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Abstract 

Background:  Carbonylation is a non-enzymatic irreversible protein post-translational 
modification, and refers to the side chain of amino acid residues being attacked by 
reactive oxygen species and finally converted into carbonyl products. Studies have 
shown that protein carbonylation caused by reactive oxygen species is involved in 
the etiology and pathophysiological processes of aging, neurodegenerative diseases, 
inflammation, diabetes, amyotrophic lateral sclerosis, Huntington’s disease, and tumor. 
Current experimental approaches used to predict carbonylation sites are expensive, 
time-consuming, and limited in protein processing abilities. Computational predic-
tion of the carbonylation residue location in protein post-translational modifications 
enhances the functional characterization of proteins.

Results:  In this study, an integrated classifier algorithm, CarSite-II, was developed to 
identify K, P, R, and T carbonylated sites. The resampling method K-means similarity-
based undersampling and the synthetic minority oversampling technique (SMOTE-
KSU) were incorporated to balance the proportions of K, P, R, and T carbonylated 
training samples. Next, the integrated classifier system Rotation Forest uses “sup-
port vector machine” subclassifications to divide three types of feature spaces into 
several subsets. CarSite-II gained Matthew’s correlation coefficient (MCC) values of 
0.2287/0.3125/0.2787/0.2814, False Positive rate values of 0.2628/0.1084/0.1383/0.1313, 
False Negative rate values of 0.2252/0.0205/0.0976/0.0608 for K/P/R/T carbon-
ylation sites by tenfold cross-validation, respectively. On our independent test 
dataset, CarSite-II yield MCC values of 0.6358/0.2910/0.4629/0.3685, False Posi-
tive rate values of 0.0165/0.0203/0.0188/0.0094, False Negative rate values of 
0.1026/0.1875/0.2037/0.3333 for K/P/R/T carbonylation sites. The results show that 
CarSite-II achieves remarkably better performance than all currently available predic-
tion tools.

Conclusion:  The related results revealed that CarSite-II achieved better perfor-
mance than the currently available five programs, and revealed the usefulness of the 
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SMOTE-KSU resampling approach and integration algorithm. For the convenience of 
experimental scientists, the web tool of CarSite-II is available in http://​47.​100.​136.​41:​
8081/

Keywords:  Carbonylation, Protein post-translational modification, K-means similarity-
based undersampling, The integrated classifier, Rotation forest

Background
Protein carbonylation is an irreversible chemical modification in oxidative stress, which 
refers to the side chain of amino acid residues being attacked by reactive oxygen species 
and finally converted into carbonyl products [1]. Modification of the protein by carbon-
ylation will cause changes in the structure of the protein, causing it to lose its original 
biological function, eventually leading to cell and tissue dysfunction and pathophysi-
ological changes in the body. The level of protein carbonylation has only been used for 
a long time to evaluate the degree of oxidation of biological organisms as an indicator 
to measure the oxidative damage of proteins. However, studies have shown that protein 
carbonylation caused by reactive oxygen species is involved in the etiology and patho-
physiological processes of aging, apoptosis and various neurodegenerative diseases.

Under oxidative stress induced by different diseases, carbonylation has certain selec-
tivity for proteins, that is, some proteins are easily carbonylated, while others are not 
easily carbonylated [1]. Taking the cytoskeleton as an example, glial fibrillary acidic pro-
tein (GFAP) is the protein most vulnerable to oxidative damage in multiple sclerosis [2], 
Pick’s disease [3], and aging [4]. Its carbonylation level increased, however, it decreased 
in patients with Alzheimer’s disease [4]. In addition, the β-actin carbonylation level of 
another cytoskeleton molecule increased in Alzheimer’s disease [4] and multiple sclero-
sis [2], but decreased in aging.

After the carbonylated protein is produced, it cannot be repaired by the body’s antioxi-
dant defense mechanism, so it will slowly accumulate over time, resulting in the change 
or loss of the functions of key enzymes in various signaling pathways, and then trigger 
a series of diseases related to protein carbonylation: aging, neurodegenerative diseases 
(such as Alzheimer’s disease, Parkinson’s disease, and Multiple sclerosis), inflammation, 
diabetes, and tumor (such as Uterine fibroids, malignant prostate cancer, and breast 
cancer). These all indicate that protein carbonylation modification is not only a sign of 
the degree of cell oxidation, but also involved in the pathophysiological process of the 
disease.

For the following reasons, it is necessary to develop computational methods for pre-
diction of carbonylation sites. (1) Since the carbonylation site is the decisive factor for 
the functional change or deletion of the carbonylated protein, the identification of the 
carbonylation site and its role in the protein are crucial for understanding the protein 
carbonylation process and related pathogenesis, and current experimental approaches 
used to identify carbonylation sites are expensive, time-consuming, and limited in pro-
tein processing abilities. Computational prediction of the carbonylation residue location 
in protein post-translational modifications enhances the functional characterization of 
proteins. (2) Corresponding prediction and analysis of protein carbonylation sites can 
give experimental researchers a pre-experimental evaluation to make them aware of the 
occurrence probability and corresponding number of carbonylation sites on the target 
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protein, allowing for more targeted experiments. (3) In order to reveal the pathophysi-
ological process of the diseases (aging, neurodegenerative diseases, inflammation, dia-
betes, tumor and so on), the prediction of protein carbonylation sites is significance for 
in-depth understanding the biological functions and developing effective drugs. There-
fore, it is very important to establish an online prediction platform with clear interface 
and easy identification of carbonylation sites.

It is worth noting that only four types of residues are particularly sensitive to carbon-
ylation, and they are lysine (K), proline (P), arginine (R), and threonine (T) residues [5]. 
In the past several years, a series of computational methods and tools have been pro-
posed for identifying carbonylation proteins and sites [5–13]. However, the predictive 
performance of protein carbonylation sites is still unsatisfactory compared with other 
post-translational modification sites (PTMs) in proteins. Therefore, for the sake of sat-
isfying the modern requirement to develop efficient high-throughput computing tools, 
supererogation is still required to move forward a single step, improving the predictive 
performance of carbonylation sites.

In the current study, K-means similarity-based undersampling (KSU) and the synthetic 
minority oversampling technique (SMOTE) were introduced and combined to construct 
balance training datasets for K, P, R, and T carbonylation modification sites, respectively. 
SMOTE [14] was utilized to synthesize K, P, R, and T carbonylation sites (positive train-
ing samples) by using experimentally validated positive training samples, while KSU was 
applied to eliminate samples with little information that have little impact on classifica-
tion and redundant samples. The resampling method combining KSU and SMOTE was 
conveniently named SMOTE-KSU. Based on constructing positive and negative training 
samples using the SMOTE-KSU resampling method, a novel computational predictive 
tool was developed. This tool, named as CarSite-II, was created to distinguish carbon-
ylation sites from non-carbonylation sites through distance-based residue (DR) feature 
extraction strategy and Rotation Forest integrated algorithm-based “support vector 
machine” (SVM) subclassification. According to the related results obtained by tenfold 
cross-validation and independent tests, CarSite-II achieves remarkably better predictive 
performance than existing predictor tools. Figure 1 shows the flow chart for construct-
ing four optimal models for K/P/R/T carbonylation sites, CarSite-II. The Fig. 1 mainly 
consists of the following four parts to improve the prediction accuracy of K/P/R/T car-
bonylation sites: (1) construct protein carbonylation training and testing dataset. (2) use 
the feature extraction strategy of distance-based residue to formulate K/P/R/T carbon-
ylation samples. (3) KSU undersampling method and SMOTE oversampling technique 
were incorporated to balance the training dataset. (4) The tenfold cross validation was 
used to select the optimal model.

Results
Amino acid composition of carbonylation sites

To explore the position-specific differences in amino acid residue distributions in the 
carbonylation and non-carbonylation sites, training samples were submitted to the 
pLogo web server [15] (https://​plogo.​uconn.​edu/), and the sequence logo of four car-
bonylated residues was shown in Fig.  2. As we can see from Fig.  2, Lys (K) at posi-
tion − 6, − 5, − 4, − 3, − 2, and − 1 was significantly overrepresented in K carbonylation 

https://plogo.uconn.edu/
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Fig. 1  Conceptual framework of CarSite-II

Fig. 2  Sequence logo of four carbonylated residues in positive and negative training dataset. a Sequence log 
of Lys (K). b Sequence log of Arginine (R). c Sequence log of Proline (P). d Sequence log of Threoline (T)
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site sequence logo, Arginine (R) at position − 5, − 4, − 3, − 2, and − 1 was significantly 
overrepresented in R carbonylation site sequence logo, Proline (P) was not significantly 
overrepresented in P carbonylation site sequence logo, and Threonine (T) at position − 3 
and -2 was significantly overrepresented in T carbonylation site sequence logo.

Balance the training dataset and select optimal parameters of DR and rotation forest

As described in Material and methods, each sequence in the training dataset can be 
encoded by DR, and SMOTE oversampling and KSU undersampling were used to resa-
mple the training dataset to make the same size of positive and negative training sam-
ples. We calculated the number of samples (N) removed from the negative samples or 
added to the positive samples during the process of resampling according to the follow-
ing formula [16]:

where k0 = 0.5, k1 = 0.5 , and n0 or n1 represented the number of sequences included in 
the negative or positive training samples. Therefore, N was 13189/11128/11323/ 12040 
for K/P/R/T carbonylation sites, respectively.

SVM was used for subclassification of the Rotation Forest algorithm, and the param-
eters of the Rotation Forest algorithm were set to the following: K ranged from 300 to 
400, with an interval of 10, and the number of subclassifiers was set as five. The con-
crete results of the K/P/R/T carbonylation sites 10-fold cross validation were listed in 
the Additional File 1: SupTable (SubTable1.1–SubTable1.4. The predictive performance 
of K/P/R/T carbonylation sites by 10-fold cross validation). As we can see from SupT-
able (SubTable1.1–SubTable1.4. The predictive performance of K/P/R/T carbonylation 
sites by 10-fold cross validation), while dMAX = 3,K = 400 , the K carbonylation data-
set can get the best prediction results. While dMAX = 2,K = 400,dMAX = 1,K = 400 , 
dMAX = 3,K = 400 , the P/R/T carbonylation dataset can get the best prediction results, 
respectively. To improve the predictive performance of carbonylation sites, the parame-
ters selected above were used to construct the final integrated prediction model for K/P/
R/T carbonylation sites. The prediction performance for K/P/R/T carbonylation sites 
based on the Rotation Forest integrated algorithm by tenfold cross-validation is shown 
in Fig. 3.

As we can see from Fig.  3, while the number of the subsets in the Rotation Forest 
integrated algorithm was 400 (K/P/R/T), Sn, Sp, Acc, and MCC all reached the best 
values. In Fig. 3, the Sn, Sp, Acc, MCC, AUC, and G-mean indicated the Sn, Sp, Acc, 
MCC, AUC, and G-mean average values of three features (DR(1), DR(2), DR(3)) based 
on the selected the number of subsets, respectively. For example, when the number of 
subset K = 300, the evaluating indicators Sn = (0.7520 + 0.7228 + 0.7375)/3 = 0.7374, 
Sp = (0.7268 + 0.7124 + 0.7228)/3 = 0.7207,Acc = (0.7279 + 0.7128 + 0.7233)/3 = 0.7213,  
MCC =​ (0.2129 ​+ 0.1906​ ​+ 0​.20​3​8​)/3​ = ​0.​2024,AUC ​= (0.815​0​ + ​0.7​9​6​3 +​ 0.​800​2)/3​ =  
0.8038​,andG-me​a​n =​ (0​.​7393 + 0.7176 + 0.7301)/3 = 0.7290.

The effectiveness of resampling approach

The related predictive results of the independent tests were utilized to clarify the effec-
tiveness of our combination of the SMOTE-KSU resampling method. The comparison 

(1)N = round[(k1 × n0)− (k0 × n1)],
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results are listed in Table 1 for without resampling, conducting SMOTE only for positive 
sequences, conducting KSU only for negative sequences, and conducting SMOTE-KSU 
resampling for the training dataset.

Fig. 3  The prediction performance for K/P/R/T carbonylation sites by tenfold cross validation. a The 
prediction performance for K carbonylation sites. b The prediction performance for R carbonylation sites. c 
The prediction performance for P carbonylation sites. d The prediction performance for T carbonylation sites

Table 1  Comparison of different resampling methods on our independent test data

Resample method Sn (%) Sp (%) Acc (%) Mcc AUC​ G-mean

K

Without resampling 5.13 95.16 93.77 0.0017 0.4959 0.2209

SMOTE 41.88 98.43 97.55 0.3395 0.8868 0.6420

KSU undersampling 70.94 86.54 86.30 0.2025 0.8096 0.7835

CarSite-II 89.74 98.35 98.21 0.6358 0.9603 0.9395

P

Without resampling 0 100 99.70 NaN 0.6116 0

SMOTE 50.00 97.61 97.47 0.1658 0.8512 0.6986

KSU undersampling 31.25 99.64 99.44 0.2524 0.8810 0.5580

CarSite-II 81.25 97.97 97.92 0.2910 0.8768 0.8922

R

Without resampling 3.70 96.65 95.81 0.0018 0.6210 0.1892

SMOTE 27.78 97.96 97.33 0.1627 0.8695 0.5216

KSU undersampling 46.30 88.18 87.81 0.0996 0.7631 0.6389

CarSite-II 79.63 98.12 97.96 0.4629 0.9236 0.8839

T

Without resampling 8.33 98.43 98.10 0.0327 0.7539 0.2864

SMOTE 12.50 98.36 98.04 0.0510 0.8250 0.3506

KSU undersampling 45.83 92.29 92.11 0.0857 0.8120 0.6504

CarSite-II 66.67 99.06 98.94 0.3685 0.8602 0.8127
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We discovered that CarSite-II based on the SMOTE-KSU resampling approach 
reached the best performance, with MCC of 0.6358/0.2910/0.4629/0.3685 for K/P/R/T 
carbonylation sites, respectively. Additionally, KSU undersampling achieved the second 
best prediction performance, with Sn values of 70.94% for K carbonylation sites. The 
values of Sn obtained by without resampling, and SMOTE oversampling for K/P/R/T 
carbonylation sites, and KSU undersampling for P/R/T carbonylation sites, were less 
than 50%. The major reason for this may be imbalance of training dataset. The ratios 
between training positive samples and training negative samples for K carbonylation 
sites were over 1:22 (618:13807), 1:43 (618:26995), and 1:1.9 (13807:26995) correspond-
ing to KSU undersampling, without resampling, and SMOTE oversampling. The ratios 
between training positive samples and training negative samples for P/R/T carbonyla-
tion sites were also very different (i.e. the training dataset is extremely unbalanced) for 
KSU undersampling, without resampling, and SMOTE oversampling. Thus, we did not 
consider them further.

In order to further look at comparative performance, the ROC curves comparision of 
different resampling methods for K/P/R/T carbonylation sites on our independent test 
dataset was given in Fig. 4.

Comparison with other prediction methods and discuss

To better test and verify the performance of CarSite-II, we compared CarSite-II with 
three currently available programs in our independent test. The first predictive tool, 
CarSPred, based on four types of features and mRMR feature selection agorithm with 

Fig. 4  The ROC curves comparison of different resampling methods K/P/R/T carbonylation sites on our 
independent test dataset. a Comparison of different resampling methods for K carbonylation datatset. 
b Comparison of different resampling methods for R carbonylation datatset. c Comparison of different 
resampling methods for P carbonylation datatset. d Comparison of different resampling methods for T 
carbonylation datatset
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weighted support vector machine [7]. In 2016, Lv et al. based three types of features and 
IFS feature selection algorithm with weighted support vector machine [7] to construct 
the predictive tool CarSPred.Y [9]. In our previous work, the one-sided selection under-
sampling algorithm was used to balanced training dataset, and hybrid combination of 
four feature extraction strategies with support vector machine to build the tool, CarSite 
[13].

In terms of the dataset used to build the above three currently available programs and 
the prediction threshold used for each method, CarSPred used 266K/119R/116T/114P 
human carbonylation sites and 1802K/754R/702T/716P human non-carbonyla-
tion sites to construct the tool, and used 34K/17/5T/12P carbonylation sites and 
147K/93R/30T/76P non-carbonylation sites from the human and other mammals to 
construct the test dataset, and the determination threshold can be assigned to any value 
from 0 to 1 which is set to 0.5 by default. CarSPred.Y used 86K/56R/44T/59P carbon-
ylation sites and 536K/363R/271T/358P non-carbonylation sites from yeast proteins to 
construct the training model, and the determination threshold was same with CarSPred. 
CarSite used the same cabonylation proteins with CarSPred and the threshold was set as 
0.5. In this study, we used the threshold of 0.5 to make relevant comparisons.

CarSite-II was compared with CarSPred.Y, CarSPred, and CarSite. The relevant 
results to identify carbonylation sites are shown in the Table  2. We can see from 
Table 2 that although the value of Sp by CarSite-II was about 0.45% lower than that 
for CarSPred for K carbonylation sites, the values of Sn was about 85.47% higher. Car-
Site-II gained the best Sn of 89.74%, 81.25%, 79.63% and 66.67% for K/P/R/T carbon-
ylation sites, respectively, which generally lead to 18.8%, 12.5%, 24.07% and 8.34%, 
and 58.97%, 25%, 53.7% and 33.34% improvement with regard to the second and third 

Table 2  Comparison of CarSite-II with other all available predictors on our independent test set

Classifier TP FP Sn (%) Sp (%) Acc (%) Mcc AUC​ G-mean

K

CarSPred.Y 36 547 30.77 92.65 91.69 0.1083 – 0.5339

CarSPred 5 89 4.27 98.80 97.34 0.0343 – 0.2055

CarSite 83 870 70.94 88.30 88.04 0.2203 0.8897 0.7915

CarSite-II 105 123 89.74 98.35 98.21 0.6358 0.9603 0.9395

P

CarSPred.Y 11 868 68.75 83.68 83.63 0.0773 – 0.7585

CarSPred 3 315 18.75 94.08 93.85 0.0296 – 0.4200

CarSite 9 587 56.25 88.96 88.86 0.0785 0.8671 0.7074

CarSite-II 13 108 81.25 97.97 97.92 0.2910 0.8768 0.8922

R

CarSPred.Y 14 387 25.93 93.51 92.91 0.0735 – 0.4924

CarSPred 10 321 18.52 94.62 93.94 0.0543 – 0.4186

CarSite 30 1236 55.56 79.28 79.07 0.0806 0.7715 0.6637

CarSite-II 43 112 79.63 98.12 97.96 0.4629 0.9236 0.8839

T

CarSPred.Y 8 335 33.33 94.85 94.63 0.0765 – 0.5623

CarSPred 4 271 16.67 95.84 95.54 0.0377 – 0.3997

CarSite 14 805 58.33 87.63 87.52 0.0840 0.7998 0.7150

CarSite-II 16 61 66.67 99.06 98.94 0.3685 0.8602 0.8127
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best classifiers, respectively. In terms of another evaluation criterion, MCC, CarSite-
II gained the best MCC of 0.6358, 0.2910, 0.4629, and 0.3685 for K, P, R, and T car-
bonylation sites, respectively. CarSite gained the second best MCC of 0.2203, 0.0785, 
0.0806 and 0.0840 for K, P, R, and T carbonylation sites, respectively. CarSPred.Y 
gained the third best MCC of 0.1083, 0.0773, 0.0735 and 0.0765.

Furthermore, since the original training datasets were friendly offered by PTM-
Pred [6], CarSpred [7], iCar-PseCp [8] and CarSite [13], CarSite-II was compared 
with these methods using tenfold cross-validation according to the results listed in 
their works. As shown in Table 3, CarSite-II was significantly better than PTMPred, 
CarSpred, iCar-PseCp and CarSite.

Meanwhile, we used Wilcoxon signed rank test to verify the significant of differ-
ent methods in Table 1 and Table 2. The relevant results are listed in Additional File 
2: SubTable  2. The Wilcoxon signde rank of  the K/P/R/T carbonylation sites. Two-
sided test for the null hypothesis that x–y comes from a distribution with zero median 
at the 5% significance level. As we can see from the Additional File 2: SubTable 2. The 
Wilcoxon signde rank of the K/P/R/T carbonylation sites, the values of H are all 1. In 
other words, it indicates a rejection of the null hypothesis at the 5% significance level.

These results indicated that CarSite-II is a significant improvement over all cur-
rently available tools.

Table 3  A comparisons of CarSite-II with other methods based on the tenfold cross validation on 
the same 250 carbonylated proteins

Predictor Sn (%) Sp (%) Acc (%) MCC AUC​ G-mean

K

PTMPred 23.45 92.99 88.59 0.1892 0.6858 0.4670

CarSpred 23.17 92.43 87.22 0.2268 0.6849 0.4628

iCar-PseCp 45.18 99.25 84.43 0.5906 0.8728 0.6696

CarSite 66.33 73.40 72.45 0.2936 0.7250 0.6978

CarSite-II 85.19 81.93 82.73 0.6074 0.8739 0.8354

P

PTMPred 21.43 93.20 82.93 0.2573 0.6903 0.4469

CarSpred 25.34 93.28 82.93 0.2331 0.7163 0.4862

iCar-PseCp 48.20 98.54 86.79 0.6006 0.8484 0.6892

CarSite 70.58 73.67 73.26 0.3280 0.7337 0.7211

CarSite-II 92.31 80.88 82.72 0.5816 0.8433 0.8641

R

PTMPred 20.02 90.99 86.64 0.1878 0.5981 0.4268

CarSpred 25.47 93.39 86.22 0.2245 0.7158 0.4877

iCar-PseCp 46.67 99.57 84.23 0.6076 0.8668 0.6817

CarSite 65.50 65.95 65.88 0.2252 0.6295 0.6572

CarSite-II 90.00 82.35 83.16 0.5110 0.8741 0.8609

T

PTMPred 22.38 91.36 88.39 0.2186 0.6563 0.4522

CarSpred 21.39 93.42 86.61 0.2040 0.7134 0.4470

iCar-PseCp 50.68 98.58 86.17 0.6185 0.8603 0.7068

CarSite 68.33 73.56 72.82 0.3226 0.7314 0.7090

CarSite-II 99.91 82.86 85.37 0.6437 0.9214 0.9099
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Discussion
Protein carbonylation is a type of protein oxidative damage, which is itself an irrevers-
ible chemical modification in oxidative stress, which refers to the side chain of amino 
acid residues being attacked by reactive oxygen species and finally converted into car-
bonyl products [1]. Modification of the protein by carbonylation will cause changes in 
the structure of the protein, causing it to lose its original biological function, eventu-
ally leading to cell and tissue dysfunction and pathophysiological changes in the body. 
The study by Nabeshi and his team showed that carbonyl modification of purified Cu, 
Zn-SOD increased by the reaction with H2O2. Therefore, progressive accumulation of 
oxidative damage to Cu, Zn-SOD, may cause dysfunction of defense systems against oxi-
dative stress in SAMP8 with a higher oxidative states, leading to acceleration of aging. 
Furthermore, carbonyl modification of HCNP-pp may be involved in pathophysiological 
alterations associated with deterioration in the learning and memory in the brain seen in 
SAMP8 [17].

Conclusions
In the current study, a novel resampling approach, SMOTE-KSU, was proposed to bal-
ance the size of small and large samples. A balanced dataset based on SMOTE-KSU 
resampling, the optimal parameters of DR, and Rotation Forest for K, P, R, and T car-
bonylation sites were selected according to the related results of tenfold cross-validation, 
respectively. Hereafter, we applied a majority voting strategy to develop the integrated 
predictor CarSite-II based on the Rotation Forest integrated algorithm. The related 
results revealed that CarSite-II achieved better performance than the currently available 
five programs, and revealed the usefulness of the SMOTE-KSU resampling approach 
and integration algorithm. Since Deep learning plays an important supplementary role 
in sequence analysis, we may construct a Deep learning predict model to better identify 
carbonylation sites in the future work. Our future work aims at extending this work to 
other bioinformatics sequence recognition. For the convenience of experimental scien-
tists, we have given a web-server guide on how to use the CarSite-II web tool to get their 
desired results without the need to follow the complicated mathematic equations that 
presented just for the integrity in developing the web tool CarSite-II. The detailed steps 
are shown in the Additional file 3: SubTable 3. Web-Server Guide.

Material and methods
Data collection and pre‑processing

The dataset gathered from CarbonylDB [18], which was the only existing database or 
resource for carbonylated proteins or sites, was used in the current study. From Car-
bonylDB, we collected 685, 178, 211, and 208 experimentally verified K, P, R, and T 
carbonylated sites on 468 human proteins as positive samples, while the remaining 
42523K, 35302P, 33050R, and 34774T carbonylated sites on the same 468 human pro-
teins were regarded as negative samples to construct the training dataset. Meanwhile, 
CD-HIT [19] was utilized as the software for the removal of redundant samples. For 
a cut-off of 40% identity, 445 carbonylated human proteins were retained. Subse-
quently, for a cut-off of 70% identity, some carbonylated sites with a high identity of 
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the 445 carbonylated proteins were removed. Finally, a total of 618K, 162P, 204R, and 
191T carbonylated sites (the positive training samples) and 26995K, 22418P, 22849R, 
and 24271T non-carbonylated sites (the negative training samples) were collected.

Furthermore, to avoid overestimating the predictive performance resulting from 
overfitting of the training dataset and to evaluate the proposed model’s real predictive 
performance, an independent testing set was constructed. The independent testing 
set was constructed by collecting the proteins of rats, yeast, and mice from Car-
bonylDB [18] (298 rat proteins, 239 yeast proteins, and 90 mouse proteins), and CD-
HIT [19] was used to remove redundant proteins and samples. For a cut-off of 40% 
identity, 277 rat proteins, 222 yeast proteins, and 76 mouse proteins were retained. 
Subsequently, cd-hit-2d [19] was used to control for homology between training and 
test datasets and within the test dataset. For a cut-off of 40% identity, 223 rat proteins, 
209 yeast proteins, and 42 mouse proteins were retained. Then, for a cut-off of 70% 
identity, some carbonylated sites with a high identity of the retained three species of 
carbonylated proteins were removed, a total of 117K, 16P, 54R, and 24T carbonylated 
sites were collected. For collecting negative test samples, after having filtered out 
fragments with 30% identity, the final negative test dataset comprised 7439K, 5318P, 
5966R, and 6507T non-carbonylated sites. Finally, the independent test set contained 
117  K, 16P, 54R, and 24T carbonylated sites and 7439K, 5318P, 5966R, and 6507T 
non-carbonylated sites. Table  4 shows the concrete statistics of the training dataset 
and independent test dataset.

Distance‑based residue features extraction strategy

DR, proposed by Liu et al. [20], was used to convert carbonylation and non-carbon-
ylation protein sequences into valid numerical vectors in this study. Given a protein 
sequence R with L amino acid residues, i.e.

where Ri represents the ith position amino acid residue along a given protein sequence. 
The DR measure of R can be defined as:

The dimension of FdMAX
(R) is 20+ 20× 20× dMAX , where 20 indicated 20 kinds of 

naïve amino acid residues:

(2)R = R1R2 . . .Ri . . .RL−1RL

(3)FdMAX
(R) =

[

D0(R),D1(R), . . . ,Dk(R), . . . ,DdMAX
(R)

]

Table 4  Summary of K/P/R/T carbonylation samples and non- carbonylation samples

Dataset Subset Carbonylation type and number of samples

K P R T

Training dataset Positive 618 162 204 191

Negative 26,995 22,418 22,849 24,271

Independent test dataset Positive 117 16 54 24

Negative 7439 5318 5966 6507
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i ∈ {A,C ,D,E, F ,G,H , I ,K , L,M,N ,P,Q,R, S,T ,V ,W ,Y } , T 0
i (R) was the occurrences 

of the amino acid residue i, and Td
ij (R) was the occurrences of the amino acid residue 

pair (i, j). dMAX represented the maximum distance between amino acid residue pair (i, 
j), and in this study, we set it as 1, 2, and 3, respectively.

In order to make researchers further understand the concrete process of converting 
a carbonylation or non-carbonylation protein sequence into valid numerical vector, 
the concrete process of generating DR feature vectors shown in Fig. 5.

Resampling methods

The synthetic minority oversampling technique

The SMOTE algorithm is the most frequently and commonly used oversampling 
method [21–23]. The primary idea of the SMOTE algorithm is to place synthetic 
example along the line segments connecting existing rare examples [14]. We briefly 
present the following:

Given a positive training sample X , and searching for its k nearest neighbor exam-
ples (usually set as 5), assume that the oversampling ratio was N  , then N  samples 
were selected from its k nearest neighbor examples. Conduct a random linear inter-
polation between X and Yj

(

j = 1, 2, . . . ,N
)

 to create a new rare sample Pj according to 
the formula (5):

where rand(0, 1) represents the random number generated in the interval (0, 1) . For a 
concrete explanation of the SMOTE algorithm, please refer to References [14].

(4)Dk(R) =

{

[

T 0
A(R),T

0
C (R),...,T

0
Y (R)

]

(k=0)
[

Tk
AA(R),T

k
AC (R),...,T

k
YY (R)

]

(1≤k≤dMAX )

(5)Pj = X + rand(0, 1) ∗
(

Yj − X
)

, j = 1, 2, . . . ,N .

Fig. 5  The process of generating DR feature vectors
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Kmeans similarity‑based undersampling

KSU is proposed in this study based on a novel methodology that is capable of removing 
redundant samples [16, 24]. The main idea of KSU is to find out the similarity between 
the negative training samples. The detailed steps are as following:

1.	 First, make the convergence of negative training samples into k clusters using a 
K-means clustering algorithm (we set as k = 6 in this study).

2.	 Then, for each cluster of negative training samples, suppose that A ∈ R
n×d indicated 

all negative samples in the k-th cluster, d was the dimensionality of the extracted fea-
tures, and n indicated the number of all negative samples in the k-th cluster. Normal-
ize all columns of the matrix A ∈ R

n×d and get a transformed matrix π , where the 
element at its i-th row and j-th column can be represented as:

3.	 Compute the distance between every two rows of the transformed matrix π to get a 
symmetrical square distance matrix D1 , where the element at its p-th row and q-th 
column can be represented as:

where πp and πq represented vectors consisting of all elements of the p-th and q-th 
rows of the matrix π , respectively. It was clear that the elements located on the main 
diagonal of the symmetrical square distance matrix D1 are zero. Because the matrix 
D1 was a symmetry matrix, only the upper triangle of the matrix D1 was considered 
in the below, and D1 was defined as a dissimilarity matrix.

4.	 The smaller the element D1p,q , the more “similar” the samples Ap and Aq . The couples 
of samples were rearranged based on this similarity index and in N the most similar 
couples of samples, we randomly selected one of the samples to eliminate.

Rotation forest integration algorithm

The Rotation Forest integrated algorithm was firstly proposed in 2006 by Rodriguez et al. 
[25]. Their goal was to develop a powerful integrated learning algorithm for noise and 
rotation of data. The basic idea of the Rotation Forest integrated algorithm was based on 
Random Forest, and we used it to consturct the integrated predictive model. The algo-
rithm is as follows: In the dataset X = [x1, . . . xn]

T containing n features, X is an N × n 
matrix with a sample size of N, which constitutes the feature set F, Y = [y1, . . . yn]

T is the 
corresponding labels. There are two important parameters in the algorithm that need to 
be defined: the number of feature subsets K, and the number of classifier in ensemble 
system L. In an integrated classification system, generally includes L = D1, . . .DL sub-
classifiers. The concrete algorithm is described as follows.

The first step, the feature set F  was randomly divided into K subsets, each of which 
contained M = n/K features. For simplicity, generally set K as a factor of n.

(6)πi,t =
Ai,t

max1≤j≤n

{

Aj,t

} , i = 1, 2, . . . , n, t = 1, 2, . . . , d

(7)D1p,q =
1

n

(

πp − πq
)

.
(

πp − πq
)T
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The second step, Fij is the j-th feature subset used to train the sub-classifier Di . Cor-
responding to each feature subset Fij , Xij is a subset of samples containing feature Fij in 
X . Using bootstrap resampling technology for Xij , 75% of the samples are randomly and 
repeatedly extracted to form a new bootstrap sample set X ′

ij . Then, we performed the 
principal component analysis on X ′

ij , and recorded the generated coefficient matrix 
Cij = [a

(1)
ij , . . . a

(Mk )

ij ] . It is worth noting that the possible eigenvalue is zero, resulting in 
Mj ≤ M . The purpose of a linear transformation on feature subsets rather than full data 
sets is to avoid constructing subclassifiers with the same coefficient matrix.

The third step, construct a sparse “rotation” matrix Ri with the obtained coefficient matrix 
Cij:

Because the bootstrap process disturbs the order of data, in order to calculate the train-
ing set of the subclassifier Di , each column in the matrix Ri needs to be reordered accord-
ing to the original feature set. The rotation matrix obtained after reordering is denoted 
as Rα

i ∈ R
N×n . For subclassifier Di , the training set after the rotation transformation is 

X ′ = XRα
i .

The fourth step, in the classification phase, the new sample x also needs to conduct rota-
tion transformation, and the new sample after the rotation transformation is x′ = xRα

i  . We 
let dij

(

xRα
i

)

 be the subclassifier Di to determine the probability that the sample x belongs to 
classes 1 or 2, and the credibility of assigning the sample to a certain class is:

Sample x judges the category to which it belongs with maximum credibility, where L rep-
resents the number of subclassifiers, and 1 or 2 indicate the sample belonging to positive or 
negative.

In this study, we used SVM as the subclassifier for the Rotation Forest integrated 
algorithm.

Construct and evaluate model

To further improve the performance of predicting carbonylation and non-carbonylation 
sites, the Rotation Forest integrated algorithm was utilized by using a majority voting strat-
egy to integrate the predictive results of subclassifiers. The performance of CarSite-II was 
evaluated using the following six measurements: Sensitivity (Sn), Specificity (Sp), Accuracy 
(Acc), Matthew’s correlation coefficient (MCC), geometric mean (G-mean) and the area 
under the receiver operating characteristic curves (AUC), which were defined as follows:

(8)Ri =









Ci1 0 · · · 0

0 Ci2 · · · 0
...

...
...

...

0 0 · · · CiK









(9)µj(x) =
1

L

∑

dij
(

xRα
i

)

j = 1, 2

(10)Sn = 1−
N+
−

N+
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in which,

Here N+ represented the size of carbonylation sequences, while N+
−  indicated 

the total number of carbonylation sequences which were incorrectly predicted as 
non-carbonylation sequences; N− represented the number of non-carbonylation 
sequences, while N _

+ was the total number of non-carbonylation sequences, which 
were incorrectly predicted as carbonylation sequences, f +i  was the score of the ith 
positive sample, and f −j  was the score of the jth negative sample.

Abbreviations
SMOTE-KSU: K-means similarity-based undersampling and the synthetic minority oversampling technique; MCC: Mat-
thew’s correlation coefficient; DR: Distance-based residue; SVM: Support vector machine; K: Lys; R: Arginine; P: Proline; T: 
Threonine.
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+

N+ + N−
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+
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