Additional file 1: Supplementary Table 2). d F1 score as a function of mean 
fragment length (bp). Red = HM; Blue = TF; solid lines=paired end reads; dashed lines=single end reads. e–f 
Evaluation of various peak calling methods on simulated TF (e) and HM (f) datasets with different noise levels. 
Noise levels are quantified using s, the fraction of pulled down reads that originate from true binding sites. 
Blue = BCP; orange = GEM; green = MACS2; red = MUSIC; purple = HOMER
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degrees of non-specific binding (ChIPs s parameter, commonly referred to as a SPOT 
or FRIP score [7]; Fig. 2e–f, Additional file 1: Supplementary Figure 7). As expected, in 
all settings peak calling performance increased as a function of s. No method acheived 
superior performance across all datasets or metrics. For TFs, GEM, MACS2, and 
HOMER showed similarly high F1 scores for datasets with s > 0.05 . For HMs, all tools 
except BCP showed high F1 scores across a range of s values. Notably, our analysis cap-
tures only a small subset of possible dataset parameters, and it is likely that results will 
vary depending on specific datasets. Previous work has performed an extensive evalua-
tion of various peak calling methods [20].

Conclusions
In summary, we present ChIPs, an efficient command-line program that can rapidly 
generate realistic ChIP-seq data over a wide range of experimental conditions. ChIPs 
can infer model parameters from real data and generate simulated data for both TF and 
HMs. The whole process takes just seconds to minutes for most applications. Our frame-
work is modular, allowing future integration of alternative or improved models at vari-
ous simulation steps. For example, we can further model multiple types of biases, such 
as the ones introduced by specific cross-linking steps. Or we can model the biases intro-
duced during pulldown by inherent factors such as GC content or DNA accessibility.

In this study, we benchmarked ChIPs against existing simulation tools and compared 
simulation results with a broad range of real ChIP-seq datasets as ground-truth. While 
all these tools could model multiple aspects of ChIP-seq data, we found that ChIPs most 
closely captures the properties of real ChIP-seq datasets. Another advantage of ChIPs 
is that, among all simulation tools benchmarked in this study, ChIPs is the only method 
capable of inferring model parameters from real data, allowing realistic simulation.

We demonstrated the utility of ChIPs in several usage scenarios, including benchmark-
ing peak calling methods and measuring the effects of experimental conditions on peak 
detection. Some potential future applications include (1) evaluating the effects of genetic 
variation, such as SNPs, indels, or repeats, on observed ChIP-seq signals, (2) modeling 
effects of biological processes, such as DNA replication, on ChIP-seq signals, and (3) 
analyzing effects of spike-in normalization controls. Overall, we envision our framework 
will serve as a valuable resource for future efforts in ChIP-seq analysis.

Availability and requirements

Project name: ChIP-seq simulator.
Project home page: https:// github. com/ gymre klab/ chips.
Operating system: CentOS Linux release 7.8.2003 (Core), macOS Catalina v10.15.7.
Programming language: C++.
Other requirements: gcc 4.9.2 or higher.
License: GNU General Public License v3.0.
Any restrictions to use by non-academics: None.

https://github.com/gymreklab/chips
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