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Background
Bioinformatics method and software selection is an important problem in biomedi-
cal research, due to the possible consequences of choosing the wrong methods among 
the existing myriad of computational methods and software available. Errors in soft-
ware selection may include the use of outdated or suboptimal methods (or reference 
databases) or misunderstanding the parameters and assumptions behind the chosen 
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methods. Such errors may affect the conclusions of the entire research project and 
nullify the efforts made on the rest of the experimental and computational pipeline [1].

The following paper discusses two main factors that motivate researchers to make 
method or software choices, that is, the popularity (defined as the perceived fre-
quency of use of a tool among members of the community) and the performance 
(defined as a quantitative quality indicator measured and compared to alternative 
tools). The study is focused on the field of “gene set analysis” (GSA), where the popu-
larity and performance of bioinformatics software show discrepancies, and therefore 
the question appears whether biomedical sciences have been using the best available 
GSA methods or not.

GSA is arguably the most common procedure for functional interpretation of omics 
data, and, for the purposes of this paper, we define it as the comparison of a query gene 
set (a list or a rank of differentially expressed genes, for example) to a reference data-
base, using a particular statistical method, in order to interpret it as a rank of significant 
pathways, functionally related gene sets, or ontology terms. Such definition includes the 
categories that have been traditionally called ’gene set analysis’, ’pathway analysis’, ’ontol-
ogy analysis’, and ’enrichment analysis’. All GSA methods have a common goal, which 
is the interpretation of biomolecular data in terms of annotated gene sets, while they 
differ depending on characteristics of the computational approach (for more details, see 
’Methods’ section, as well as Fig. 1 of reference [2]). GSA has arrived to 20 years of exist-
ence since the original paper of Tavazoie et  al. [3], and many statistical methods and 
software tools have been developed during this time. A popular review paper listed 68 
GSA tools [4], while a second review reported an additional 33 tools [5], and a third 
one, 22 tools [6]. We have built the most comprehensive list of references to date (503 
papers), and we have quantified each paper’s influence according to their current num-
ber of citations (see Additional file 1 and reference [7]). The most common GSA meth-
ods include Over-Representation Analysis (ORA), such as DAVID [8], Functional Class 
Scoring (FCS), such as GSEA [9], and Pathway-Topology-based (PT) methods, such as 
SPIA [10], which have all been extensively reviewed. In order to know more about them, 
the reader may consult any of the 62 published reviews documented in Additional file 1. 
Recently, we have also reviewed other types of GSA methods [2].

The first part of the analysis is a study on GSA method and software popularity based 
on a comprehensive database of 503 papers for all methods, tools, platforms, reviews, 
and benchmarks of the GSA field, collectively cited 134,222 times between 1999 and 
2019, including their popularity indicators and other relevant characteristics. The sec-
ond part is a study on performance based on the validation procedures reported in the 
papers introducing new methods together with all the existing independent benchmark 
studies in the above-mentioned database. Instead of recommending one single GSA 
method, we focus on discussing better benchmarking practices and generating bench-
marking tools that follow such practices. Together, both parts of the study allow us 
to compare the popularity and performance of GSA tools but also to explore possible 
explanations for the popularity phenomenon and the problems that limit the execution 
and adoption of independent performance studies. In the end, some practices are sug-
gested to guarantee that bioinformatics software selection is guided by the most appro-
priate metrics.
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Results
Popularity

The number of paper citations has been used as a simple (yet imperfect) measure of a 
GSA method’s popularity. 350 references to GSA papers of methods, software or plat-
forms have been collected (Additional file  1: Tab 1), as well as 91 references to GSA 
papers for non-mRNA omics tools (Additional file  1: Tabs 3, 4), and 62 GSA reviews 
or benchmark studies (Additional file 1: Tabs 2, 3, 4), which have been organized into 
a manually curated open database (GSARefDB). GSARefDB can be either downloaded 
or accessed through a shiny interface at: https:// gsa- centr al. github. io/ gsare fdb. html. 
Figure  1 summarizes some relevant information from the database (GSARefDB v.1.0). 
The citation count shows that the most influential GSA method in history is Gene Set 
Enrichment Analysis (GSEA), published in 2003, with more than twice as many citations 
as its follower, the ORA platform called DAVID (17,877 versus 7500 citations). In gen-
eral, the database shows that the field contains a few extremely popular papers and many 
papers with low popularity. Figure  1b shows that the list of tools is mainly composed 
of ORA and FCS methods, while the newer and less known PT and Network Interac-
tion (NI) methods are less common (and generally found at the bottom of the popularity 
rank).

It could be hypothesized that the popularity of a GSA tool does not always 
depend on being the best for that particular project, and it could be related to vari-
ables such as its user-friendliness instead. The database allows us to compute 

Fig. 1 Statistics from GSARefDB v.1.0 (for more recent statistics, visit our website: https:// gsa- centr al. github. 
io/ gsare fdb. html). a Number of GSA publications per year. b Number of publications per type of GSA method. 
c Number of publications per used programming language. d Number of citations per used programming 
language. e Website availability. f Number of publications per reported validation method

https://gsa-central.github.io/gsarefdb.html
https://gsa-central.github.io/gsarefdb.html
https://gsa-central.github.io/gsarefdb.html
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citations-per-programming-language, which we use as an approximation to friendliness. 
Figure 1c shows that the majority of the GSA papers correspond to R tools, but, in spite 
of that, Fig. 1d shows that most of the citations correspond to web platforms followed 
by stand-alone applications, which are friendlier to users. Worth mentioning, the last 
column of the database shows that there are a large number of tools that are not main-
tained anymore and broken web links to tools or databases, which makes their evalua-
tion impossible. This phenomenon is a common bioinformatics problem that has also 
been reported elsewhere [11]. Figure  1e shows that one-third of the reported links in 
GSA papers are now broken links.

Besides ranking papers according to their all-time popularity, a current-popularity 
rank was also built (Additional file 1: Tab 5). To accomplish that, a version of the data-
base generated in May-2018 was compared to a version of the database generated in 
April-2019. The current-popularity rank revealed the same trends than the overall-rank. 
GSEA is still, by far, the most popular method. The other tools that are being currently 
cited are clusterProfiler [12], Enrichr [13], GOseq [14], DAVID [8], and ClueGO [15], 
followed by GOrilla, KOBAS, BiNGO, ToppGene, GSVA, WEGO, agriGO, and Web-
Gestalt. ORA and FCS methods are still the most popular ones, with 3534 combined 
citations for all ORA methods and 2185 citations for all FCS methods, while PT and 
NI methods have 111 and 50 combined citations respectively. In contrast, single-sample 
methods have 278 combined citations, while time-course methods have 67. Regarding 
reviews, an extremely popular paper from 2009 [4] is still the currently most popular, 
even though it doesn’t take into account the achievements of the last ten years.

Performance

The subject of validation of bioinformatics software deserves more attention [16]. A 
review of the scientific validation approaches followed by the top 153 GSA tool papers in 
the database (Additional file 1: Tab 6) found multiple validation strategies that were clas-
sified into 19 categories. 61 out of the 153 papers include a validation procedure, and the 
most commonly found validation strategy is “Consistency with biological knowledge”, 
defined as the fact that our method’s results explain the knowledge in the field better 
than the rival methods (which is commonly accomplished through a literature search). 
Other common strategies (though less common) are the comparisons of the number of 
hits, classification accuracy, and consistency of results between similar samples. Impor-
tant strategies, such as comparing statistical power, benchmark studies, and simulations, 
are less used. The least used strategies include experimental confirmation of predictions 
and semi-blind procedures where a person collects samples and another person applies 
the tool to guess tissue or condition. Our results have been summarized in Fig. 1f and 
Additional file 1: Tab 6. We can see that the frequency of use of the above-mentioned 
validation strategies is inversely proportional to their reliability. For example, commonly 
used strategies such as “consistency with biological knowledge” can be subjective, and 
comparing the number of hits of our method with other methods on a Venn diagram 
[17] is a measure of agreement, not truth. On the other hand, the least used strategies, 
such as experimental confirmation or benchmark and simulation studies, are the better 
alternatives.
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The next step of our performance study was a review of all the independent bench-
mark and simulation studies existing in the GSA field, whose references are collected 
in the Additional file  1: Tab 2. Table  1 summarizes 10 benchmark studies of GSA 
methods, with different sizes, scopes, and method recommendations. A detailed 
description and discussion of each of the benchmarking studies can be found in the 
Additional file 2. The sizes of all benchmarking studies are small when compared to 
the amount of existing methods that we have mentioned before, while their lists of 
best performing methods show little overlap. Only a few methods are mentioned as 
best performers in more than one study, including ORA methods (such as hypergeo-
metric) [3], FCS methods (such as PADOG) [18], SS methods (such as PLAGE) [19], 
and PT methods (such as SPIA/ROntoTools) [20].

It is crucial to notice that the previous studies just covered a small fraction of the entire 
universe of GSA methods. Also, that there is little overlap between the sets of methods 
included in different studies, but nevertheless we can still find inconsistencies between 
results, such as the GSVA, Pathifier, and hypergeometric methods, which are reported 
both as best performer and as poor performer in different benchmarks. From all the 
above-mentioned high-performance tools, only “ORA” appears in the top 20 currently 
most popular tools (Additional file 1: Tab 5), suggesting that there is a divorce between 
popularity and performance (see also Additional file 2: Table 2).

Popularity versus performance

In general terms, it is evident that performance studies are still few, small, inconsist-
ent, and dependent on the quality of the benchmarks; however, they tend to recom-
mend tools different to the popular and friendly ones.

GSEA is one of the most important landmarks in GSA history and the most striking 
example of the contradictions between popularity and performance metrics of GSA 
tools. With one exception, none of the recent benchmarks under analysis has reported 
GSEA to be the best performing method; however, GSEA is still both the all-time 
and the currently most used tool. Besides that, numerous methods (most of them not 
included in the previous benchmarks) report that they specifically outperform GSEA in 
at least one of many possible ways; such methods are highlighted on Additional file 1: 
Tab 7 with the tag "COMPARED". In addition, there have been plenty of develop-
ments to the GSEA method itself; for example, alternative functions to score the gene 
set, alternative options to the permutation step to finding p-values, or using GSEA as 
part of an extended method (see methods at Additional file 1: Tab 7, with the tag "PART 
OF METHOD"), which reportedly outperform the original GSEA. We have identified a 
total of 79 papers in those categories (Additional file 1: Tab 7). However, in spite of that, 
GSEA’s overwhelming popularity compared to any other method would suggest other-
wise. We can also verify that, with the exception of ORA, most of the above-mentioned 
high performing methods tend to occupy lower places in the current popularity ranking 
(Additional file 2: Table 2).

It is hard to estimate how many conclusions from how many articles should be recti-
fied if we rigorously apply our current knowledge on GSA and use the best perform-
ing methods in every paper that ever used GSA. However, taking into account that our 
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database (Additional file 1) registers 503 GSA software and tool papers that have been 
collectively cited 134,222 times, there is a valid concern regarding the need to pay more 
attention to both the method performance studies and the performance-based tool 
selection in GSA. Otherwise, the last step of the omics data analysis process may under-
mine the efforts on the rest of the pipeline.

Performance tools

The previous observation regarding the difference between the most popular and the 
best performing GSA methods could be incorrect, given that existing benchmarks have 
followed different methodologies and the proper way to benchmark GSA methods is a 
discussion in itself. Therefore, we have also reviewed and discussed the existing bench-
marking and simulation strategies, in order to extract a few ideas regarding good bench-
mark practices.

Rigorous benchmark studies are not a straightforward task, given that there is no 
accepted gold standard to be used in a comparison of GSA tools [25]. Reviewed here are 
three strategies to build such a gold standard. The first strategy is to apply several differ-
ent enrichment tools to the same gene sets and use the intersection of the results as a 
gold-standard. One example of this is EnrichNet [31], which obtains a “set of high con-
fidence benchmark pathways” as the intersection between the top 100 ranks generated 
by the SAM-GS and GAGE methods. Such a procedure is questionable, as the chosen 
methods are far from being considered the best (as seen before), and the procedure is 
more related to agreement than truth. The second strategy is the use of disease data-
sets clearly associated with one pathway as a gold-standard. For example, Tarca et  al. 
[22] compiled 42 microarray datasets with both healthy and disease-associated samples, 
where the disease was associated with a KEGG pathway (and, therefore, such “target 
pathway” should be found significant) [22]. The third strategy is to leverage knowledge 
on gene regulation effects. Some authors have used gene sets built from the known tar-
gets of specific transcription factors and miRNAs, and then try to predict the changes 
after over-expression or deletion of such regulators [21], while some others have used 
datasets with mouse KOs: Pathways containing the KO gene were considered as target 
pathways, while the others were considered as negatives [27]. Geistlinger et al. [30] have 
recently introduced a modification of such approach in which they not only look at “tar-
get pathways” matching the original diseases, but instead create a “gene set relevance 
ranking” for each disease. To build such rankings, the authors used MalaCards gene 
scores for disease relevance, which are based on both experimental and bibliometric evi-
dence; then, they used the gene scores to build combined gene set relevance scores for all 
GO and KEGG terms (using the GeneAnalytics tool). As a result, instead of benchmark-
ing against some “target pathways”, the benchmark is done against a “pathway relevance 
ranking” per disease. Table 2 assesses different performance measurement approaches 
according to their objectivity, reproducibility, and scalability.

A second issue is the selection of the benchmark metrics that quantitatively determine 
who is the best performer. Well-known metrics such as sensitivity, specificity, precision, 
or the area under the ROC curve, have been traditionally used. Tarca et al. introduced 
the use of sensitivity, specificity, and “prioritization”, together with False Positive Rate 
(FPR), where prioritization is a concept related to the rank of the target pathways for a 
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given method. Zyla et al. have recently extended Tarca’s work and recommended using 
a set of five different metrics: Sensitivity, False positive rate (FPR), Prioritization, Com-
putational time, and Reproducibility. In their approach, reproducibility assigned a high 
score to methods that showed similar results for different datasets coming from the same 
condition/disease and the same technical platform, but different authors/labs [29]. The 
chosen metrics are fundamental because no method is the best under all metrics and 
every user should start by selecting a method according to the goals of their study, which 
may need a very sensitive method, a very specific method, or any other of the above-
mentioned properties. As a consequence, benchmark studies must be clear regarding 
the metrics under which they are ranking the method performance [22], and their set of 
metrics should at least include the previously mentioned ones. Also, it makes no sense to 
declare success because a new method has better sensitivity than other methods that are 
known for a poor sensitivity; therefore, it is a logical consequence that any new methods 
must compare their sensitivity to sensitive methods, their specificity to specific meth-
ods, and so on.

A third issue is that validation procedures should not allow the authors to subjectively 
choose the methods that the authors want to compare to their new method, as it would 
be possible for the authors to choose those methods that they can outperform. One 
alternative to that is using well-established, independent, and comprehensive bench-
mark studies as a reference; then, when a new method appears, validation should be 
done by comparison to the top methods from such independent benchmarks. This prac-
tice is not common; as an exception, the authors of LEGO [32] explicitly use the top 5 
methods in Tarca et al.’s benchmark [22].

As a final thought, ensembles of methods have been suggested to give better results 
than any of the single methods [33]. That implies that benchmark studies should not 
be limited to single tools but include comparisons to ensembles of tools as well. This 
approach has been followed by at least one benchmark study [21].

The previous analysis makes us think that future GSA benchmarks should include the 
most recent developments on benchmark theory, as well as be performed on more GSA 

Table 2 Comparison of performance criteria

Objectivity, Reproducibility, and Scalability of the main performance criteria. Objectivity refers to the results not depending 
on human interpretation. Reproducibility refers to any researcher being able to find the same results by following the 
same procedures. Scalability refers to the possibility of easily applying the procedure to an increasingly higher number of 
methods and datasets

Criteria Objectivity Reproducibility Scalability Drawbacks

Tool agreement Low High High Subjective

Consistency between similar samples Low High High Subjective

Consistency with biological knowledge 
(Literature search)

Low Low Low Subjective

Benchmark (target pathways as gold 
standard)

High High High Centered on true positives

Benchmark (pathway relevance ranking as 
gold standard)

High High High –

Benchmark (KO/perturbation data as gold 
standard)

High High High –

Simulations Low Low High Human-designed datasets 
may be unrealistic
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methods, in order to extract more meaningful conclusions. In order to do this, we have 
also created a benchmarking platform, “GSA-BenchmarKING”, which is a repository of 
apps/workflows/pipelines that follow the above-mentioned good benchmarking prac-
tices and allow benchmarking of GSA software in an easy and automated way. Currently, 
GSA-BenchmarKING contains Jupyter notebooks with full workflows for benchmarking 
GSA methods, and shiny apps that allow benchmarking with the click of a few buttons. 
The initial benchmarking tools added to the repository were created by our students as 
an example, following the previous guidelines, but they are open software and can be 
permanently improved. The initial tools are focused on two types of methods: Single-
sample GSA (such as GSVA, Pathifier, SSGSEA, PLAGE, ZSCORE) and genomic-region 
GSA (such as GREAT, ChIP-Enrich, BroadEnrich, Enrichr, Seq2Pathways). All apps 
allow the user to define different gold standard datasets (or use ours), select the GSA 
methods to compare, and select the comparison metrics to plot. In addition, it is pos-
sible to keep adding more GSA methods to the app with the help of the community, 
as each app includes instructions for programmers interested in adding new methods. 
Given the large amount of GSA methods, more benchmarking tools are needed and wel-
comed. GSA-BenchmarKING can be accessed at: https:// gsa- centr al. github. io/ bench 
marKI NG. html.

Discussion
The GSARefDB has been used to make some initial data exploration on the relationship 
between popularity and performance of GSA tools. Besides the observations highlighted 
in this article, such a database can also be the source for more in-depth research. For 
example, some limitations of our approach include (i) that some papers describe more 
than one method or platform, and (ii) that some methods are only cited for comparison 
purposes. We observe that such problems are the exception and not the rule, but future 
studies might want to take them into account and GSARefDB can still be used as a data 
source for it.

In general terms, it is evident that performance studies are still few, small, inconsist-
ent, and dependent on the quality of the benchmarks; however, they tend to recom-
mend tools different to the popular and friendly ones. Among the possible reasons for 
the discrepancies between popularity and performance, it has been suggested that soft-
ware selection may not be entirely related to performance but to factors such as a prefer-
ence for user-friendly platforms or user-friendly concepts or plots (for example, GSEA’s 
“enrichment plot”). Also, due to the fact that the objective evaluation of the performance 
of the different GSA methods is a complicated and time-consuming issue, or to the fact 
that new methods need more time to be accepted. In network analysis, popularity can be 
explained by the “rich-gets-richer” (popular-gets-more-popular) effect. Using concepts 
of the “consumer behavior” field, software selection can be studied as the choice of a 
popular brand, that is, variables such as: Confidence in experience (the respect to the 
researcher/institution associated to the software), social acceptance and personal image 
(following the software that everyone else is using), or consumer loyalty (after some 
time, we are attached to our software and not interested to change) [34]. In a recent 
book [35], Barabasi has suggested that popularity and quality usually go together in situ-
ations where performance is clearly measurable. Otherwise, popularity can’t be equated 

https://gsa-central.github.io/benchmarKING.html
https://gsa-central.github.io/benchmarKING.html
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to quality. Our study agrees with such an idea. We have found that the most popular 
GSA software is different from the best performing GSA software, and that thorough 
performance evaluation is still a pending assignment for bioinformaticians.

However, in the specific case of GSA, there is a complementary explanatory hypoth-
esis: Besides all the progress in GSA theory leading to better-performing methods, at 
the end of the pipeline, the users usually extract the evidence that they consider relevant 
from the resulting rank of gene sets, choosing the pathways or GO terms of their inter-
est and ignoring the rest of the ranking, and, therefore, any differences between methods 
regarding lower p-values, prioritization order, and so on, become less important. It is 
said that in the step of gene set selection from the final gene set ranking, researchers 
bring "context" to the results but, this way, their subjectivity may be projected to the 
study. One way out of this is to stimulate the research on “context-based GSA”. For exam-
ple, a recent effort called contextTRAP [36] combines an impact score (from pathway 
analysis) with a context score (from text mining information that supports that the path-
way is relevant to the context of the experiment). Bayesian approximations to GSA using 
text mining data as context need to be more developed, as any other method that studies 
the final gene set ranking as a whole.

Conclusions
Given that popular methods are not necessarily the best, bioinformatics software users 
should not only be guided by popularity but mainly by performance studies. However, 
performance studies, in time, must be guided by the general guidelines that we have 
discussed, that is, researchers should only follow the most convincing benchmark pro-
cedures. Such strict recommendations are problematic because performance studies 
are few, low-coverage, and have a variable quality; therefore, we need more open tools 
to dynamically review popularity and performance of bioinformatics software, such as 
those introduced here.

Based on the previous results and discussion, we argue that the functional interpreta-
tion field would benefit from:

1. Having more information and discussion regarding the nature and scope of the exist-
ing functional interpretation methods of omics data, as well as more teaching of new 
and sophisticated methods in bioinformatics courses, more guidelines for selection 
of a tool, and more popularization of the functional interpretation shortcomings. 
Also, requesting deeper discussions of the selection of GSA methods for all biomedi-
cal papers.

2. The permanent evaluation of GSA methods, including better gold standards, more 
and more comprehensive comparison studies, and better benchmarking practices. 
The fact that two prestigious computational biology journals have recently created a 
special edition and a collection specialized on benchmarks are welcome steps in that 
direction [37, 38].

3. Paying attention to reproducibility and offering open code in code-sharing platforms 
(such as Github), containers with the specific software and library versions used 
in their work (such as Docker), notebooks (such as RStudio and Jupyter) including 
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scripts with a detailed explanation of their methods, and other strategies to allow 
reproducibility.

4. The creation of a culture of functional re-analysis of existing data using new GSA 
methods, as well as the computational tools to functionally re-analyze existing omics 
datasets in a streamlined manner.

5. More rigorous validation procedures for GSA tools. Also, bioinformaticians should 
get as much training on scientific validation methods and tools as they get on using 
and building bioinformatics tools.

Proper tool selection is fundamental for generating high-quality results in all scien-
tific fields. This paper suggests that tool performance and tool selection studies, via 
the popularity-performance evaluation based on an exhaustive reference database, is 
a methodology that should be followed up, to keep track of the evolution of the tool 
selection issues in a scientific field. We have also introduced examples of popularity and 
performance-measuring software that could help making such studies easier. The reader 
is here invited to keep following our work for the GSA field at: https:// gsa- centr al. github. 
io/ gsare fdb. html and https:// gsa- centr al. github. io/ bench marKI NG. html.

Methods
Definitions

The concepts involved in this study have been defined in several different ways in the 
literature. For example, the field under study has been called "Pathway Analysis" [5], 
"Enrichment analysis" [23], "Gene Set Analysis" [2], "Functional enrichment analy-
sis" [12], “Gene-annotation enrichment analysis” [4], and other terms, by different 
authors. At the same time, the term "Gene Set Analysis" has been used to describe the 
entire field [2], or just the group of ORA and FCS methods (in opposition to methods 
including pathway or network topology) [23], or even one specific tool [39]. Finally, 
the term “Pathway Analysis” has also been used to both describe the entire field [5] 
or just the group of methods that include pathway topology [23]. For this reason, we 
have added the following summary of the definitions used in this study for the above-
mentioned and other relevant terms.

Gene Set Analysis (GSA): GSA methods have been defined as a group of "methods 
that aim to identify the pathways that are significantly impacted in a condition under 
study" [6] or as "tests which aim to detect pathways significantly enriched between 
two experimental conditions" [23]. More specifically, GSA is an annotation-based 
approach that statistically compares experimental results to an annotated database in 
order to transform gene-level results into gene-set-level results. For example, a query 
gene set (a list of differentially expressed genes, or a rank of all gene’s fold change) 
is mapped to a gene set reference database, using a particular statistical method, in 
order to explain the experimental results as a rank of significantly impacted pathways, 
functionally related gene sets, or ontology terms.

Over-Representation Analysis (ORA): A subset of GSA methods based on compar-
ing a list of query genes (for example, up- or down-regulated genes) to a list of genes 
in a class or gene set, using a statistical test that detects over-representation. ORA 

https://gsa-central.github.io/gsarefdb.html
https://gsa-central.github.io/gsarefdb.html
https://gsa-central.github.io/benchmarKING.html
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"statistically evaluates the fraction of genes in a particular pathway found among the 
set of genes showing changes in expression" [5].

Functional Class Scoring (FCS): A subset of GSA methods in which the values of 
a gene-level statistic for all genes in the experiment are aggregated into a gene-set-
level statistics [5], and gene set enrichment is computed in terms of the significance 
of such gene-set-level statistic. FCS methods start from a quantitative ranking of the 
gene-level statistic for all genes under analysis (in contrast to ORA, which only uses a 
list of differentially expressed genes). Some popular FCS methods find if the relative 
position of a gene set in the ranking of all genes is shifted to the top or the bottom 
of the ranking. For example, the WRS test compares the distribution of ranks of the 
genes in a gene set to the distribution of ranks of the genes in the complement to the 
gene set, while the KS test compares the ranks of genes in a gene set to a uniform dis-
tribution [23].

Pathway-Topology-based (PT): A subset of GSA methods that weights enrichment 
scores according to the position of a gene in a pathway. Only applies to pathway data 
and not to other types of gene sets.

Network Interaction (NI): A subset of GSA methods that not only includes the given 
gene sets but also the gene products that interact with the members of such gene sets 
when located on top of an interaction or functional annotation network.

Popularity: The frequency of use of a method or tool among members of a community.
Performance: The value of a quantitative property (when compared to alternative 

methods or tools) that measures the agreement between the method’s output and 
either empirical data, simulated data, or the output of another method.

Benchmark study: A systematic comparison between computational methods, in 
which all of them are applied to a gold standard dataset and the success of their gene 
set predictions are summarized in terms of quantitative metrics (such as sensitivity, 
specificity, and others).

Simulation study: A systematic comparison of computational methods based on build-
ing artificial datasets that possess the properties that we specify for them.

Gold standard: A "perfect gold standard" would be an error-free dataset that can be 
used as a synonym for truth (in our case, an omics dataset associated to a true rank-
ing of pathways); however, in practice, we are limited to use "imperfect" or "alloyed gold 
standards", which are datasets confidently linked to the truth, but not necessarily data-
sets lacking error [40].

Construction of the database

The Gene Set Analysis Reference Database (GSARefDB) was built from the following 
sources:

1. Google and PubMed searches of keywords such as: "Pathway analysis", "Gene set 
analysis", and "Functional enrichment" (approx. 10% of the records).

2. Cross-references from all the collected papers and reviews (approx. 50% of the 
records).

3. Email alerts received from NCBI and selected journals (approx. 40% of the records).
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The information was classified into: (i) Generic methods/software/platforms, usually 
dealing with mRNA datasets; (ii) Reviews/benchmark studies; (iii) Genomic GSA, which 
includes GSA applied to enrichment of genomic regions (such as those coming from 
ChIP-seq, SNP, and methylation experiments); and (iv) ncRNA GSA, which includes 
methods dealing with miRNA and lncRNA datasets. All information in the database was 
manually extracted from the papers. Numbers of citations were extracted from Google 
Scholar (https:// schol ar. google. com). Only methods that associate omics data to anno-
tated gene sets were included (see all types of included methods in Fig. 1b). Bioinfor-
matics methods that associate omics data to newly generated modules on a biological 
network were not included. GSARefDB was built both as an excel sheet and as a shiny 
app (see Fig. 2a).

Descriptive statistics

Plots of summary statistics were generated using the “ggplot2” R package. The R code 
is open and can be found at: https:// github. com/ anton io- mora/ paper Code/ blob/ master/ 
2019_ Mora_ Popul arity_ versus_ Perfo rmance.R

Popularity rankings

Popularity rankings in GSARefDB are constructed on a per paper basis, not per-method 
or per-tool. In order to build popularity rankings of methods or tools that are presented 
in multiple papers, we use the citation count of the most cited paper for that tool.

Fig. 2 Screenshots of our tools for popularity and performance analysis of the GSA field. a GSARefDB: A 
screenshot of the R/shiny interface to GSARefDB, showing the options of searching by year, tool name, 
paper’s first author, title, type of GSA, and programming language. b GSA BenchmarKING: One jupyter 
notebook containing an R workflow for benchmarking single-sample GSA methods, and one shiny app with 
the same purpose. Both tools display sensitivity, specificity, and precision plots for all the methods under 
study. See: https:// gsa- centr al. github. io/ gsare fdb. html and https:// gsa- centr al. github. io/ bench marKI NG. html

https://scholar.google.com
https://github.com/antonio-mora/paperCode/blob/master/2019_Mora_Popularity_versus_Performance.R
https://github.com/antonio-mora/paperCode/blob/master/2019_Mora_Popularity_versus_Performance.R
https://gsa-central.github.io/gsarefdb.html
https://gsa-central.github.io/benchmarKING.html
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Performance study

The scientific validation approaches followed by the top 153 GSA tool papers in our data-
base were manually reviewed (see Additional file 1: Tab 6). Validation, as performance, 
was defined as the success of a method on getting better scores than rival methods for a 
specific quantitative property that measures the agreement between the method’s out-
put and either empirical data, simulated data, or the output of another method. Our def-
inition of validation does not include:

 (i) Examples of application of the method followed by highlighting the reasonableness 
of the results (without comparing to other methods),

 (ii) Arguments (usually statistical) stating that new assumptions are better than old 
ones, without any comparison to empirical or properly simulated data, or

 (iii) Comparisons of capabilities between old and new software (such as implementing 
other algorithms or databases).

Detailed procedures followed during the benchmark and simulation studies are 
explained in Additional file 2.

Construction of performance‑measuring software

The “GSA-BenchmarKING” repository (see Fig.  2b and  https:// gsa- centr al. github. io/ 
bench marKI NG. html) was created to store and share different tools to measure GSA 
method performance. For a benchmarking software to be accepted into the reposi-
tory, it should: (i) Be open software (ideally, a jupyter notebook, RStudio notebook, or 
shiny app); (ii) Have a clear reason for selecting the GSA methods included; for exam-
ple, because all of them belong to the same type of methods; (iii) Include both a gold 
standard dataset and options to upload user-selected gold standard datasets; (iv) Include 
either a list of target pathways linked to the gold standard dataset or disease relevance 
scores per pathway for the diseases related to the gold standard; (v) Give the user the 
option of selecting different benchmarking metrics (as a minimum, precision/sensitiv-
ity, prioritization, and specificity/FPR); (vi) Possibility of selecting ensemble results; (vii) 
Possibility of adding new GSA methods to the code in the future.

The “GSARefDB”, “ss-shiny”, and “gr-shiny” apps were built using the “shiny” package. 
“GSARefDB” and “ss-shiny” were built using R 3.6.2, while “gr-shiny” was built using R 
4.0.0. Open code can be accessed at: https:// github. com/ gsa- centr al/ gsare fdb, https:// 
github. com/ mora- lab/ ss- shiny, and https:// github. com/ mora- lab/ gr- shiny.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859- 021- 04124-5.

Additional file 1. GSA Reference DB.

Additional file 2. Detailed Performance Study.
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