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Abstract 

Background:  Next-generation sequencing (NGS) represents a significant advance-
ment in clinical genetics. However, its use creates several technical, data interpretation 
and management challenges. It is essential to follow a consistent data analysis pipe-
line to achieve the highest possible accuracy and avoid false variant calls. Herein, we 
aimed to compare the performance of twenty-eight combinations of NGS data analysis 
pipeline compartments, including short-read mapping (BWA-MEM, Bowtie2, Stampy), 
variant calling (GATK-HaplotypeCaller, GATK-UnifiedGenotyper, SAMtools) and interval 
padding (null, 50 bp, 100 bp) methods, along with a commercially available pipeline 
(BWA Enrichment, Illumina®). Fourteen germline DNA samples from breast cancer 
patients were sequenced using a targeted NGS panel approach and subjected to data 
analysis.

Results:  We highlight that interval padding is required for the accurate detection of 
intronic variants including spliceogenic pathogenic variants (PVs). In addition, using 
nearly default parameters, the BWA Enrichment algorithm, failed to detect these spli-
ceogenic PVs and a missense PV in the TP53 gene. We also recommend the BWA-MEM 
algorithm for sequence alignment, whereas variant calling should be performed using 
a combination of variant calling algorithms; GATK-HaplotypeCaller and SAMtools for 
the accurate detection of insertions/deletions and GATK-UnifiedGenotyper for the 
efficient detection of single nucleotide variant calls.

Conclusions:  These findings have important implications towards the identification of 
clinically actionable variants through panel testing in a clinical laboratory setting, when 
dedicated bioinformatics personnel might not always be available. The results also 
reveal the necessity of improving the existing tools and/or at the same time develop-
ing new pipelines to generate more reliable and more consistent data.
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Background
Massively parallel sequencing, also known as next-generation sequencing (NGS), 
represents a significant advancement in clinical genetics and has revolutionized the 
field of molecular genetics, as it enables the investigation of several genes and samples 
simultaneously [1]. To this end, massively parallel sequencing, has set the ground for 
the discovery of novel disease causative variants [2]. However, these newly integrated 
technologies are accompanied with several technical, data management and interpre-
tation challenges [3]. Although a diversity of sequence mapping and variant calling 
methods have been developed, they present variable concordance between their calls 
[3–12].

Among many short-read mapping algorithms, Burrows–Wheeler Aligner (BWA)-
Maximal Exact Match (MEM) [13], Stampy [14] and Bowtie2 [15] are very popular. 
Bowtie2 and BWA-MEM use the Burrows-Wheeler transform (BWT) algorithm, dur-
ing which the reference genome is “collapsed” and indexed and reads are aligned against 
substrings of the reference genome [16, 17]. Subsequently, both produce very similar 
results [13, 18]. In contrast, Stampy which uses a hash-based approach by hashing the 
reference genome in 15-mers, identifies candidate alignment locations for each read in 
the hash table, which are then filtered to discover the sequence with the highest read 
similarity [14].

Through the years, divergent variant calling algorithms have been developed which 
function by distinguishing true variants from alignment errors [10]. The Genome 
Analysis ToolKit (GATK)-HaplotypeCaller (GATK-HC) [19], GATK-UnifiedGenotyper 
(GATK-UG) [20] and SAMtools [21] variant calling algorithms are widely used. GATK-
UnifiedGenotyper and SAMtools, follow a Bayesian variant calling approach to model 
sequencing errors and detect candidate variants by independently mapping reads to the 
reference genome and evaluating genotype likelihoods to model sequencing errors and 
identify the most likely genotype call [10–12, 22]. This approach can be very efficient for 
the detection of single nucleotide variants (SNVs), but may pose challenges when align-
ing reads to regions surrounding candidate insertions or deletions (indels) [10]. On the 
other hand, GATK-HaplotypeCaller follows an assembly-based approach, during which 
it first carries out a local de-novo assembly of reads within a fixed-length window, then 
builds up candidate haplotypes and determines their likelihoods comparing to the ref-
erence genome [10]. Candidate haplotypes with the highest likelihood are those called 
as true sequences and variants within the haplotype are then called as true variants. 
This assembly-based approach can be more efficient for the detection of small or even 
large indels, since it can address incorrect alignments in regions beside candidate indels 
and thus improve the total accuracy and recall compared to Bayesian variant-calling 
approaches [10].

In addition, variant calling requires an interval list file, which corresponds to the 
genomic regions targeted during library preparation and is typically provided by the kit 
manufacturer. For exome or targeted sequencing data, the GATK (https://​gatk.​broad​
insti​tute.​org/) suite recently suggested additional interval padding (usually 100  bp). 
Although interval padding is clearly stated as an optional parameter in the documenta-
tion of various variant calling algorithms and indeed interval padding is being used [23], 
variant calling algorithms running with nearly default parameters may miss potentially 

https://gatk.broadinstitute.org/
https://gatk.broadinstitute.org/
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actionable spliceogenic pathogenic variants (PVs), while some algorithms do not include 
options on that parameter.

Following good laboratory standards for clinical NGS [22], we included positive 
controls in each run and noticed that data analysis following the GATK best practice 
guidelines, led to low detection rates of the known PVs. Due to substantial performance 
variation among different pipelines, the EuroGentest project and the European Society 
of Human Genetics, proposed guidelines for the evaluation and validation of NGS appli-
cations for the diagnosis of genetic disorders [24]. The ultimate goal is to define the most 
appropriate pipeline for each technology, achieve the highest possible accuracy and min-
imize false variant calls.

Herein, we aimed to compare the variant calling performance of twenty-eight com-
binations of pipeline compartments, including three short-read alignment algorithms—
BWA-MEM, Bowtie2 and Stampy—, three variant calling algorithms—GATK-HC, 
GATK-UG and SAMtools—and three different interval padding lengths (null, 50 bp and 
100 bp), as well as a commercially available pipeline (BWA Enrichment, Illumina®).

Results
Sequencing and mapping evaluation

Sequencing was performed on the NextSeq 500 Sequencing Platform (Illumina) using 
high-output v2.5 kits with 2 × 75 or 2 × 150 cycles. Both runs obtained high quality 
scores (Q-score). Q30 rate was achieved for 87.8% (> 80%) and 78.6% (> 75%) of reads, 
while cluster density was at optimal levels (on average 215  k/mm2 and 210  k/mm2, 
respectively). The output yield was relatively high (77.9Gbp and 128.8Gbp). Sequencing, 
generated an average of 20.6 and 14.8 million reads, whereas clusters generated were on 
average 10.3 and 7.4 for each 2 × 75 and 2 × 150 run respectively (Additional file 3).

All reads were mapped to the hg19 reference human genome assembly (GRCh37) 
(https://​genome.​ucsc.​edu/, last accessed 19/07/2019) and more than 99% of reads were 
properly aligned to the reference genome. However, as shown in Fig. 1, the mapping effi-
ciency of Stampy was lower compared to the other two aligners. In detail, alignment with 
Stampy demonstrated a higher number of unmapped reads compared to BWA-MEM 
and Bowtie2; a trend that applied to all samples included in the study (Fig. 1, Additional 
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Fig. 1  Evaluation of mapping efficiency per alignment algorithm. Dot plot showing the distribution of 
unmapped reads (percentage). Standard deviation values are shown in error bars. Detailed numbers are 
shown in Additional file 4. Statistical analysis was performed using the non-parametric Kruskal–Wallis test
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file  3). On average, Stampy failed to align 5.622% of reads, compared to 0.810% and 
0.967% of reads by BWA-MEM and Bowtie2 respectively (p value = 2.80 × 10–06, p 
value = 6.70 × 10–06, Kruskal–Wallis) (Fig.  1, Additional file  4). Although, both BWA-
MEM and Bowtie2 algorithms accomplished high mapping efficiencies, the BWA-MEM 
tool possessed the highest mapping power (99.189% of generated reads were mapped) 
(Additional file 4). However, the difference was not statistically significant (p value = 1, 
Kruskal–Wallis).

The GATK DepthOfCoverage tool was used to examine the depth of coverage (DP) for 
the 18 genes under investigation. Detailed maximum, mean and minimum DP values per 
gene, are shown in Additional file 5. As expected, sequencing with 2 × 75 cycles, resulted 
in about half DP compared to sequencing with 2 × 150 cycles (Additional file  5). Align-
ment with BWA-MEM resulted on an average of 385 reads per base (X) DP (range: 
2–1188) and 735X DP (range: 21–2452) corresponding to sequencing with 2 × 75 and 
2 × 150 cycles, respectively. Mapping with Bowtie2, demonstrated 385 (range: 4–1201) 
and 739 (range 25–2459) DP, corresponding to 2 × 75 and 2 × 150 cycles sequencing, 
respectively. In addition, mapping with Stampy, demonstrated a lower DP compared to 
others; 382 (range 4–1187) and 699 (range 16–2425), corresponding to sequencing with 
2 × 75 and 2 × 150 cycles, respectively. Hence, sequencing with 300 cycles and mapping 
with BWA-MEM or Bowtie2 resulted to a higher on average DP.

Following variant filtering, we applied a cut-off value of DP ≥ 30X. For all samples and 
alignment methods, sequence reads sufficiently covered more than 99% of the targeted 
regions. Bowtie2 alignment on 300 cycles sequencing data, demonstrated the highest 
coverage performance (~ 100%) which is close to the coverage performance of BWA-
MEM and Stampy methods (99.982% and 99.963%, respectively). Only two regions 
demonstrated low (< 30X) DP; the splice donor site of exon 1 of the MSH6 gene and 23 
nucleotides residing at the end of exon 5 of the MSH2 gene. Despite the lower mapping 
power, alignment with Stampy, demonstrated a slightly higher coverage performance 
(99.547%) on alignment of 2 × 75 cycles sequencing data, compared to BWA-MEM 
and Bowtie (99.522% and 99.527%, respectively). Twenty-three intervals demonstrated 
low (< 30X) DP, of which the less covered (< 30X for more than 10% of the exon region) 
were the STK11_exon7, STK11_exon4, NF1_exon 25, ATM_exon43, MSH2_exon5, NF1_
exon14 and NF1_exon30 (Additional file 5).

Pipeline comparison and ranking

We evaluated the performance of each of the pipelines using data from the 14 samples. 
Ranking was carried out using the perpendicular distance (d) of each point from the 
“Random Guess”, the so-called no discrimination, diagonal line (Fig. 2). At first, pipeline 
performance was compared for all variant types. BWA-MEM/SAMtools with 100  bp 
padding, demonstrated the highest overall performance, followed by BWA-MEM/SAM-
tools and Stampy/SAMtools pipelines with 50 bp padding (Fig. 2). The corresponding (d) 
values were 0.673, 0.670 and 0.670, respectively (Fig. 2). Stampy/SAMtools with 100 bp 
padding, along with BWA-MEM/GATK-UG with 50 bp padding, ranked next, with per-
pendicular (d) values 0.662 and 0.652. We observed similar results when comparing Mat-
thews correlation coefficient (MCC) and F1 scores (Table 1). Detailed numbers of true 
positive and false positive SNVs and indels, are provided in Table 2. The Illumina BWA 
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Enrichment application demonstrated a 0.577 perpendicular (d) value, which is slightly 
higher, compared to the overall performance of null padding pipelines (d = 0.489). Hier-
archical clustering based on perpendicular (d), MCC, F1 score, precision (p) and recall 
(r) metrics supports our observations (Table 1, Additional file 6). Statistical association 
tests demonstrated that the read mapping method is statistically significant in associa-
tion with total variant calling performance (p value = 0.00416, one-way ANOVA). In 
detail, Bowtie2 (MCC = 0.517) exhibited reduced performance compared to BWA-MEM 
(MCC = 0.782, p value = 0.0043) and Stampy (MCC = 0.747, p value = 0.0144) (Fig. 3a).

The MCC values were used to rank the top tier performing pipeline combinations 
and perform analysis of variance for alignment, variant calling and padding methods. 
Stampy/SAMtools with 50 bp padding performed best on calling exonic single nucleo-
tide variants (SNVs) with MCC = 0.968, followed by BWA-MEM/GATK-UG with zero 
padding, BWA-MEM/GATK-UG with 50  bp padding, BWA-MEM/SAMtools with 
100  bp padding and BWA Enrichment application, all with MCC = 0.957 (Table  1). 
Statistical tests demonstrated that read mapping affects the exonic SNV calling per-
formance (p value = 0.0002839, Kruskal–Wallis). In details, Bowtie2 (MCC = 0.576) 
exhibited reduced performance compared to BWA-MEM (MCC = 0.908, p 
value = 0.0024) and Stampy (MCC = 0.876, p value = 0.0024) (Fig. 3b). All GATK-UG 

Exonic indels Intronic indels

0.550.662
0.5160.642

0.505

0.222

0.538 0.497
0.673

0.652

0.505

0.209
0.544

0.497
0.487

0.67
0.542

0.4920.584 0.492
0.5020.572

0.576

0.524

0.192
0.471

0.5770.584

Exonic SNVs

0.563

0.665
0.663

0.608

0.1670.524
0.55

0.556
0.674
0.676

0.707
0.071

0.141

Exonic SNVs
0.665

0.674

0.582

0.178
0.5290.55
0.5450.69

Exonic SNVs

0.65
0.676

0.582

0.1940.5150.563
0.5560.563

Intronic SNVs

-0.088

Intronic SNVs

0.663 0.564
0.626

0.558 - 0.0610.483

0.462
0.524

Intronic SNVs

0.666 0.578

0.626

0.558 - 0.0480.496

0.462

0.612

i. ii.

iii. iv.

i. ii.

Intronic indels
iv.

i. ii.

Exonic indels

0.707

iii.
Intronic indels

0.354

0.141

iv.
Exonic indels

0.707

iii.

0.354

a b c

Fig. 2  Receiver-operating characteristic space plots comparing variant calls. ROC space comparing variant 
calls upon a null interval padding, b 50 bp interval padding and c 100 bp interval padding for the entity of 
variants (top panel), divided to exonic SNVs (Ai/Bi/Ci), intronic SNVs (Aii/Bii/Cii), exonic indels (Aiii/Biii/Ciii) 
and intronic indels (Aiv/Biv/Civ). Sanger Sequencing was used as the gold standard to evaluate the accuracy 
of the calls. True and false positive rates were plotted in the Receiver Operating Characteristic (ROC) space. 
Each point corresponds to an instance of a confusion matrix. Labels correspond to perpendicular distance 
(d) values. FPR false positive rate, GATK Genome Analysis ToolKit, HC HaplotypeCaller, TPR true positive rate, 
UG UnifiedGenotyper. TPR and FPR stand for true positive and false positive rates. The “Random Guess” line is 
shown in red



Page 6 of 21Zanti et al. BMC Bioinformatics          (2021) 22:218 

Ta
bl

e 
1 

M
at

th
ew

s 
co

rr
el

at
io

n 
co

effi
ci

en
t, 

pe
rp

en
di

cu
la

r d
is

ta
nc

e,
 tr

ue
 p

os
iti

ve
 ra

te
 a

nd
 fa

ls
e 

po
si

tiv
e 

ra
te

 v
al

ue
s

Ex
on

ic
 S

N
Vs

Ex
on

ic
 in

de
ls

In
tr

on
ic

 S
N

Vs

M
CC

d
TP

R
FP

R
M

CC
d

TP
R

FP
R

M
CC

d
TP

R
FP

R

N
ul
l i
nt
er
va
l p
ad

di
ng

BW
A

-M
EM

/G
AT

K-
H

C
0.

83
2

0.
56

3
0.

98
5

0.
18

9
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

BW
A

-M
EM

/G
AT

K-
U

G
0.

95
6

0.
66

5
0.

99
7

0.
05

7
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

BW
A

-M
EM

/S
A

M
to

ol
s

0.
94

5
0.

66
3

0.
99

4
0.

05
7

1.
00

0
0.

70
7

1.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

Bo
w

tie
2/

G
AT

K-
H

C
0.

67
2

0.
60

8
0.

86
0

0.
00

0
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

Bo
w

tie
2/

G
AT

K-
U

G
0.

30
0

0.
16

7
0.

95
3

0.
71

7
0.

00
0

0.
00

0
0.

00
0

0.
00

0
−

 0
.3

32
−

 0
.0

88
0.

00
0

0.
12

5

Bo
w

tie
2/

SA
M

to
ol

s
0.

74
8

0.
52

4
0.

96
8

0.
22

6
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

St
am

py
/G

AT
K-

H
C

0.
81

9
0.

55
0

0.
98

5
0.

20
8

1.
00

0
0.

70
7

1.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

St
am

py
/G

AT
K-

U
G

0.
85

2
0.

55
6

0.
99

4
0.

20
8

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

St
am

py
/S

A
M

to
ol

s
0.

94
6

0.
67

4
0.

99
1

0.
03

8
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0

50
 b
p 
in
te
rv
al

 p
ad

di
ng

BW
A

-M
EM

/G
AT

K-
H

C
0.

81
9

0.
55

0
0.

98
5

0.
20

8
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

82
8

0.
66

6
0.

94
2

0.
00

0

BW
A

-M
EM

/G
AT

K-
U

G
0.

95
6

0.
66

5
0.

99
7

0.
05

7
0.

00
0.

00
0

0.
00

0
0.

00
0

0.
70

1
0.

56
4

0.
92

3
0.

12
5

BW
A

-M
EM

/S
A

M
to

ol
s

0.
94

6
0.

67
4

0.
99

1
0.

03
8

1.
00

0
0.

70
7

1.
00

0
0.

00
0

0.
71

1
0.

62
6

0.
88

5
0.

00
0

Bo
w

tie
2/

G
AT

K-
H

C
0.

64
7

0.
58

2
0.

86
0

0.
03

8
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

57
6

0.
55

8
0.

78
9

0.
00

0

Bo
w

tie
2/

G
AT

K-
U

G
0.

31
1

0.
17

8
0.

95
0

0.
69

8
0.

00
0

0.
00

0
0.

00
0

0.
00

0
−

 0
.0

74
−

 0
.0

61
0.

78
9

0.
87

5

Bo
w

tie
2/

SA
M

to
ol

s
0.

76
7

0.
52

9
0.

97
4

0.
22

6
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

51
5

0.
48

3
0.

80
8

0.
12

5

St
am

py
/G

AT
K-

H
C

0.
81

9
0.

55
0

0.
98

5
0.

20
8

1.
00

0
0.

70
7

1.
00

0
0.

00
0

0.
82

8
0.

66
6

0.
94

2
0.

00
0

St
am

py
/G

AT
K-

U
G

0.
85

2
0.

54
5

0.
99

7
0.

22
6

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
57

4
0.

46
2

0.
90

4
0.

25
0

St
am

py
/S

A
M

to
ol

s
0.

96
8

0.
69

0
0.

99
4

0.
01

9
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

59
5

0.
52

4
0.

86
5

0.
12

5

10
0 
bp

 in
te
rv
al

 p
ad

di
ng

BW
A

-M
EM

/G
AT

K-
H

C
0.

83
1

0.
56

3
0.

98
5

0.
18

9
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

82
8

0.
66

6
0.

94
2

0.
00

0

BW
A

-M
EM

/G
AT

K-
U

G
0.

93
4

0.
65

0
0.

99
4

0.
07

5
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

74
6

0.
57

8
0.

94
2

0.
12

5

BW
A

-M
EM

/S
A

M
to

ol
s

0.
95

6
0.

67
6

0.
99

4
0.

03
8

1.
00

0
0.

70
7

1.
00

0
0.

00
0

0.
71

1
0.

62
6

0.
88

5
0.

00
0

Bo
w

tie
2/

G
AT

K-
H

C
0.

64
7

0.
58

2
0.

86
0

0.
03

8
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

57
6

0.
55

8
0.

78
9

0.
00

0



Page 7 of 21Zanti et al. BMC Bioinformatics          (2021) 22:218 	

Ta
bl

e 
1 

(c
on

tin
ue

d)

Ex
on

ic
 S

N
Vs

Ex
on

ic
 in

de
ls

In
tr

on
ic

 S
N

Vs

M
CC

d
TP

R
FP

R
M

CC
d

TP
R

FP
R

M
CC

d
TP

R
FP

R

Bo
w

tie
2/

G
AT

K-
U

G
0.

33
8

0.
19

4
0.

95
3

0.
67

9
0.

00
0

0.
00

0
0.

00
0

0.
00

0
−

 0
.0

59
−

 0
.0

48
0.

80
8

0.
87

5

Bo
w

tie
2/

SA
M

to
ol

s
0.

75
3

0.
51

5
0.

97
4

0.
24

5
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

54
0

0.
49

6
0.

82
7

0.
12

5

St
am

py
/G

AT
K-

H
C

0.
83

1
0.

56
3

0.
98

5
0.

18
9

1.
00

0
0.

70
7

1.
00

0
0.

00
0

0.
82

8
0.

66
6

0.
94

2
0.

00
0

St
am

py
/G

AT
K-

U
G

0.
85

2
0.

55
6

0.
99

4
0.

20
8

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
57

4
0.

46
2

0.
90

4
0.

25
0

St
am

py
/S

A
M

to
ol

s
0.

94
5

0.
66

3
0.

99
4

0.
05

7
1.

00
0

0.
70

7
1.

00
0

0.
00

0
0.

67
9

0.
61

2
0.

86
5

0.
00

0

BW
A

 E
nr

ic
hm

en
t

0.
95

6
0.

67
6

0.
99

4
0.

03
8

1.
00

0
0.

70
7

1.
00

0
0.

00
0

−
 0

.3
31

−
 0

.0
88

0.
00

0
0.

12
50

In
tr

on
ic

 in
de

ls
A

ll 
ty

pe
s 

of
 v

ar
ia

nt
s

M
CC

d
TP

R
FP

R
M

CC
d

TP
R

FP
R

N
ul
l i
nt
er
va
l p
ad

di
ng

BW
A

-M
EM

/G
AT

K-
H

C
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

58
1

0.
50

2
0.

84
8

0.
13

9

BW
A

-M
EM

/G
AT

K-
U

G
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

65
3

0.
57

2
0.

85
1

0.
04

2

BW
A

-M
EM

/S
A

M
to

ol
s

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
66

0
0.

57
6

0.
85

6
0.

04
2

Bo
w

tie
2/

G
AT

K-
H

C
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

55
1

0.
52

4
0.

74
1

0.
00

0

Bo
w

tie
2/

G
AT

K-
U

G
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

23
3

0.
19

2
0.

81
3

0.
54

2

Bo
w

tie
2/

SA
M

to
ol

s
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

54
0

0.
47

1
0.

83
3

0.
16

7

St
am

py
/G

AT
K-

H
C

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
57

1
0.

49
2

0.
84

8
0.

15
3

St
am

py
/G

AT
K-

U
G

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
57

1
0.

49
2

0.
84

8
0.

15
3

St
am

py
/S

A
M

to
ol

s
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

66
6

0.
58

4
0.

85
3

0.
02

8

50
 b
p 
in
te
rv
al

 p
ad

di
ng

BW
A

-M
EM

/G
AT

K-
H

C
0.

00
0

0.
00

0
1.

00
0

1.
00

0
0.

74
9

0.
48

7
0.

98
0

0.
29

2

BW
A

-M
EM

/G
AT

K-
U

G
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

89
8

0.
65

2
0.

97
8

0.
05

6

BW
A

-M
EM

/S
A

M
to

ol
s

0.
67

4
0.

35
4

0.
50

0
0.

00
0

0.
90

8
0.

67
0

0.
97

5
0.

02
8

Bo
w

tie
2/

G
AT

K-
H

C
0.

20
0

0.
41

4
1.

00
0

0.
80

0
0.

58
8

0.
50

5
0.

85
3

0.
13

9

Bo
w

tie
2/

G
AT

K-
U

G
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

32
1

0.
20

9
0.

92
0

0.
62

5



Page 8 of 21Zanti et al. BMC Bioinformatics          (2021) 22:218 

Ta
bl

e 
1 

(c
on

tin
ue

d)

In
tr

on
ic

 in
de

ls
A

ll 
ty

pe
s 

of
 v

ar
ia

nt
s

M
CC

d
TP

R
FP

R
M

CC
d

TP
R

FP
R

Bo
w

tie
2/

SA
M

to
ol

s
0.

67
4

0.
35

4
0.

50
0

0.
00

0
0.

74
1

0.
54

4
0.

95
0

0.
18

1

St
am

py
/G

AT
K-

H
C

0.
13

5
0.

07
1

1.
00

0
0.

90
0

0.
75

8
0.

49
7

0.
98

0
0.

27
8

St
am

py
/G

AT
K-

U
G

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
79

0
0.

54
2

0.
97

5
0.

20
8

St
am

py
/S

A
M

to
ol

s
0.

67
4

0.
35

4
0.

50
0

0.
00

0
0.

90
8

0.
67

0
0.

97
5

0.
02

8

10
0 
bp

 in
te
rv
al

 p
ad

di
ng

BW
A

-M
EM

/G
AT

K-
H

C
0.

20
0

0.
41

4
1.

00
0

0.
80

0
0.

77
7

0.
51

6
0.

98
0

0.
25

0

BW
A

-M
EM

/G
AT

K-
U

G
0.

00
0.

00
0

0.
00

0
0.

00
0

0.
88

8
0.

64
2

0.
97

8
0.

06
9

BW
A

-M
EM

/S
A

M
to

ol
s

0.
67

4
0.

35
4

0.
50

0
0.

00
0

0.
92

2
0.

67
3

0.
98

0
0.

02
8

Bo
w

tie
2/

G
AT

K-
H

C
0.

20
0

0.
41

4
1.

00
0

0.
80

0
0.

58
8

0.
50

5
0.

85
3

0.
13

9

Bo
w

tie
2/

G
AT

K-
U

G
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

34
4

0.
22

2
0.

92
5

0.
61

1

Bo
w

tie
2/

SA
M

to
ol

s
0.

67
4

0.
35

4
0.

50
0

0.
00

0
0.

74
4

0.
53

8
0.

95
5

0.
19

4

St
am

py
/G

AT
K-

H
C

0.
00

0
0.

00
0

1.
00

0
1.

00
0

0.
75

8
0.

49
7

0.
98

0
0.

27
8

St
am

py
/G

AT
K-

U
G

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
79

2
0.

55
0

0.
97

3
0.

19
4

St
am

py
/S

A
M

to
ol

s
0.

67
4

0.
35

4
0.

50
0

0.
00

0
0.

90
6

0.
66

2
0.

97
8

0.
04

2

BW
A

 E
nr

ic
hm

en
t

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
66

3
0.

57
7

0.
85

8
0.

04
2

Fo
r p

ip
el

in
e 

pe
rf

or
m

an
ce

 e
va

lu
at

io
n,

 v
ar

ia
nt

s 
w

er
e 

ca
te

go
riz

ed
 in

 fo
ur

 g
ro

up
s;

 e
xo

ni
c 

si
ng

le
 n

uc
le

ot
id

e 
va

ria
nt

s 
(S

N
Vs

) a
nd

 e
xo

ni
c 

in
de

ls
 (i

ns
er

tio
ns

 o
r d

el
et

io
ns

), 
in

tr
on

ic
 S

N
Vs

 (±
 1

- ±
 1

0)
 a

nd
 in

tr
on

ic
 in

de
ls

 (±
 1

– 
±

 1
0)

. 
Sa

ng
er

 s
eq

ue
nc

in
g 

w
as

 p
er

fo
rm

ed
 to

 v
al

id
at

e 
th

e 
ca

lls
. d

 p
er

pe
nd

ic
ul

ar
 d

is
ta

nc
e,

 G
AT

K 
G

en
om

e 
A

na
ly

si
s T

oo
lK

it,
 F

PR
 fa

ls
e 

po
si

tiv
e 

ra
te

, H
C 

H
ap

lo
ty

pe
Ca

lle
r; 

in
de

ls
, i

ns
er

tio
ns

 &
 d

el
et

io
ns

; M
CC

 M
at

th
ew

s 
co

rr
el

at
io

n 
co

effi
ci

en
t, 

SN
Vs

 s
in

gl
e 

nu
cl

eo
tid

e 
va

ria
nt

s, 
TP

R 
tr

ue
 p

os
iti

ve
 ra

te
, U

G
 U

ni
fie

dG
en

ot
yp

er
; i

n 
bo

ld
, s

el
ec

te
d 

to
p 

tie
r p

er
fo

rm
in

g 
pi

pe
lin

es
 a

s 
pe

r M
CC

 ra
nk

in
g



Page 9 of 21Zanti et al. BMC Bioinformatics          (2021) 22:218 	

based pipelines demonstrated deficient calling of exonic (p value = 5.9 × 10–06, 
Kruskal–Wallis) and intronic indels (p value = 0.01171, Kruskal–Wallis) (Fig.  3c, e, 
Table  1) irrespective of interval padding. It is noteworthy that all SAMtools based 
pipelines with 50 bp and 100 bp interval padding demonstrated the highest intronic 
indel calling performance (MCC = 0.6742). Towards intronic SNV calling, Stampy 
and BWA-MEM mapping, in combination with GATK-HC variant calling with 50 
or 100 bp padding, demonstrated the highest performance (MCC = 0.828) (Table 1), 
followed by BWA-MEM/GATK-UG with 100  bp padding (MCC = 0.746). Statistical 
analyses demonstrated that the padding method affects the intronic SNV calling per-
formance (p value = 0.003845, Kruskal–Wallis). In detail, 50  bp (MCC = 0.584) and 

Table 2  Numbers of true positive and false positive single nucleotide variants and insertions/
deletions, detected by each pipeline combination

For pipeline performance evaluation, variants were categorized in four groups; exonic single nucleotide variants (SNVs) 
and exonic indels (insertions or deletions), intronic SNVs (± 1 to ± 10) and intronic indels (± 1– ± 10). Sanger sequencing 
was performed to validate the calls. GATK Genome Analysis ToolKit, HC HaplotypeCaller; indels, insertions & deletions, SNVs 
single nucleotide variants, UG UnifiedGenotyper

True positive SNVs False positive SNVs True positive 
indels

False 
positive 
indels

Null interval padding

BWA-MEM/GATK-HC 338 10 3 0

BWA-MEM/GATK-UG 342 3 0 0

BWA-MEM/SAMtools 341 3 3 0

Bowtie2/GATK-HC 295 0 3 0

Bowtie2/GATK-UG 327 39 0 0

Bowtie2/SAMtools 332 12 3 0

Stampy/GATK-HC 338 11 3 0

Stampy/GATK-UG 341 11 0 0

Stampy/SAMtools 340 2 3 0

50 bp interval padding

BWA-MEM/GATK-HC 387 12 5 9

BWA-MEM/GATK-UG 390 4 0 0

BWA-MEM/SAMtools 386 2 4 0

Bowtie2/GATK-HC 336 3 5 7

Bowtie2/GATK-UG 367 44 0 0

Bowtie2/SAMtools 376 13 4 0

Stampy/GATK-HC 387 12 5 8

Stampy/GATK-UG 389 14 0 0

Stampy/SAMtools 386 2 4 0

100 bp interval padding

BWA-MEM/GATK-HC 387 11 5 7

BWA-MEM/GATK-UG 390 5 0 0

BWA-MEM/SAMtools 387 2 4 0

Bowtie2/GATK-HC 336 3 5 7

Bowtie2/GATK-UG 369 43 0 0

Bowtie2/SAMtools 377 14 4 0

Stampy/GATK-HC 387 11 5 9

Stampy/GATK-UG 388 13 0 0

Stampy/SAMtools 386 3 4 0

BWA enrichment 341 3 3 0
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100  bp interval padding (MCC = 0.603) exhibited increased performance compared 
to null interval padding (MCC = −0.0369, p value = 0.019) (Fig. 3d). Detailed analyses 
of MCC variance for alignment, variant calling and padding methods are shown in 
Additional file 7.

Detection of actionable variants

The top tier performing pipelines were selected based on the corresponding MCC value 
and compared for their concordance for SNV calls. As shown in Fig. 4, 99.13% (340/343) 
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One-way ANOVA, p = 0.00416
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0.019

Kruskal-Wallis, p = 0.01171
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Fig. 3  Boxplots illustrating the Matthews correlation coefficient values by alignment, variant calling or 
padding method. a Entity of variants. b exonic SNVs. c exonic indels. d intronic SNVs. e intronic indels. Each 
dot represents one observation and horizontal bold lines denote median MCC values. Boxes extend from the 
25th to the 75th percentile of each group’s distribution of values. Vertical extending lines (whiskers) denote 
the upper and lower adjacent values. Statistical analyses were performed using the non-parametric Kruskal–
Wallis or one-way ANOVA tests. All box plots of MCC values, including not statistically significant correlations, 
are shown in Additional file 7. GATK Genome Analysis ToolKit, HC HaplotypeCaller, UG UnifiedGenotyper
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and 88.89% (48/54) of true positive exonic and intronic SNVs were called by all top-per-
forming pipelines. Seven out of fourteen samples carried PVs in established breast can-
cer (BC) susceptibility genes. Among these, three patients carried splice-site PVs in the 
high penetrance susceptibility gene PALB2 [c.1685-2A > G and c.3350 + 4A > G]. These, 
were only detected upon inclusion of interval padding (50 or 100  bp). Likewise, the 
BWA Enrichment application failed to detect these PVs. Hence, it appears that null pad-
ding and analysis with the BWA Enrichment application (Illumina), result in low detec-
tion rates of spliceogenic PVs. Three additional samples carried frameshift PVs in the 
BRCA1 [c.1700dup, p.(Asn567fs)], BRCA2 [c.3530_3533del, p.(Asp1177fs)] and PALB2 
[c.487_488del, p.(Val163fs)] genes, respectively. These frameshift PVs were detected by 
all pipeline combinations except those based on GATK-UG calling, irrespective of inter-
val padding. In addition, one patient carried a missense TP53 [c.584 T > C, p.(Ile195Thr)] 
PV. Although all pipeline combinations achieved the detection of the PV, this call was 
filtered out, subsequent to the variant allele frequency (VAF) threshold (≥ 30%). Only 
BWA-MEM/GATK-UG with null padding (VAF = 31.405%), BWA-MEM/GATK-UG 
with 50  bp padding (VAF = 30.579%) (Fig.  4) and Stampy/GATK-UG with 50  bp pad-
ding (VAF = 30.204%) pipelines, achieved to detect the missense PV with adequate VAF. 
Three more patients, carried missense variants of uncertain clinical significance (VUSs) 
(Fig. 4). Of these, two carried VUSs in the ATM [c.8734A > G, p.(Arg2912Gly)] and one 
in the BRIP1 [c.797C > T, p.(Thr266Met)] genes. All pipeline combinations detected both 
variants. The third patient carried an intronic VUS in the ATM gene [c.2838 + 10G > A]. 
This variant was detected only upon inclusion of interval padding. Likewise, the BWA 
Enrichment application failed to detect this intronic VUS.

False positive calls

Bowtie2/GATK-UG analysis demonstrated the highest overall false positive rate (FPR) 
irrespective of interval padding (FPR = 59.16%) (Fig.  2a–c). This emerged due to fre-
quent false positive SNV calls in exonic (FPR = 68.52%, Fig.  2i) and intronic regions 
(FPR = 62.5%, Fig.  2ii). Recurrent false positive intronic indels were detected in all 
GATK-HC pipelines (FPR = 52.22%, Fig.  2iv). Statistical analysis (Kruskal–Wallis test) 
demonstrated that variant calling, affects the rates of false positive intronic SNV calls in 
a statistically significant manner (Additional file 8). In detail, false positive intronic SNVs 
are not detected with GATK-HC (FPR = 0) compared to GATK-UG (FPR = 26.25%, 
p value = 0.011) and BWA Enrichment (FPR = 12.5%, p value = 0.046). However, in 
regards of intronic indels, GATK-HC exhibited an increased FPR (FPR = 52.22%, p 
value = 0.00158) compared to GATK-UG, SAMtools and BWA Enrichment (Fig.  2iv). 
Statistically significant FPR variances are shown in Additional file  8. At this point we 
need to note that a large proportion of false positive calls were detected in the PMS2_
exon15, PMS2_exon7, MSH2_exon5, MSH6_exon1, STK11_exon3, STK11_exon9, 
PTEN_exon4, PTEN_exon3, NF1_exon1 and NF1_exon5 regions.

Discussion
In this study we carried out a comprehensive comparison of the performance of short-
read sequence alignment (BWA-MEM, Bowtie2, Stampy) and variant calling algorithms 
(GATK-HC, GATK-UG, SAMtools), in combination with interval padding length (null, 
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50  bp and 100  bp), for the analysis of targeted NGS data. Using targeted short-read 
data of 14 samples from a single NGS panel study of BC patients, we evaluated differ-
ent pipelines based on several criteria, including mapping efficiency, depth of coverage, 
variant calling performance, detection of actionable variants and false positive rates. 
These results provide valuable information about the performance of the selected tools 
towards the molecular diagnosis of BC susceptibility, as well as insights for the selec-
tion of the most accurate variant calling pipeline, towards targeted-panel and exome 
sequencing data analysis.

Data pre-processing and variant discovery were performed according to EuroGentest 
and European Society of Human Genetics guidelines for the evaluation and validation of 
NGS applications, for the diagnosis of genetic disorders [24]. Although it was suggested 
that removal of duplicates has a minimal effect on variant calling accuracies [25], there 
exists a well-established recognition that removing duplicate reads cannot decrease the 
accuracy of variant calling. Hence, duplicates’ removal is regularly implemented, to limit 
any potential bias towards variant calling [20]. It is also well described that read trim-
ming [26], indel realignment and base recalibration, increase the accuracy of variant 
calling [20, 22, 27]. Therefore, we implemented these steps as standard practice.

At first, we investigated mapping efficiencies for the BWA-MEM, Bowtie2 and Stampy 
aligners. Although, BWA-MEM and Bowtie2 demonstrated highly comparable mapping 
efficiencies, implementation of BWA-MEM mapping possessed the highest mapping 
efficiency. Our results agree with studies reporting that BWA-MEM possessed a lower 
number of misaligned reads compared to Bowtie2 [6, 9, 28]. Opposed to results reported 
by others [29], Stampy demonstrated the lowest mapping efficiency with over than 5% of 
unmapped reads. In addition, similar to a study by Cornish and Guda [29], despite the 
comparably higher mapping efficiency demonstrated by BWA-MEM, Bowtie2 achieved 
higher on average DP compared to BWA-MEM. Our results, confirm that tools which 
utilize similar algorithms may achieve similar results to each other [13, 18], since both 
the BWT-based algorithms (BWA-MEM, Bowtie2) achieved similar mapping efficien-
cies and outperformed Stampy (hash-based algorithm). However, we need to note that 
the difference in mapping efficiencies observed between the three alignment algorithms 
is relatively small. Hence, the read depth alone is unlikely to be a factor in the variant 
calling accuracy.

Herein, we present that the alignment method affects the total variant and exonic 
SNV calling performance (p value < 0.05) with Bowtie2 exhibiting reduced performance 
compared to BWA-MEM and Stampy. The top performing tier pipelines based on our 
comparisons are BWA-MEM/SAMtools with 100 bp padding, followed by BWA-MEM/
SAMtools and Stampy/SAMtools pipelines with 50 bp padding, Stampy/SAMtools with 
100  bp padding and BWA-MEM/GATK-UG with 50  bp padding. Likewise, Stampy/
SAMtools with 50 bp padding followed by BWA-MEM/GATK-UG with zero and 50 bp 
padding, BWA-MEM/SAMtools with 100 bp padding and BWA Enrichment application, 
were the top tier exonic SNV calling pipeline combinations. Our results, partly agree 
with previous data [3, 4], supporting the finding that BWA-MEM/SAMtools pipeline 
showed the best performance for SNP calls. In contrast to what we present, Whang et al. 
[3] showed that the variant caller has more influence than read aligner on SNP calling, 
whereas Kumaran et al. [4] did not observe any significant changes in the top performing 



Page 13 of 21Zanti et al. BMC Bioinformatics          (2021) 22:218 	

SNP calling pipelines. It is noteworthy, that other studies [6, 9] demonstrated that BWA-
MEM consistently performed better than Bowtie2. Even so, precision and recall met-
rics varied greatly depending on the variant caller used, with GATK-UG being the best 
variant caller (for SNVs) irrespective of the alignment method used [6, 29]. This was also 
observed in our study, where BWA-MEM in combination with GATK-UG with null pad-
ding and 50 bp interval padding, detected all actionable exonic SNVs and accomplished 
high SNV calling performance. In agreement with this, other studies have shown that 
GATK-UG is better in calling coding SNVs compared to GATK-HC [30, 31] and SAM-
tools [8]. However, other studies demonstrated that GATK-HC [22], or SAMtools pos-
sess higher variant calling efficiencies compared to GATK-UG [9].

The precise detection of indels and intronic variants is more challenging since there 
are limited guidelines. It is interesting that in our hands, irrespective of interval padding 
and alignment algorithm, all GATK-UG based pipelines failed to detect indels—includ-
ing truncating PVs—, compared to GATK-HC, SAMtools and BWA Enrichment. These 
results match the current knowledge that GATK-HC and SAMtools have a superior 
ability of calling indels, compared to GATK-UG [8, 11, 30, 32]. In addition, studies have 
shown that GATK-HC outperforms SAMtools with regards to indel calling [3, 4, 29, 32, 
33], a result which agrees with our observations, since SAMtools based pipelines, failed 
to detect 50% of the intronic indels. The algorithms underlying HaplotypeCaller, SAM-
tools and UnifiedGenotyper also support this observation, since local de novo assem-
bly methods used by HaplotypeCaller are more efficient around indel regions, compared 
to Bayesian calling methods [10]. Despite the higher indel recall rates demonstrated by 
GATK-HC, precision remained at low levels due to a high number of false positive indel 
calls. Hence, SAMtools demonstrated higher intronic indel calling efficiencies com-
pared to GATK-HC and GATK-UG (p value < 0.05). Nevertheless, there are still reports 
supporting that indel calling efficiencies are better for the GATK-UG than GATK-HC 
[6, 10, 30, 31] or SAMtools [6, 10, 34]. In addition, we highlight that null interval pad-
ding and BWA Enrichment analysis, result in low intronic variant calling efficiencies 
and decreased detection rates of actionable PVs, including spliceogenic SNVs, since as 
expected interval padding highly affects variant calling in exon flanking regions. It is 
noted that while the GATK suite recommends interval padding in its forum, a portion of 
variant calling algorithms do not include options on this parameter and even if included, 
those are not required arguments. Thus, several users applying tools with nearly default 
parameters, may not be aware of the importance of interval padding for the analysis of 
their sequencing data. Hence, we are pointing out the significance of interval padding 
and suggest its adjustment to a required rather than an optional parameter.

While the sensitivity of each pipeline needs to remain at high levels, there is a great 
need to reduce the number of false positive variant calls. Bowtie2 in combination with 
GATK-UG calling, demonstrated overall, the highest false positive rate, irrespective of 
interval padding and variant type. This is due to the fact that it exhibited the highest 
false positive SNV calling rate. In addition to this, there is evidence that GATK-HC pro-
duces a large number of novel indels [30, 31]. Arguably, this corresponds to its high false 
positive indel calling rate compared to GATK-UG and SAMtools [30, 31]. We indeed 
noticed that GATK-HC exhibited a higher false positive indel calling rate within intronic 
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regions, when interval padding (50 bp or 100 bp) was included in the pipeline. It is fre-
quently observed that false positive calls are annotated as novel PVs [33] and located 
in genes being associated with the disease of interest. These calls usually appear when 
pseudogenes interfere with the variant calling process. In this report, the vast majority of 
false positive calls occured in the PTEN, PMS2 and NF1 genes which are known to bear 
pseudogenes that potentially affect the downstream analysis [35, 36]. We thus suggest 
that the validation of PVs using Sanger Sequencing is an important and decisive step.

The Genome Analysis Toolkit has been widely accepted and is regarded as the “Gold 
Standard”, especially for germline Illumina sequencing data [37]. It is constantly evolving 
with a diversity of performance optimization parameters [34]. Although a large num-
ber of studies pointed out that its variant callers present the best performance [8, 19, 
20, 22, 37, 38], there is evidence that other variant calling algorithms such as CASAVA 
[39] and Scalpel [40], may outperform GATK when calling SNVs and indels. The GATK 
team mentions that GATK-HC and GATK-UG present an equal power of calling SNVs, 
however GATK-HC has a superior ability of calling indels (https://​gatk.​broad​insti​tute.​
org/). So as of GATK version 3.3, they recommend using GATK-HC in all cases, with no 
exceptions [41].

As discussed, seven out of fourteen samples carried PVs in established BC suscepti-
bility genes. Among these, two splice site variants in three samples, were only detected 
upon inclusion of interval padding. Likewise, using the BWA Enrichment algorithm 
we failed to detect these PVs. Three additional samples carried frameshift PVs in the 
BRCA1, BRCA2 and PALB2 genes, which were detected by all pipeline combinations 
except those based on GATK-UG calling, irrespective of interval padding. In addition, 
one patient carried a missense TP53 PV. Although all pipeline combinations achieved 
to detect the missense PV, this call was filtered out, subsequent to the VAF threshold 
except for three GATK-UG based pipeline combinations that managed to detect it with 
adequate VAF. However, we cannot ignore that this observation may be attributable to 
a possibility that this missense PV could be a true mosaic event with a low VAF (< 30%) 
and not an argument over which variant calling algorithms perform better [42]. Hence, 
we estimate that a large proportion of PVs will be missed when using pipelines with low 
precision and recall rates. As shown, these low detection rates can have direct clinical 
impact on patient management, since individuals carrying PVs can benefit from risk 
management strategies including closer surveillance at an earlier age, prophylactic sur-
gery and chemoprevention, as well as more personalized targeted therapies.

Even though all twenty-eight pipeline combinations converge on a relatively large pro-
portion of variants detected, there still exists a significant degree of variability, with near-
default parameters. This discordance is a consequence of different alignment and variant 
calling methods, as well as the use of different alignment and variant calling parame-
ters. It is important to note that the performance of the above-mentioned tools is by 
no means constant since they are continuing to improve over time, whereas algorithms 
which are only commercially available (such as NovoAlign [18]) were not assessed dur-
ing this work. In addition, our findings focus only on germline targeted sequencing data.

We finally support the necessity of improving existing tools or developing new algo-
rithms to achieve more reliable and more consistent calling results. Although our find-
ings should be validated using a larger dataset, as well as explored further using different 

https://gatk.broadinstitute.org/
https://gatk.broadinstitute.org/
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NGS panels, the outcome of our study has important implications for the diagnosis of 
BC susceptibility through panel testing in diagnostic molecular genetic testing labo-
ratories, where the high quality of the offered clinical genetic tests is of paramount 
importance.

Conclusions
We recommend the inclusion of interval padding and alignment with BWA-MEM for 
the accurate detection of intronic variants including spliceogenic PVs associated with 
the disease of interest. We also demonstrate that using nearly default parameters, the 
BWA Enrichment® failed to detect all the spliceogenic PVs and a missense PV in the 
TP53 gene. We additionally suggest that GATK-HC and SAMtools should be used in 
combination for the accurate detection of indels, since GATK-HC demonstrates high 
recall rates, while SAMtools demonstrates high precision rates. Moreover, GATK-UG is 
suggested for the efficient detection of SNV calls. Finally, as precision medicine advances 
rapidly and NGS technologies are being widely integrated as a routine diagnostic tool, 
we highlight the necessity of accurate variant calling and bioinformatics expertise.

Methods
Sample selection

Results for the validation experiments described in this study were obtained from a tar-
geted NGS-panel study of BC patients. Each study participant signed an informed con-
sent form and agreed to undergo genetic testing. All study participants were carriers of 
known PVs or VUSs, which were identified previously by Sanger sequencing.

Library preparation and sequencing

Library preparation was performed on genomic DNA samples using a panel of 94 cancer 
susceptibility genes (Illumina TruSight Cancer Sequencing panel—#FC-121-0202). The 
panel contains oligos targeting and enriching more than 1700 exons including coding 
regions and noncoding exon-flanking regions (~ 50 bp) spanning 94 cancer susceptibil-
ity genes (Additional file 1) [43]. The TruSight Rapid Capture kit was used for the library 
preparation according to the manufacturer’s protocol (Illumina, #FC-140-1106). Paired-
end sequencing was performed on the NextSeq 500 Sequencing Platform (Illumina) 
using a High-Output v2.5 kit. We carried out two independent runs of 2 × 75 cycles and 
2 × 150 cycles, aiming to examine the effect of read depth on subsequent variant calls.

Data processing

In order to comply with international guidelines, data pre-processing and variant discov-
ery were performed according to EuroGentest and European Society of Human Genetics 
recommendations for the evaluation and validation of NGS applications for the diagno-
sis of genetic disorders (Fig. 5, Additional file 2) [24].

Prior to mapping, adapter and low-quality trimming was performed on the FASTQ 
files, using the Cutadapt tool (v1.9) [44]. According to the Broad Institute recommen-
dations, sequence reads were aligned to the hg19 reference human genome assem-
bly (GRCh37, including decoy contigs) using the BWA-MEM algorithm (v0.7.17) 
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[13], Bowtie2 (v2.3.5.1) [15] and Stampy sequence alignment algorithms (v1.0.32) 
[14]. Following mapping, SAM files were sorted by coordinate using the Picard 
(v2.20.3) (https://​broad​insti​tute.​github.​io/​picard/) SortSam tool. Duplicates were 
detected and removed using the Picard MarkDuplicates tool and read groups were 
added using the Picard AddOrReplaceReadGroups tool. Local realignment around 
indels was performed using the GATK (v3.6-0) (https://​gatk.​broad​insti​tute.​org/​hc/​
en-​us) IndelRealigner tool and bases were recalibrated according to the best prac-
tice guidelines (GATK BaseRecalibrator). Depth of coverage was calculated using the 
GATK DepthOfCoverage tool. An interval file with the coordinates of the genomic 
regions targeted by the panel was downloaded from Illumina’s repository (https://​
suppo​rt.​illum​ina.​com/​downl​oads/​nexte​ra-​flex-​for-​enric​hment-​enric​hment-​manif​
est-​files.​html) and used for variant calling. The interval file was used as such (null 
interval padding), or extended with 50  bp or 100  bp padding. Variant calling was 
performed using the GATK-UG, GATK-HC and SAMtools (v1.9) (http://​samto​ols.​

a

d

e

b c

Fig. 5  Data pre-processing, sequence alignment, post-alignment processing, variant discovery and 
validation workflow. Prior to sequence alignment, adapter and low-quality trimming were applied on the 
FASTQ files using the Cutadapt tool. Fastq files were then aligned to the hg19 reference human genome 
assembly (GRCh37) using the Burrows Wheeler Aligner (BWA)-Maximal Exact Match (MEM), Bowtie2 and 
Stampy sequence alignment algorithms. Following sequence alignment, sam files were sorted by coordinate 
using Picard SortSam tool. Duplicates were marked and removed using Picard MarkDuplicates tool and read 
groups were added using Picard AddOrReplaceReadGroups. Local realignment around indels (insertions/
deletions) was performed using the Genome Analysis ToolKit (GATK) IndelRealigner tool and base quality 
score recalibration was performed using the GATK BaseRecalibrator tool. The GATK-UnifiedGenotyper, 
GATK-HaplotypeCaller and SAMtools mpileup/call algorithms were used for variant calling. Genetic variants 
were functionally annotated using the ANNOVAR tool. The workflow was repeated three times using the 
TruSight Cancer genomic interval file, with null, 50 bp and 100 bp interval padding. Data analysis was also 
performed using the Illumina’s BWA Enrichment application (not shown in the figure). BC breast cancer, CDS 
coding sequence, DP depth of coverage, GATK Genome Analysis ToolKit, Indel insertions/deletions, VAF variant 
allele frequency, VUS variant of uncertain clinical significance

https://broadinstitute.github.io/picard/
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us
https://support.illumina.com/downloads/nextera-flex-for-enrichment-enrichment-manifest-files.html
https://support.illumina.com/downloads/nextera-flex-for-enrichment-enrichment-manifest-files.html
https://support.illumina.com/downloads/nextera-flex-for-enrichment-enrichment-manifest-files.html
http://samtools.github.io/bcftools/bcftools.html
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github.​io/​bcfto​ols/​bcfto​ols.​html) mpileup and call tools. Alignment and variant call-
ing were also performed using the BWA Enrichment (v2.1.2) application of Illumina, 
Inc. (https://​bases​pace.​illum​ina.​com/​apps/​47977​93, last accessed 27/01/2020), which 
includes BWA mapping and GATK variant calling. Adapter trimming was selected as 
an advanced option. Since 50 bp or 100 bp interval padding was not an option, 150 bp 
interval padding was included in the enrichment analysis.

Genetic variants were functionally annotated using ANNOVAR [45]. For our 
intended clinical validation purposes, variant calling assessment was only per-
formed for established and clinically actionable BC predisposition genes (BRCA1, 
BRCA2, PALB2, RAD51D, ATM, CHEK2, PTEN, TP53) and other cancer predispo-
sition genes (CDH1, BRIP1, CDKN2A, MSH2, MSH6, NBN, NF1, PMS2, RAD51C, 
STK11). Downstream analyses included variant filtration based on position (coding 
sequence ± 10 bp flanking regions), DP ≥ 30X and VAF ≥ 30%. Possible mosaic events 
(VAF < 30%) were excluded from the analysis. Twenty-eight variant calling pipeline 
combinations were compared, including combinations of sequence alignment, variant 
calling algorithms and interval padding lengths, along with Illumina’s BWA Enrich-
ment application (Fig.  5). Detailed commands and parameters used are supplied in 
Additional file 9.

Pipeline performance

For the pipeline performance evaluation, variants were categorized in four groups; 
exonic SNVs, exonic indels, intronic SNVs (± 1– ± 10) and intronic indels (± 1- ± 10). 
We verified all variants passing quality control filters by Sanger Sequencing. In the 
sequel, we defined true positive (TP), false positive (FP), true negative (TN) and false 
negative (FN) variants. True Positives are variant sites confirmed by Sanger Sequenc-
ing. True Negatives are sites correctly called as reference (sites were considered as true 
negatives if variants miscalled by other pipelines were not detected by the pipeline under 
investigation). False positives are reference sites miscalled as variants (not confirmed by 
Sanger Sequencing) and false negatives are variant sites, miscalled as reference.

Pipelines were ranked in the receiver operating characteristic (ROC) space. False posi-
tive and true positive rates (FPR and TPR) were calculated for the entity of variant calls 
and plotted on the ROC space. In the ROC space, each point corresponds to an instance 
of a confusion matrix (the 2 × 2 table that reports the number of FP, FN, TP and TN 
calls). The pipelines were ranked based on the perpendicular distance (d) of each point 
from the diagonal—“Random Guess” line. To further assess the pipeline’s performance, 
confusion matrices were analysed using the MCC, p, r and F1 metrics [46], which were 
calculated as shown below:

http://samtools.github.io/bcftools/bcftools.html
https://basespace.illumina.com/apps/4797793


Page 18 of 21Zanti et al. BMC Bioinformatics          (2021) 22:218 

The d, MCC, p, r and F1 values were used to perform hierarchical clustering analysis 
based on the Lance–Williams agglomerative hierarchical clustering algorithm, which at 
each stage recomputes dissimilarities between clusters. The variant calling concordance 
of the top tier pipelines was analysed using Venn diagrams (http://​bioin​forma​tics.​psb.​
ugent.​be/​webto​ols/​Venn/).

It is worth noting that in contrast to SNVs, the genomic position of indels detected 
using NGS data analysis, is not always defined by a single, unambiguous coordinate [47]. 
In detail, the same insertion after position “i” (position in the gold standard data -Sanger 
Sequencing), can be also annotated as an insertion after positions i + 1 or i + 2 etc. These 
annotations have matching biological meaning and an identical position when validated 
by Sanger Sequencing. Thus, a clear NGS annotation of these variants should include 
all the alternative indel positions [47]. Consequently, although when comparing indels 
called by different algorithms, we treat them as TP if they are within the range of i ± 5 
positions [32].

Statistical analysis

The R (v3.3.2) (https://​www.r-​proje​ct.​org/) statistical computing language was used for 
the statistical analyses presented in this manuscript. The Shapiro–Wilk’s and Levene’s 
tests were used to test normality and equality of variances for variables calculated for 
three or more groups. The one-way ANOVA parametric test was used to compare the 
means of homogeneous, normally distributed and independent numerical variables. 
The non-parametric Kruskal–Wallis test was used to compare numerical variables of 
three or more groups when one-way ANOVA assumptions (homogeneity and normality 
of variances) were not met. Post-hoc multiple comparisons were performed using the 
Bonferroni method [48]. A p value of less than 0.05 was considered to be statistically 
significant.

Abbreviations
BC: Breast cancer; BWA: Burrows–Wheeler Aligner; BWT: Burrows–Wheeler transform; CDS: Coding sequence; d: Distance; 
DP: Depth of coverage; FN: False negative; FP: False positive; FPR: False positive rate; GATK: Genome analysis ToolKit; HC: 
HaplotypeCaller; indel: Insertion/deletion; MCC: Matthews correlation coefficient; MEM: Maximal Exact Match; NGS: Next-
generation sequencing; p: Precision; PV: Pathogenic variant; r: Recall; ROC: Receiver operating characteristic; SNV: Single 
nucleotide variant; TN: True negative; TP: True positive; TPR: True positive rate; UG: UnifiedGenotyper; VAF: Variant allele 
frequency; VUS: Variant of uncertain clinical significance.

Matthews CorrelationCoefficient = MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Precision = p =
TP

TP + FP

Recall = r =
TP

TP + FN

F1-score = 2×
r × p

r + p

http://bioinformatics.psb.ugent.be/webtools/Venn/
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https://www.r-project.org/
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