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Abstract 

Background:  Motivated by the size and availability of cell line drug sensitivity data, 
researchers have been developing machine learning (ML) models for predicting drug 
response to advance cancer treatment. As drug sensitivity studies continue generating 
drug response data, a common question is whether the generalization performance of 
existing prediction models can be further improved with more training data.

Methods:  We utilize empirical learning curves for evaluating and comparing the data 
scaling properties of two neural networks (NNs) and two gradient boosting decision 
tree (GBDT) models trained on four cell line drug screening datasets. The learning 
curves are accurately fitted to a power law model, providing a framework for assessing 
the data scaling behavior of these models.

Results:  The curves demonstrate that no single model dominates in terms of predic-
tion performance across all datasets and training sizes, thus suggesting that the actual 
shape of these curves depends on the unique pair of an ML model and a dataset. The 
multi-input NN (mNN), in which gene expressions of cancer cells and molecular drug 
descriptors are input into separate subnetworks, outperforms a single-input NN (sNN), 
where the cell and drug features are concatenated for the input layer. In contrast, a 
GBDT with hyperparameter tuning exhibits superior performance as compared with 
both NNs at the lower range of training set sizes for two of the tested datasets, whereas 
the mNN consistently performs better at the higher range of training sizes. Moreover, 
the trajectory of the curves suggests that increasing the sample size is expected to 
further improve prediction scores of both NNs. These observations demonstrate the 
benefit of using learning curves to evaluate prediction models, providing a broader 
perspective on the overall data scaling characteristics.

Conclusions:  A fitted power law learning curve provides a forward-looking metric for 
analyzing prediction performance and can serve as a co-design tool to guide experi-
mental biologists and computational scientists in the design of future experiments in 
prospective research studies.
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Background
Human cancer cell lines remain a primary cancer-mimicking environment in a labora-
tory setting for understanding the molecular biology of this complex disease [1–3]. In 
the search for anticancer treatments, in  vitro drug sensitivity assays serve as a stand-
ard, high-throughput experimental platform for measuring the response of cancer cells 
to drug treatments. The standardized protocols of sensitivity assays, along with rapid 
improvement of technologies for genomic profiling, have led researchers to generate 
large pharmacogenomic drug response datasets for anticancer drug discovery [4–6]. 
Considering the scale and diversity of tumors and compounds in these datasets, machine 
learning (ML) techniques have become a natural fit for analytically predicting the 
response of cell lines to drug treatments. By maneuvering through a landscape of com-
putational approaches and numerical representations of tumors and drugs, research-
ers strive to develop highly predictive ML drug response models [7–9]. Demonstrating 
the accuracy and robustness of prediction models is essential in order to identify their 
potential utility for clinical applications in cancer treatment including precision oncol-
ogy and drug repurposing.

In ML-driven cancer research, a common question is whether existing predictive mod-
els can be further improved with more training data. Given recent advances in artificial 
neural networks (NNs), deep learning (DL) methods have become a favorite approach 
across a variety of scientific disciplines for discovering hidden patterns in large volumes 
of complex data. This trend is also observed in medical applications, including the pre-
diction of drug response in cancer cell lines [10–14]. Regardless of the learning algo-
rithm, supervised learning models are expected to improve generalization performance 
with increasing amounts of high-quality labeled data. Generalization performance refers 
to the aggregated accuracy of model predictions on a set of unseen data samples. Ana-
lytically estimating the learning capacity of models is a challenging task. Alternatively, 
given a dataset and a learning algorithm, the projected improvement of predictions with 
increasing number of training samples can be empirically estimated by using learning 
curves.

A learning curve is a plot of the generalization performance of a supervised learning 
model as a function of training set size (Fig. 1). These curves have been explored as an 
efficient method for modeling the power law relationship, s(m) ∝ amb , between the gen-
eralization score s (such as generalization error or accuracy) and the number of training 
samples m, where a and b are two parameters of the power law model. The power law 
characteristics of learning curves can provide insights into the data scaling behavior of 
drug response prediction models, which otherwise could not be investigated by merely 
analyzing single-value performance measures obtained with the full training set size.

A main bottleneck of utilizing learning curves, however, is often the limited availability 
of sufficient computational resources for performing the analysis. Particularly challeng-
ing is analysis with DL models and large datasets because of the large computational 
cost. While learning curves have been explored in a variety of small-scale applications 
with classical ML [15–18], only a few recent studies have applied DL methods to large 
benchmark datasets in vision and text applications [19–21]. To the best of our knowl-
edge, learning curves of drug response prediction models have not been previously 
explored.
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In this paper, we utilize learning curves to evaluate the data scaling properties of drug 
response prediction models in cancer cell lines. The primary objective of fitting a power 
law expression to raw data is twofold: (1) efficient and accurate estimation of prediction 
performance with a larger, not yet available or computationally prohibitive dataset, and 
(2) fair and systematic comparison of prediction models across various learning algo-
rithms and datasets. To that end, we perform a systematic comparison between classical 
ML and DL models, implemented with large pharmacogenomic drug response datasets. 
To accomplish these objectives, we develop an efficient computational workflow, lever-
aging high-performance computing (HPC) resources to conduct the large-scale analysis. 
We use this workflow for generating learning curve data with gradient boosting decision 
tree (GBDT) models and NNs, where each model is trained on four large drug response 
datasets of cancer cell lines. To assess the data scaling trajectory of each dataset-model 
pair, the power law expression is fitted to the raw learning curve data to generate a learn-
ing curve and uncertainty estimates of the curve. We apply this methodology to analyze 
sixteen dataset-model combinations.

Learning curves
Theoretical [22, 23] and empirical [15, 20, 21] studies demonstrate that learning curves 
of predictive models are characterized by a power law relationship between the training 
set size m and the generalization score s,

where β = (a, b, c) is the set of the power law parameters. The parameters in β deter-
mine the shape of the curve and typically vary for individual combinations of learning 
algorithm, prediction task, and data.

An empirical learning curve often exhibits three primary learning regions: small-data, 
power law, and irreducible error [20]. Figure 1 provides a glimpse into the experimental 
results discussed later. All three learning regions of the power law expression in Eq. (1) 
are distinguishable on the log-log plot in Fig. 1b. Alternatively, the linear scale represen-
tation in Fig. 1a visually obscures these learning trends.

(1)s(m) = amb + c,

Fig. 1  Learning curve plotted on a linear scale in (a) and on a log scale in (b). The vertical axis is the 
generalization score in terms of the mean absolute error of model predictions. Each data point is the 
averaged prediction error, computed on a test set, of a gradient boosting decision tree (GBDT) that was 
trained on a subset of training samples of the GDSC1 dataset
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The small-data region is attributed to the lack of an appropriate amount of training 
samples for learning a sufficiently generalizable model. This region produces models that 
perform as good as, or slightly better than, random (or best) guessing and therefore is 
commonly known as the region of random guess [20, 21]. On a log-log plot, the random 
guessing is characterized primarily by a horizontal flat region, followed by a transition to 
the power law region.

From random guessing, the curve transitions to the power law region described by 
the amb term. In this region, the curve maintains a steady trajectory, as shown by the 
approximately constant slope on the log-log plot in Fig.  1b. The parameter b, ranging 
between 0 < |b| < 1 , is the scaling exponent and determines the steepness of the curve 
in the power law region [16, 20, 24].

As the training size increases, the model starts to exhaust its learning capacity, gradu-
ally approaching a plateau, known as the irreducible asymptotic error [16, 20, 21]. The 
constant term c in Eq. (1) accounts for a smooth transition from the power law region 
into this plateau. When this convergence region becomes apparent in the plot, it implies 
that the model is not expected to significantly improve with more training data, pro-
viding researchers with valuable information for future directions in their attempts to 
improve model predictions.

Learning curves provide intuitive insight into the data scaling behavior of prediction 
performance, as opposed to single-value performance measures obtained with the entire 
set of training samples. The shape of these curves facilitates comparison between ML 
models by illustrating a global trajectory of model improvement. Thus, learning curves 
can be utilized for quantifying the learning capacity of prediction models with increas-
ing amounts of training data.

Methods
This section describes the drug response datasets, learning algorithms, training proce-
dures, and methodology for generating and fitting learning curves.

Drug response datasets

The four datasets used for the experiments are listed in Table 1. The data comes from 
public repositories of drug sensitivity studies: the Genomics of Drug Sensitivity in Can-
cer project, which includes GDSC1 and GDSC2 datasets [4]; the Cancer Therapeutics 
Response Portal (CTRP v2) [5]; and the NCI-60 Human Tumor Cell Lines Screen (NCI-
60) [6].

In drug sensitivity data, the drug response of a cancer cell line to a drug treatment is 
measured by the percentage of viable cells at multiple drug doses. A three-parameter 

Table 1  Datasets used for training ML models and generating learning curves

Dataset Responses Cell Lines Drugs

GDSC1 144,832 634 311

GDSC2 98,032 554 174

CTRP 254,566 812 495

NCI-60 750,000 59 47,541
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Hill–Slope model was used to fit the dose response curve for each cell-drug pair. To 
retain high-quality response data, we removed samples in which the R2 of the dose 
response curve fit was lower than 0.3. The fitted curve was used to calculate the area 
under the curve (AUC) over a dose range of [10−10 M, 10−4M]. The AUC value was then 
normalized by the dose range to take a value between 0 and 1. We note that lower AUC 
values indicate higher growth inhibition (i.e., stronger response to drug treatment). Fig-
ure 2 shows the histograms of the response values.

The NCI-60 dataset originally included more than 3 million samples, where a sample 
refers to a drug response of a cell-drug pair. We randomly selected 750,000 samples from 
the full NCI-60 collection for our analysis. For the GDSC1, GDSC2, and CTRP datasets, 
we collected all the available samples for which we were able to retrieve or calculate fea-
ture representations of cells and drugs.

Representation of cell lines

A variety of genomic representations of cancer cells have been used as input features for 
drug response prediction [25–27]. A number of studies have shown, however, that gene 
expression exhibits a superior predictive power for modeling drug response in cancer 
cells [7, 25, 28]. For our analysis, we used gene expression data generated by the RNA-
Seq technology. The expression data was collected from two public data repositories: 
NCI-60 and Cancer Cell Line Encyclopedia (CCLE). For the cells in the NCI-60 data-
set in Table 1, the RNA-Seq was retrieved from the NCI-60 repository. For the GDSC1, 
GDSC2, and CTRP datasets, the RNA-Seq was retrieved from the NCI-60 and CCLE 
repositories by matching the cell line names across the databases. Drug response sam-
ples for which the cell gene expressions were not available in CCLE or NCI-60 were 
excluded from the datasets.

Fig. 2  Histograms of dose-independent drug response (AUC) values of the four datasets listed in Table 1
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The retrieved RNA-Seq data, provided in FPKM (fragments per kilobase million) 
values, was transformed into TPM (transcripts per kilobase million) values. Instead of 
using expressions of more than 20,000 available genes for modeling drug response, we 
used the expressions of 976 landmark genes as identified by the Library of Integrated 
Network-Based Cellular Signatures (LINCS) project [29]. The LINCS gene set has been 
shown to comprehensively characterize transcriptomic changes under various chemical 
and genetic perturbations [29].

Representation of drugs

Classical ML algorithms such as GBDT ignore the arrangement of features in datasets 
while utilizing the feature values only. Since we want to compare the learning curves 
of classical ML and DL models, we used molecular descriptors as drug representa-
tions in which the ordering of features is not intended to carry meaningful information. 
The descriptors were generated by using the Mordred software package [30]. The full 
descriptor set comprises 1,826 features, including both 2-D and 3-D molecular structure 
descriptors. Since most of the 3-D descriptors resulted in invalid (NaN) values for the 
majority of compounds, we retained only the 2-D descriptors, providing a total of 1,613 
drug features.

Machine learning for drug response prediction

This section first presents the formulation of drug response prediction as a super-
vised learning problem and then describes the learning algorithms and model training 
procedures.

Drug response prediction as a supervised learning task

Consider the following definitions for a supervised learning problem of drug response 
prediction. Given a training set T with M samples, T = {xi, yi}

M
i=1 , xi is a feature vector 

for cell-drug pair i, and yi is the corresponding dose-independent drug response. The 
prediction task is to learn a mapping function f : RC+D → R , where C and D are the 
number of gene expressions and drug descriptors, respectively. Drug response datasets 
comprise a unique set of cell-drug pairs, X = [Xc Xd] = {[xc,i xd,i]}

M
i=1 , where xc,i and 

xd,i are, respectively, the cell and drug feature vectors of the ith pair. The algorithm learns 
the mapping function (i.e., prediction model) by minimizing a regression loss function, 
which in our analysis is the mean squared error of prediction outcomes.

Note that each cancer cell line was screened against multiple drugs and, vice versa, 
each drug was tested on multiple cell lines. Thus, although each cell-drug combination 
is unique in the training set T, the feature vectors of individual cells, xc , and drugs, xd , 
appear multiple times in T. The analysis of how this redundancy in feature space affects 
prediction models and learning curves is beyond the scope of this paper and provides a 
topic for further investigation.

Machine learning models and training procedures

NNs can be designed to enhance learning from a particular feature type of cell or drug 
[11, 31]. In such models, the prediction performance depends on the availability, quality, 
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and diversity of that specific feature type in a training set. In contrast, our primary 
objective is to gain insight into the overall prediction improvement with an increasing 
number of training samples. Thus, we refrained from using architectures that focus on 
learning from specific feature types of cells or drugs.

Two NN architectures and one classical ML algorithm were used for the analysis. The 
two NNs differ primarily in the way the features were fed to the network input, as shown 
in Fig.  3. In the single-input NN (sNN), gene expressions and drug descriptors were 
concatenated to form an input feature vector. In the multi-input NN (mNN), expres-
sion features and descriptors were first encoded by separate subnetworks before being 
concatenated and subsequently propagated to the output. Both models contain approxi-
mately the same number of trainable parameters (sNN: 4.254 million parameters, mNN: 
4.250 million parameters). All fully connected layers, excluding the output layer, were 
followed by batch normalization [32], ReLu activation, and a dropout layer [33]. A batch 
size of 32 and the Adam optimizer [34] were used for model training.

For classical ML, we used the GBDT algorithm, implemented in the LightGBM library 
[35]. We used two versions of this algorithm: (1) dGBDT, a GBDT with default hyperpa-
rameters (HPs), and (2) hGBDT, where we optimized the HPs via a randomized search 
[36]. GBDT is an ensemble of decision trees in which a series of tree learners is opti-
mized via a gradient descent optimization. Every subsequent tree improves inaccurate 
predictions of previous learners, boosting the predictive performance of the final model.

The GBDT and NNs were trained with, respectively, the LightGBM [35] and Keras [37] 
software libraries. The best set of HPs for each combination of a model and dataset was 
determined based on a randomized HP search by training on 80% of the available data 
and validating on the remaining 20%. Note that default HPs, as provided by the Light-
GBM library, were used for training dGBDT.

Fig. 3  Two neural network architectures used in the analysis: a single-input network (sNN, 4.254 million 
trainable parameters) and b multi-input network (mNN, 4.250 million trainable parameters)
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To mitigate overfitting, we used the early stopping functionality, available in both 
LightGBM and Keras. With early stopping, the model training procedure is terminated 
if the prediction performance on a validation set has not improved for a specified num-
ber of training iterations. We set the early stopping parameter to 25 epochs for the NNs 
and 50 boosting rounds for GBDT models. To guarantee convergence of NNs, we used 
a sufficiently large number of 500 epochs to ensure that the early stopping function was 
triggered.

Workflow for generating and fitting learning curves

This section lays out the methodology for generating learning curve data and fitting a 
power law model. A schematic of the workflow is illustrated in Fig. 4.

Data partitioning

A dataset D is randomly shuffled and split into three disjoint sets: training T, validation 
V, and test E. Shuffling D before generating the splits increases the likelihood that the 
three partitions exhibit a similar distribution of drug responses. A total of N = 20 com-
binations, {T ,V ,E}Nn=1 , were generated by shuffling D with different random seeds. Each 
set {T ,V ,E} maintains the same size proportion of (0.8, 0.1, 0.1) as a fraction of the total 
number of samples |D|.

Fig. 4  Workflow for generating learning curve data, LC, for a single split of a dataset. A single dataset split 
includes three sample sets: training T, validation V, and test E 
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For each of the N splits, we form a set of K training subsets, {Tk}
K
k=1

 , of increasing 
sizes mk−1 < mk , where mk is the sample size of Tk . The samples are sequentially pulled 
from T to form each subset Tk , as illustrated in Fig. 4. This process ensures that each 
subset contains all the training samples from the immediately preceding subset such that 
Tk−1 ⊆ Tk . The inclusion of the entire subset Tk−1 in Tk mimics the temporal evolution 
of a research study where new samples are added to an already available dataset. Note 
that shuffling D at the first step of this data partitioning workflow is essential to enable 
the sequential sampling from T while eliminating potential biases associated with the 
original ordering of samples in D.

Generating learning curve data

Once the N data splits and the K training subsets for each split are generated, a total of 
N × K  prediction models are trained. In order to support early stopping, the training is 
terminated if the generalization performance on the validation set V has not improved 
over a predefined number of training iterations. Upon training completion, the model 
predicts the response for each cell-drug pair in the test set E. Note that within a given 
data split n, all K models use the same validation and test sets (V and E) irrespective of 
mk.

The predictions on test set E are aggregated into a single score, snk , by com-
puting the mean absolute error of predictions, where snk is the generalization 
error for a subset of size mk of split n. As a result, the raw learning curve data, 
LCraw = {snk }, k = 1, . . . ,K ; n = 1, . . . ,N  , is produced. The total number of models 
trained for each combination of a dataset and a model depends on the values of N and K. 
For most dataset-model pairs, we trained K = 10 models per split, resulting in a total of 
200 models (200 raw LC error scores).

There is no sequential dependency in terms of model training with different subsets 
and data splits for generating the raw LC data. Thus, the proposed workflow enables the 
trainings to be distributed across multiple processors. The workflow was parallelized on 
appropriate platforms depending on the ML software framework. The NNs were trained 
on the Summit HPC, while the GBDT models were trained on a CPU cluster.

Curve fitting

The raw learning curve data, LCraw , contains N × K  error scores that were obtained for 
N data splits and K training sizes. The power law expression in Eq. (1) primarily accounts 
for error scores that span the power law ( amb term) and plateau (constant c) regions, 
while mostly excludes the region of small-data. Thus, an inadequate choice of data points 
can lead to a bad fit.

As a first step in producing a reliable fit, we visually identified error scores in the 
small-data region and excluded them from LCraw , as shown in Fig. 5a, where mkmin is 
the smallest sample size that was considered for further analysis. The remaining scores 
were considered next for fitting the power law expression, s(m) = amb + c , with 
β = (a, b, c) being the parameters to be estimated. We used the weighted version of the 
least-squares fit to prioritize the contribution of larger subsets (i.e., larger weights, αk , 
were assigned to larger values of mk ) which essentially reduces the effect of small train-
ing subsets that are in close proximity with random guessing. Specifically, each score 
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was assigned a weight that is normalized by the sample size, αk = mk/mK  [18, 38]. The 
parameter estimates β̂ were obtained for each split n by fitting the remaining scores with 
a weighted nonlinear least-squares minimization method as described in [38], produc-
ing N combinations of parameter estimates, {β̂n}Nn=1 , where β̂n are the estimated power 
law parameters for split n. For each n, we used {mk}

K
k=kmin

 to compute a set of power law 
values, sn(mk) = s(mk; β̂n) , based on Eq. 1. The N sets of all the computed power law 
values, y(mk) = {sn(mk)}

N
n=1 , as well as the corresponding median (i.e., the 0.5th quan-

tile) values computed across the N sets, q0.5(mk) � ỹ(mk) = {s̃n(mk)}
K
k=kmin

 , are shown 
as gray and black dots, respectively, in Fig. 5b. In a similar manner of computing ỹ(mk) , 
we computed the 0.1th quantile, q0.1(mk) , and 0.9th quantile, q0.9(mk) . Finally, we fit the 
power law to ỹ(mk) , q0.1(mk) , and q0.9(mk) , which represent, respectively, the error score 
estimates for a given dataset-model combination (black curve), and the corresponding 
lower and upper variability estimates of the fit (shaded region bounded by the blue and 
green curves).

We used the MAEfit and R2
fit as the goodness-of-fit measures. The MAEfit is the mean 

of absolute value of residuals between the values representing the error estimates (black 
dots) and the values representing the fit (black curve), where smaller values of MAEfit 
indicate a closer fit. These measures have been shown as appropriate metrics for evaluat-
ing the quality of the power law fit [17, 18].

Results
A single experiment refers to the workflow of generating LCraw and fitting the power law 
expression in Eq. (1) to ỹ , q0.1 , and q0.9 , for a pair of a dataset and an ML model. Pairing 
all the possible combinations results in a total of sixteen experiments. The prediction 
error scores of models trained with the full training set, ỹK = ỹ(m = mK ) , are listed in 
Table 2. The dGBDT serves as the baseline model in this comparison and is used to cal-
culate the reduction in error score of other models with

where α is the evaluated ML model. All models yield lower ỹK  as compared with dGBDT, 
exhibiting an improvement of 8% up to 42% across the datasets. While these results were 
expected, the observed improvements render dGBDT as an inadequate baseline for drug 
response prediction.

Because of the large difference in performance between dGBDT and the other mod-
els, we analyze the learning curves of dGBDT separately in Fig. 5. Since LightGBM is 
highly parallelizable and allows faster model convergence as compared with NNs, we 
train 1,000 dGBDT models ( N = 20 , K = 50 ) with each of the four datasets, as shown in 
Fig. 5a. Note that the three regions of the learning curve are apparent in each plot.

The small-data region especially stands out because of the large spread of scores on 
the vertical axis. The power law region follows next and can be identified as the linear 
region on the log−log plot. The curve then starts to converge and progresses to the 
range of irreducible error. We visually identified the data points within the small-data 
region and excluded them from LCraw . The remaining points were used to obtain the 

(2)�ỹ(α) = 100 ·
ỹK (α)− ỹK (dGBDT )

ỹK (dGBDT )
,
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power law fits for ỹ , q0.1 , and q0.9 , resulting in a substantially close fit with a maximum 
MAEfit of 2.62× 10−5 and a minimum R2

fit of 0.98 across the four datasets, as shown in 
Fig. 5b. In each case, the curve exhibits a trajectory of convergence at higher mk values, 
suggesting that additional data is not expected to substantially reduce the prediction 
error. These plots are the first observation demonstrating that the power law appropri-
ately characterizes the data scaling behavior of drug response prediction models.

To assess the utility of learning curves as a global metric for evaluating prediction 
models, we collected LCraw for the hGBDT, sNN, and mNN models for each dataset. 
To obtain error scores for an appropriate power-law fit, we qualitatively selected, based 
on empirical observations of plots in Fig. 5b, a range of mk that excludes the small-data 
region for each dataset. The remaining data points were used to obtain ỹ , q0.1 and q0.9 , 
and the corresponding power law fits, as shown in Fig. 6. The ỹ values and the corre-
sponding power law fits are shown in Fig. 6, including the fits for q0.1 and q0.9 which are 
represented by the shaded regions. The selected mk range is summarized in Table 3 for 
each dataset, including the goodness-of-fit measure MAEfit for the power law fits.

Table 2  Prediction errors of all dataset-model combinations

ỹK  : prediction error of models trained with the full training set size. �ỹ : improvement in prediction error as compared 
with the dGBDT baseline. ỹ(m = 2|T |) : expected prediction error if the training size is doubled (in parentheses is the 
percentage reduction in the error score as compared with ỹK  ). m(ỹ = 0.9ỹK ) : training size required to reduce the error 
score by 10% (in parentheses is the required increase in sample size as a factor of |T| to achieve the score)

Dataset ML Model mK = |T | ỹK �ỹ ỹ(m = 2|T |) m(ỹ = 0.9ỹK )

GDSC1 dGBDT 115,863 0.0665 N/A 0.0661 (0.68%) N/A

hGBDT 0.0611 8.16% 0.0586 (4.14%) 649,056 (x5.6)

sNN 0.0602 9.46% 0.0560 (7.07%) 312,381 (x2.7)

mNN 0.0574 13.69% 0.0532 (7.33%) 304,224 (x2.6)

GDSC2 dGBDT 78,423 0.0586 N/A 0.0581 (0.93%) N/A

hGBDT 0.0518 11.69% 0.0496 (4.15%) 598,003 (x7.6)

sNN 0.0512 12.70% 0.0478 (6.58%) 232,820 (x3.0)

mNN 0.0509 13.21% 0.0477 (6.26%) 247,656 (x3.2)

CTRP dGBDT 203,650 0.0497 N/A 0.0495 (0.34%) N/A

hGBDT 0.0429 13.63% 0.0407 (5.15%) 789,843 (x3.9)

sNN 0.0384 22.60% 0.0345 (10.17%) 402,308 (x2.0)

mNN 0.0355 28.58% 0.0302 (14.96%) 322,865 (x1.6)

NCI-60 dGBDT 675,000 0.0554 N/A 0.0554 (0.04%) N/A

hGBDT 0.0326 41.16% 0.0313 (3.93%) 18,355,942 (x27.2)

sNN 0.0333 39.95% 0.0311 (6.59%) 2,109,907 (x3.1)

mNN 0.0321 42.17% 0.0305 (4.69%) 5,175,827 (x7.6)

Table 3  Range of training set sizes that was used to fit the power law expression in Eq. (1) and the 
goodness-of-fit measure, MAEfit

The R2fit for all the listed experiments is higher than 0.99

Dataset mk=1 mK = |T | MAEfit(×10
−5)

hGBDT sNN mNN

GDSC1 20,000 115,863 2.0 8.4 3.3

GDSC2 20,000 78,423 0.8 2.1 2.6

CTRP 50,000 203,650 0.4 1.0 1.7

NCI-60 100,000 675,000 0.8 2.1 0.9
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As Fig.  6 indicates, mNN outperforms sNN across the entire range of the explored 
training sizes on every dataset, albeit with the similar number of trainable parameters 
in these NNs. This superiority of mNN can be attributed to the separate encoding of 

Fig. 5  Learning curves generated by using dGBDT for multiple data splits of each of the datasets in Table 1. a 
The entire set of learning curve scores, LCraw , where each data point is the mean absolute error of predictions 
computed on test set E as a function of the training set size mk . A subset of scores in which the sample size is 
above mkmin (dashed black line) was considered for curve fitting. b Three curves were generated to represent 
the fit: q0.1 (blue curve) and q0.9 (green curve) representing the variability of the fit, and ỹ (black curve) 
representing the learning curve fit
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gene expressions and drug descriptors within the individual input subnetworks, enhanc-
ing the overall model learning. Moreover, mNN exhibits the lowest prediction error at 
the full sample size for all datasets. On both GDSC datasets, however, no single model 
dominates across the entire mk range: hGBDT outperforms both NNs at a lower range 
but performs worse than NNs as the training size increases. Another important observa-
tion is the different trajectories of the curves among the datasets. On CTRP, for example, 
the slope of mNN is considerably steeper than that of sNN. Thus, the mNN is expected 
to exhibit a higher rate of improvement on prediction score if the training size further 
increases. On NCI-60, however, while the NNs exhibit a similar curve for the majority of 
the observed range, mNN shows a sign of convergence and begins to transition from the 
power law region to plateau.

The power law fit can be used to address questions such as the following that allow 
forecasting the prediction performance beyond the available training set size. (1) What 
is the expected prediction error if the training size is doubled, namely, ỹ(m = 2|T |) ? (2) 
What is the training set size required to reduce the prediction error by 10%, namely, 
m(ỹ = 0.9ỹK ) ? These questions are addressed by plugging the appropriate values for mk 
or ỹk in Eq. (1) while using the power law parameter estimates for each dataset-model 
pair. The rightmost two columns in Table 2 list the computed values addressing these 
two questions. The observations and results in this section directly demonstrate the ben-
efit of using learning curves to evaluate prediction models, which provide a broader per-
spective on the overall scaling trajectory of these models for drug response prediction, 

Fig. 6  Comparison of learning curves of hGBDT, sNN, and mNN, for each of the four drug response datasets 
in Table 1. For each combination of a drug response dataset and an ML model, the data points and the 
corresponding curve are, respectively, the computed ỹ values and the power law fit. The shaded area 
represents the variability of the fit which is bounded by the 0.1th quantile, q0.1 , and 0.9th quantile, q0.9
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and the utility of the power-law fits for addressing important questions in prospective 
research.

Discussion
The analysis across sixteen experiments (with four datasets and four models) dem-
onstrates that no single model dominates in terms of prediction performance across 
all datasets and training sizes. This result supports the assumption that the actual 
shape of learning curves depends on both the dataset and the model. For example, 
hGBDT exhibits lower error scores for a lower range of training sizes on two datasets, 
as shown in Fig.  6a, b. Alternatively, mNN outperforms all the investigated models 
(dGBDT, hGBDT, sNN) across all datasets for sufficiently large training sizes. Moreo-
ver, both NNs maintain data scaling properties that are characterized by the power 
law region, demonstrating a promising trajectory of further improvement. These 
observations indicate that the power law fits can be used to project the expected error 
score beyond the available training size or, alternatively, calculate the sample size 
required to achieve a specific performance. These uses of learning curves can aid in 
collaboration between experimental biologists and computational scientists to shape 
a global vision of how predictive models can be further improved. This valuable per-
spective can guide the process of new data generation, either through lab experiments 
or synthetically, via simulations or resampling methods.

One should be cautious, however, in generalizing the data scaling characteristics 
when building prediction models with subsets of the investigated datasets or modified 
architectures of sNN or mNN. In this study, we explored a general case where both 
cell and drug features predict the drug response. Alternatively, models that focus on a 
specific cancer type are usually trained by using an appropriate subset of cell lines of a 
much smaller sample size. Moreover, to mitigate overfitting with the reduced sample 
size, researchers may choose to limit the feature space by using the drug features only. 
These dataset and model changes may produce a different layout of learning curves 
and, therefore, different conclusions and downstream actions. We therefore recom-
mend generating learning curves for every dataset-model pair that is being analyzed.

In Fig. 6b, d, we observe a moderate improvement at the full training set size with 
mNN as compared with hGBDT. Similarly, certain studies proposing novel DL meth-
ods for drug response prediction demonstrate moderate improvement as compared 
with classical ML [10, 31, 39]. This is in contrast to vision and text applications where 
DL methods represent the state of the art [40, 41]. The complexity in design and 
training of models such as mNN and hGBDT is higher than that of their respective 
counterparts, sNN and dGBDT. While using simpler models as a demonstration vehi-
cle might be tempting, such models typically result in a poor baseline for objectively 
evaluating the prediction performance of proposed models. Similarly, generating 
learning curves requires significant computational resources for performing a thor-
ough analysis across multiple data splits and training sizes, as demonstrated in this 
study. While often time- and resource-consuming, a rigorous comparison of novel 
models with strong baselines is necessary for producing a significant impact and vis-
ibility within the ML community.
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Contributed to the diversity and complexity of cancer pathologies, no single combi-
nation of a dataset, feature type, and prediction target serves as a universal benchmark 
for modeling drug response. Various learning methodologies and data pre-process-
ing techniques have been explored to enhance the predictive capabilities of mod-
els, including multi-modal learning [11, 26], feature encoding schemes [27, 31], and 
transfer learning [13, 42]. The performance of these models is assessed by comparing 
single-value performance measures such as prediction error or accuracy against base-
line models obtained at the full sample size. The lack of unified benchmarks for the 
drug response problem, alongside a moderate improvement in predictions as com-
pared with baseline models, may cast doubt on the true potential of proposed models. 
In such cases, learning curves can better highlight the potential impact of models by 
depicting the improvement of predictions with increasing sample size. For example, 
assume that we analyze the performance of mNN against sNN using CTRP and NCI-
60 datasets. On NCI-60, the trajectory of the curves suggests that both models are 
expected to converge with more training data (see Fig.  6d), whereas on CTRP, the 
curves portray a more favorable trajectory for mNN to potentially further improve 
the performance with more data (see Fig. 6c). Alternatively, when using the predic-
tion performance at the full training set size, ỹK  , both CTRP and NCI-60 exhibit a 
comparable superiority of mNN as compared with the sNN baseline, failing to dem-
onstrate the additional dimension of comparison provided by the learning curves. 
To the best of our knowledge, this is the first work that proposes the use of learning 
curves for systematic evaluation and comparison of machine learning algorithms in 
drug response problem.

Similarly to learning curve studies from other scientific domains, we demonstrate 
that the power law in Eq. (1) closely models the data scaling for the application of 
drug response prediction. While other works focus primarily on a single family of 
ML models, we have investigated both classical ML and DL models, with a primary 
observation that no single model is superior to other models for all datasets and 
training sizes. Moreover, the extent of the three learning regions (described in Fig. 1) 
significantly differs among the different applications. For example, Mukherjee et  al. 
[16] accurately fit the power law of eight cancer-related classification tasks with DNA 
microarray datasets ranging between 53 and 280 samples. The prediction of drug 
response in cancer cell lines is presumably a more challenging task, since our models 
require thousands of training samples to reveal the learning regions.

While cell lines remain a primary environment for mimicking cancer, alternative 
biological models are being investigated as closer surrogates of human cancer. These 
alternatives include patient-derived xenografts (PDXs), which are cancer implants in 
animals, and patient-derived organoids (PDOs), which are 3-D cultures of cancer cells 
from patients. ML analysis with these emerging cancer environments is essential for 
future development of cancer treatment. At this point, however, drug response data for 
these biological models is scarce compared with the relatively abundant cell line screen-
ing data. The scarcity of PDXs and PDOs data imposes a challenging search for suitable 
methods across the entire space of learning algorithms. Therefore, learning curves can 
serve as a useful co-design tool for comparing predictive performance of learning algo-
rithms and facilitate the design of future experiments in a prospective research setting.
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Conclusions
We demonstrate that learning curves of drug response prediction models using both 
classical ML and DL methods follow a power law expression. The specific trajectory 
of the curves depends on the dataset and the learning algorithm and therefore should 
be obtained empirically. While hGDBT exhibits superior performance at a lower range 
of training sizes, the mNN outperforms all the investigated models as the training size 
increases. These observations demonstrate the benefits of learning curves in mod-
eling the data scaling properties of prediction models, while the proposed methodol-
ogy allows to quantify the expected prediction performance across the entire range of 
training sizes. The power law fit can also be utilized to forecast the behavior of learning 
curves beyond the available training size. The fitted power law curve provides a forward-
looking metric for analyzing prediction performance and can serve as a co-design tool to 
guide experimental biologists and computational scientists in the design of future exper-
iments in prospective research studies.
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