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Background
There have been remarkable technological advances in multiple field of deep learning 
that are influencing various sectors such as automatic speech recognition, image rec-
ognition, customer relationship management, financial, and also the medical field. The 
advances in deep learning technologies have allowed for improvement in the existing 

Abstract 

Background:  The Cox proportional hazards model is commonly used to predict haz‑
ard ratio, which is the risk or probability of occurrence of an event of interest. However, 
the Cox proportional hazard model cannot directly generate an individual survival 
time. To do this, the survival analysis in the Cox model converts the hazard ratio to 
survival times through distributions such as the exponential, Weibull, Gompertz or log-
normal distributions. In other words, to generate the survival time, the Cox model has 
to select a specific distribution over time.

Results:  This study presents a method to predict the survival time by integrating 
hazard network and a distribution function network. The Cox proportional hazards 
network is adapted in DeepSurv for the prediction of the hazard ratio and a distribution 
function network applied to generate the survival time. To evaluate the performance 
of the proposed method, a new evaluation metric that calculates the intersection over 
union between the predicted curve and ground truth was proposed. To further under‑
stand significant prognostic factors, we use the 1D gradient-weighted class activation 
mapping method to highlight the network activations as a heat map visualization over 
an input data. The performance of the proposed method was experimentally verified 
and the results compared to other existing methods.

Conclusions:  Our results confirmed that the combination of the two networks, Cox 
proportional hazards network and distribution function network, can effectively gener‑
ate accurate survival time.

Keywords:  Prognosis, Survival time prediction, Deep learning, Distribution function 
network, Cox proportional hazards network
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medical technologies and their capabilities. However, aspects such as the accurate pre-
diction of survival times (time to event) in patients remains a challenge [1].

Survival analysis is a part of statistics for analyzing the likely duration until the occur-
rence of an event of interest. In the medical field, these events may be death, cardiac 
arrest, the occurrence of a disease, etc. Generally, the survival times are quantified in 
days, weeks, months, and years. For example, if the event of interest is death, the sur-
vival time could be the years until an individual’s death. In addition, survival analysis 
consists of two fundamental functions: the survival function and the hazard function [2]. 
The survival function, denoted by S(t) = P (T > t), indicates the probability that an indi-
vidual has “survived” beyond time t. The hazard function is a measure of risk at time t. A 
greater hazard ratio signifies a greater risk of death. In previous studies, the hazard ratio 
was predicted by learning the relationship between covariates and the coefficients of the 
model using a hazard function.

The analysis of chances of survival is usually a difficult process due to censoring. Cen-
soring is when the study ends, or participants drop out of the study before occurrence of 
the event, leaving incomplete information about the survival time. Right censoring is the 
most common type of censoring, which occurs when the participant fails to record any 
events of interest during the study period, and when the last observed follow-up time 
earlier the event occurrence time. This problem results in lack of information such that 
ordinary regression models for survival cannot be applied [3, 4].

Cox proportional hazard regression model is the commonly used hazard model in the 
medical field since it deals with censoring [5]. The Cox model investigates the associa-
tion between covariates and the survival time of patients to predict hazard ratio while 
handling the censoring of observations. In addition, Cox model is a semi-parametric 
model, therefore it makes no assumptions about the form of the baseline hazard func-
tion, however, it cannot directly predict the survival time since it is a type of hazard 
model. A specific distribution is therefore selected to generate survival time [6], which is 
problematic since the user must pre-select the distribution manually.

A survival time prediction deep neural network by integration of the Cox hazard ratio 
network [7] and a distribution function network was proposed. The following contribu-
tions were made: First, a distribution function network with a new loss function, which 
measures the discrepancy between the algorithm’s prediction and the desired output 
was made. Second, the Cox hazard ratio network was integrated with the distribution 
function network. Finally, the proposed model was made to learn the definite distribu-
tion on several datasets.

The survival analysis is commonly used to predict prognosis in patients. After the 
introduction of the Kaplan–Meier survival estimator [8] and the Cox hazard model [5], 
numerous studies have been conducted based on these methods. Recently, a significant 
improvement in performance was observed as a result of deep learning concepts intro-
duced in the medical field. The survival methods were classified as shown in Table 1, and 
the relevant related works and state-of-the-art studies reviewed. Also, the limitations 
that cover the problem domain were discussed.

Cox hazard model estimates the hazard ratio for an individual and measures the effect 
of survival on patients’ covariates in the model. Various modified Cox models have been 
suggested, for example, the penalized Cox model [9], the Cox-Boost algorithm [10], the 
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Time-Dependent Cox model [11], and Lasso-Cox model [12]. Hazard-predicting meth-
ods have received substantial attention in deep learning method. The recently devel-
oped models include deep exponential families [13], DeepSurv [1], and DeepHit [14]. 
DeepSurv attempts to implement modern deep learning techniques to the Cox propor-
tional hazards loss function. It predicts a patient’s risk of death through multi-layered 
perceptron, hence outperforms other conventional methods. However, to generate an 
individual’s survival time, a specific distribution should be selected. Survival estimation 
is utilized to measure the fraction of patients living. Kaplan–Meier estimator is one of 
the most popular survival estimation methods. It predicts the survival distribution func-
tion from censored data, but does not incorporate the patient’s covariates, hence cannot 
be applied for predicting survival time of an individual. The previous approaches have 
solved this problem in two main steps: (1) extracted hazard ratio and specific distribu-
tion are used to generate the survival time. (2) features are directly used to predict the 
survival time of an individual.

The approaches in the first step translate hazard ratio to survival time using specific 
distribution. The commonly applied simulation approaches consider exponential distri-
bution for convenience [15, 16]. In addition, various distributions are used, e.g. normal, 
Weibull, Gompertz, and log-logistic distributions [16–19]. However, the above-men-
tioned methods are cumbersome and inaccurate since users must manually select the 
distributions.

The second approaches apply machine learning methods to estimate the survival time. 
Survival tree is a method that is specifically customized to handle censored data [24, 25]. 
The tree recursively partitions based on a particular splitting criterion and similarities to 
each other. Support vector machine [26, 27] was used for prognosis through reconstruc-
tion of the survival estimation as a classification, dividing the time axis by a pre-defined 
interval or class. Application of SVM were regarded as regression problems in previ-
ous studies. Deep learning methods are utilized in the extraction of meaningful features 
from medical data and in the prediction of the prognosis [20, 22, 28]. They present better 
performances compared to traditional methods.

Table 1  Taxonomy for survival estimation

Prognosis category Hazard estimation Survival estimation

Machine learning 
category

Hazard estimation (regression) Survival time 
estimation 
(regression)

Survival status (classification)

Method Non-deep learning Deep learning Non-deep 
learning

Non-deep 
learning

Deep learning

Algorithms Penalized Cox model 
[9]

Cox-Boost algorithm 
[10]

Time-Dependent 
Cox model [11]

Lasso-Cox model 
[12]

Deep expo‑
nential 
families [13]

DeepSurv [1]
DeepHit [14]

Exponential distri‑
bution [15, 16]

Weibull distribu‑
tion [17]

Gompertz distri‑
bution [18]

Log-logistic distri‑
bution [19]

Support 
vector 
machine 
[20]

Decision 
tree [21]

Lung tumor with 
deep learning 
[22]

Brain tumor with 
deep learning 
[23]
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We address the method of directly predicting survival time while dealing with censor-
ing data. Thereby, we overcome the disadvantage of not directly estimating survival time 
from censoring data.

Results
The performance of the proposed method was evaluated through comparison with the 
existing survival generation functions in analyzing four real-world clinical datasets. In 
addition, to assess the proposed distribution function network, the results were visually 
evaluated through generation of graphs for each dataset.

Data sets

Lung1 data set: The Lung1 dataset contains clinical data and computed tomography 
(CT) from 422 patients with non-small cell lung cancer (NSCLC) who received radio-
therapy [29]. However, only clinical data without CT was used in this study. The clini-
cal data contains 7 variables namely: T-stage, N-stage, M-stage, overall-stage, histology, 
gender, and age. To use categorical variables, we used label encoder to convert the vari-
ables to numerical numbers.

METABRIC: This collection contains gene expression and long-term clinical follow-up 
data of 2059 primary breast tumors [30]. Of the total 2059 patients, 361 patients without 
clinical data were removed and the experiment was conducted using the data of 1698 
patients. The focus was on 15 clinical features namely; the number of positive lymph 
node, Nottingham prognostic index (NPI), cellularity, chemotherapy, estrogen recep-
tor (ER) status measured by immunohistochemistry, human epidermal growth factor 
receptor 2 (HER2) status, HER2 status measured by single nucleotide polymorphism 6 
(SNP6), ER status, integrative cluster, inferred menopausal state, histologic grade, hor-
mone therapy, histological subtype, location of the tumor, and the 3-Gene classifier 
subtype.

Heart disease data set: Heart disease database contains 76 attributes; however, 13 sub-
set attributes were used for experiments similar to [31–33]. Out of the 13 attributes, 4 
were continuous and 8 discrete attributes. The attributes consisted of age, sex, chest pain 
type, resting blood pressure, serum cholesterol (mg/dL), fasting blood sugar > 120 mg/
dL, resting electro-cardio graphic results, maximum heart ratio achieved, exercise 
induced angina, old peak (ST depression induced by exercise relative to rest), the slope 
of the peak exercise ST segment, and the number of major vessels (0–3) colored by 
fluoroscopy. The individuals were categorized into five levels of heart disease. Three of 
the discrete attributes had two levels, three of the discrete attributes had three levels and 
two of the discrete attributes had four levels. To generate more accurate estimations, 
each attribute was rescaled to between 0 and 1.

PBC data set: Primary biliary cirrhosis (PBC) data set consisted of clinical data of 
primary biliary cirrhosis, a rare autoimmune liver disease [34]. 424 patients’ data was 
obtained from a Mayo Clinic trial in PBC of liver conducted between 1974 and 1984. 
The focus was on age, sex, edema, bilirubin concentration, albumin concentration, pro-
thrombin time, and disease stage. The variables were used after converting categorical 
values to numerical values.
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Performance metric

The proposed method was evaluated quantitatively and visually on several datasets, 
and comparison performed with the general functions of other conventional survival 
time. Since the existing evaluation methods do not allow for the censoring data, it was 
difficult to evaluate the proposed method through conventional evaluation methods. 
A new evaluation method was suggested for intersection over union (IoU) between 
two Kaplan–Meier curves. First, two Kaplan–Meier curves of ground truth and esti-
mation result are plotted. The Kaplan–Meier curve is preferred because it can take 
into account right censoring. After plotting the two curves, IoU is calculated to esti-
mate the overlap between the two curves. The IoU is defined as follows:

where Cp is the curve of predicted values and Cgt is the curve of ground truth.  
area

(
Cp ∩ Cgt

)
 represents the area of overlap and area

(
Cp ∪ Cgt

)
 indicates the area of 

union as shown in Fig. 1. To obtain the area, an approximation of the area to the x-axis 
from the curve is made by dividing the space into rectangles and summing the areas of 
those triangles. The formula for curve area is shown as below:

The accuracy of the curve area increases with the number of squares. �x is assigned 
to 0.1. We evaluated our system with different evaluation metrics such as root mean 
squared error (RMSE) and concordance correlation coefficient (CCC). RMSE is  a 

(1)IoU =
area

(
Cp ∩ Cgt

)

area
(
Cp ∪ Cgt

)

(2)area =

n∑

i=1

C(xi)�x

Fig. 1  The example of IoU between curves. The y-axis indicates the survival probability, while the x-axis 
represents the timeline. To evaluate the area under curve, line integral was calculated
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standard way to measure the error of a model in predicting quantitative data. For-
mally, it is defined as follows:

where ŷi is predicted value, yi is ground truth, and n is the number of observations. Con-
cordance correlation coefficient (CCC) is the concordance between a predicated value 
and a ground truth. CCC is defined as

Near ± 1 is perfect concordance and 0 is no correlation.

Evaluation

To evaluate the predictive accuracy of the survival time, the IoU was measured using 
(1). The results of comparisons of the performance of the proposed method with other 
methods were as shown in Table 2. As observed, the proposed method has better per-
formance compared to the other models. However, the results of the Lung1 data set 
were not as good as those of the other datasets. The lack of correlation between input 
features and survival time was assumed because the CT images provided by Lung1 
data set were not used.

K-M curves commonly compared two groups in researches. In other words, it is 
used to analyze which of any two treatments has a higher survival rate. On the other 
hand, we attempted to analyze a way to predict prognosis close to ground truth, rather 
than finding a way to have a higher survival rate. Thus, we plotted K-M curves for 
each algorithm to intuitively compare the performance. Figure 2 shows the Kaplan–
Meier curves of methods for each data set. The curve estimated using the proposed 
method is closer to the ground truth curve.

To visualize the shape of distribution generated by the distribution function net-
work, histograms for each data set were plotted. Figure 3 presents the histogram with 
the trend line. Figure 3b, d follow the exponential distribution. Figure 3a, c show the 
distributions close to the bell shape.

(3)RMSE =

√√√√
n∑

i=1

(
ŷi − yi

)2

n

(4)ρC =
2ρσŷσy

ρ2
ŷ
+ ρ2

y +
(
µŷ − µy

)2

Table 2  Intersection over union (IoU)

Method DeepSurv + Exponential [1] DeepSurv + Weibull [1] DeepSurv + Gompertz [1] proposed

METABRIC 0.443 0.278 0.373 0.734

Heart 0.357 0.369 0.374 0.747

PCB 0.661 0.754 0.636 0.820

Lung1 0.522 0.086 0.608 0.598
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Explainable AI for medical data

Various deep learning methods provide medical solutions by analyzing big data, how-
ever, the results are not justified. Doctors and patients cannot trust AI results unless AI 
give them justification. We explain our model by finding the significant factors that acti-
vates the most on the results. To find out significant factors affecting the survival ratio 

Fig. 2  Kaplan–Meier curves for each data sets

a PCB b Lung1

c Heart d METABRIC

years

probability

years

probability

years

probability

years

probability

Fig. 3  Predicted distributions for each data sets
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and help a clinician understand the relationship between risk factors and survival, we 
exploit 1D gradient-weighted class activation mapping (Grad-CAM) method [35]. Since 
conventional Grad-CAM model is limited to 2D image data, it is required to be extended 
to 1D to explain predictions from 1D data.

We conducted each Grad-CAM model to obtain activation values. However, direct 
interpretation of the activation values is still a challenge because Grad-CAM generates 
the importance of each input. Thus, we averaged each activation value to analyze the 
significance. Figure 4 represents the averaged activation values for each dataset. Accord-
ing to the Fig. 4, (3) edema is the most significant factor in PCB dataset, and (7) disease 
stage is the least significant factor. In Lung1 dataset, (2), (3), (4) TNM stages are signifi-
cant factors, but (5) overall stage is not important. In Heart dataset, (3) sex and (4) chest 
pain location are important features. In METABRIC dataset, (15) breast surgery is the 
most significant factor.

Figure 5 shows the Grad-CAM heat map for each dataset. The heat map is sorted by 
survival time descending. It reveals clusters of patients separated by survival time have 
similar expression patterns. This can make user more reliable in the proposed method.

Discussion
This study proposed a survival time prediction DNN architecture. Owing to censor-
ing of the data, previous deep learning-based approaches mainly studied classification 
methods to determine whether patients survive rather than predict their survival time 
directly. As a result, this paper could be considered as the first paper to predict survival 
time through an end-to-end deep learning model with censoring data.

Since there were no existing methods using survival time regression deep learning, the 
proposed method had to be compared with the existing generation functions with the 
hazard rate obtained by the deep learning model [7] as shown in Table 2.

Fig. 4  Visualization of significant features
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We conducted the evaluation using 2 evaluation methods: root mean squared error 
(RMSE) and concordance correlation coefficient (CCC). Tables 3, 4 and 5 show that 
our proposed method generates more accurate results compare with conventional 
methods.

Fig. 5  Grad-CAM heat map. Features of patients on the x axis and CAM feature expression on the y axis, 
revealed clusters of patients with similar expression patterns

Table 3  Results of root mean square error (RMSE) and concordance correlation coefficient (CCC) for 
PBC

Method RMSE CCC​

CPH[5] + Exponential 227.806 0.070

CPH + Weibull 265.171 0.018

CPH + Gompertz 170.051 0.325

DeepSurv + Exponential 180.142 0.464

DeepSurv + Weibull 175.282 0.468

DeepSurv + Gompertz 218.968 0.415

Proposed 82.72 0.635
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In this study, the number of features used in the experiment is small and a problem 
of non-convergence occurred whenever the structure of deep learning was too deep. 
Therefore, the structure of the proposed deep learning model does not have many lay-
ers (Table 6).

The proposed method presented an improvement in performance compared to the 
existing methods [15–18]. [15] utilizes the exponential curve to be a good approxima-
tion of the early survival experience. [16] uses the Weibull family, which is a special 
case of an exponential distribution. [17, 18] describe Hazard functions for the expo-
nential, Weibull, gamma, Gompertz, lognormal, and log-logistic distributions. How-
ever, Lung1 dataset exhibited similar performance with an existing method. Therefore, 

Table 4  Results of root mean square error (RMSE) and concordance correlation coefficient (CCC) for 
METABRIC

Method RMSE CCC​

CPH + Exponential 117.838 0.206

CPH + Weibull 93.245 0.0760

CPH + Gompertz 103.713 0.228

DeepSurv + Exponential 80.753 0.172

DeepSurv + Weibull 99.722 0.228

DeepSurv + Gompertz 149.45 0.162

Proposed 56.758 0.37

Table 5  Results of root mean square error (RMSE) and concordance correlation coefficient (CCC) for 
Heart

Method RMSE CCC​

CPH + Exponential 102.937 0.023

CPH + Weibull 46.904 0.029

CPH + Gompertz 125.893 0.0207

DeepSurv + Exponential 285.017 0.0118

DeepSurv + Weibull 158.322 0.015

DeepSurv + Gompertz 121.706 0.017

proposed 15.19 0.353

Table 6  Results of root mean square error (RMSE) and concordance correlation coefficient (CCC) for 
Lung1

Method RMSE CCC​

CPH + Exponential 104.189 0.054

CPH + Weibull 42.019 0.037

CPH + Gompertz 50.711 0.106

DeepSurv + Exponential 293.823 0.017

DeepSurv + Weibull 298.164 0.024

DeepSurv + Gompertz 293.640 0.017

proposed 286.653 0.073
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Grad-CAM heat map cannot reveal clusters of patients with similar expression pat-
terns as shown in Fig.  5c. On further study, it might be helpful to include imaging 
data to improve survival prediction.

Conclusions
This study proposed a survival time prediction method by integrating Cox hazard net-
work and distribution function network. First, the Cox hazard network was trained, and 
the distribution function network combined to generate survival time for each individual. 
Instead of manually selecting the distribution function to generate survival time, the pro-
posed network trains the distribution to predict survival time. In addition, a new evaluation 
method to compare the area of curves was presented. The experimental results confirmed 
that the combination of the two networks; Cox proportional hazards network and distribu-
tion function network, can offer an effective solution for generating accurate survival time. 
In the future, different network architectures should be explored using multi-modality data 
such as CT, MRI, and clinical features to predict the survival time.

Methods
Survival time prediction

In this section, the new survival prediction method was formed by integrating hazard rate 
network and the proposed distribution function network. The hazard ratio network was 
pre-trained before merging the two networks. The pre-trained network was then integrated 
with the proposed distribution function network to predict death time as shown in Fig. 6.

Hazard ratio network

To the predict hazard ratio, the architecture of DeepSurv network [1] that performs the 
neural network with the negative log-partial likelihood function of Cox model is applied. 
The Cox model is a hazard function h(t), and can be interpreted as the risk of death at time 
t as follows:

where, t represents the survival time, h(t) is the hazard function, (β1, β2, …,βn) are coef-
ficients measuring the impact of covariates, and ho(t) is the baseline hazard function. 

(5)h(t) = h0(t)× exp (β1x1 + β2x2 + · · · + βnxn)

Fig. 6  Model schematic for survival estimation
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Generally, to estimate the regression coefficients, Cox partial likelihood is optimized. 
The Cox partial likelihood L(β) is given by:

where Ti, Ei are event time and event indicator for each observation, respectively and 
xi is a vector of clinical covariates for patient i. R(Ti) is the set of patients for which no 
event has occurred at time t. In contrast to the conventional regression method, the haz-
ard ratio network estimates the hazard ratio value by setting the negative log partial like-
lihood of (7) as loss function [1].

Generating survival time using distribution function network

Conventional methods produce survival time using hazard ratios and specific distribution 
functions. Rather than generating the survival time using a particular distribution function, 
a method which generates the survival time through integration of a proposed distribu-
tion function network and the pre-trained hazard ratio network was proposed. To train the 
distribution function network, a loss function is designed to calculate the mean difference 
between the observation and the value obtained from the survival time generation func-
tion [6]. The proposed loss function is a variant of MSE (Mean squared error), which is the 
simplest and most used loss function. In addition, MSE has the advantage of being easy to 
understand and implement through common methods. Generally, the survival time is gen-
erated as follows:

where u is the random variable with the specific mean parameter. eβx represents the haz-
ard ratio and T is the survival time. By inserting (7) into MSE, the proposed loss func-
tion is formulated. The final loss function (Loss) is given by:

where ypred of i represents the output of the distribution function network, ydeath time of 
i is the true value of individual i, and ĥθ (x) represents the hazard ratio from hazard ratio 
network.

After completing the training, the survival generation function is calculated using the pre-
dicted hazard ratio and distribution estimate. The survival generation function is defined as

where ŷsurvival_time is the estimated survival time.

Experimental setting

For evaluation, k-fold cross validation with k = 5 was applied [36]: the data was ran-
domly categorized into training set (80%) and testing set (20%). Hyper-parameters 

(6)L(β) = −
�

i:Ei=1



βxi − log
�

j∈R(Ti)

eβxj





(7)T =
u

eβx

(8)Loss =
1

n

n∑

i=1

(
ydeath time of i −

ypred of i

eĥθ (x)

)2

(9)ŷsurvival_time =
ypred of i

eĥθ (x)
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were selected based on the number of features in the data set. Tables 7 and 8 presents 
the parameters of the hazard ratio network and the parameters of the distribution 
function network for each data set, respectively. Both the architecture of the two net-
works and the number of parameters are similar. 4-layers neural networks were used 
for each data set. The network was trained through Adam optimization method with 
a learning rate of 10–5. Xavier initialization was applied for all the layers, and a drop-
out probability of 0.5 was implemented only for the third layer.

To improve a model, the optimal hyper parameter values should be determined. 
However, it is hard to find the optimal hyper parameter. Thus, we employ a grid 
search method to find optimal hyper parameter. Grid search is an effective way to 
tune parameters in supervised learning and improve the generalization performance 
of a model. With grid search, we try as many combinations of the parameters of inter-
est as possible and find the best ones. In order to find optimal parameter, we typically 
set the range of parameters. The combinations of the parameter are defined as

{‘num_hidden_layers’: between 2 and 7, ‘hidden_layer_size’: between 8 and 64, 
‘activation’: [’sigmoid’, ’relu’, ’tanh’], ‘dropout_rate’: between 0 and 0.9}

In GridSearch, we try every combination of the set of parameters defined above.
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Table 7  The parameters of the hazard ratio network

Layer Lung1 METABRIC Heart PBC

Input 7 15 12 7

Layer_1 64 (Relu) 64 (Relu) 64 (Relu) 64 (Relu)

Layer_2 32 (Relu) 32 (Relu) 32 (Relu) 32 (Relu)

Layer_3 32 (Relu) 16 (Relu) 32 (Relu) 32 (Relu)

Layer_4 1 1 1 1

Table 8  The parameters of the distribution function network

Layer Lung1 METABRIC Heart PBC

Input 7 15 12 7

Layer_1 64 (Relu) 64 (Relu) 64 (Relu) 64 (Relu)

Layer_2 32 (Relu) 32 (Relu) 32 (Relu) 32 (Relu)

Layer_3 32 (Relu) 16 (Relu) 32 (Relu) 32 (Relu)

Layer_4 1 1 1 1
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