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Introduction
Data generated by next generation sequencing (NGS) are often utilized in the emerg-
ing fields of precision and personalized medicine. This massively parallel processing 
chemistry can identify genetic factors that predict treatment and response to therapies. 

Abstract 

Background:  Clinically effective and safe genotyping relies on correct reference 
sequences, often represented by haplotypes. The 1000 Genomes Project recorded indi‑
vidual genotypes across 26 different populations and, using computerized genotype 
phasing, reported haplotype data. In contrast, we identified long reference sequences 
by analyzing the homozygous genomic regions in this online database, a concept that 
has rarely been reported since next generation sequencing data became available.

Study design and methods:  Phased genotype data for a 80.6 kb region of chromo‑
some 1 was downloaded for all 2,504 unrelated individuals of the 1000 Genome Project 
Phase 3 cohort. The data was centered on the ACKR1 gene and bordered by the CADM3 
and FCER1A genes. Individuals with heterozygosity at a single site or with complete 
homozygosity allowed unambiguous assignment of an ACKR1 haplotype. A computer 
algorithm was developed for extracting these haplotypes from the 1000 Genome 
Project in an automated fashion. A manual analysis validated the data extracted by the 
algorithm.

Results:  We confirmed 902 ACKR1 haplotypes of varying lengths, the longest at 80,584 
nucleotides and shortest at 1,901 nucleotides. The combined length of haplotype 
sequences comprised 19,895,388 nucleotides with a median of 16,014 nucleotides. 
Based on our approach, all haplotypes can be considered experimentally confirmed 
and not affected by the known errors of computerized genotype phasing.

Conclusions:  Tracts of homozygosity can provide definitive reference sequences for 
any gene. They are particularly useful when observed in unrelated individuals of large 
scale sequence databases. As a proof of principle, we explored the 1000 Genomes Pro‑
ject database for ACKR1 gene data and mined long haplotypes. These haplotypes are 
useful for high throughput analysis with next generation sequencing. Our approach is 
scalable, using automated bioinformatics tools, and can be applied to any gene.
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Reference nucleotide sequences are critical for analyzing NGS data, as exemplified by 
routine clinical diagnosis for HLA antigens [1].

Genotype phasing is the process to determine if genetic variants, often single nucleo-
tide variations, called SNVs, belong to 2 separate chromosomes (in trans). If SNVs are 
located on the same chromosome (in cis), they constitute a haplotype or an allele. Gen-
otype phasing has often been inferred using computational methods [2, 3], which are 
prone to certain types of error [4]. These errors are encountered in samples harboring 
novel variants, low frequency or rare variants, and structural variants [5]. Almost all 
of these errors can be precluded by laboratory based methods, such as sequencing the 
genomes of both parents and sibling offspring [6], physical separation of homologous 
chromosomes in diploid cells [7, 8], sequencing in sperm cells [9],  allele specific PCR 
[10], single DNA molecule dilution [11] and single molecule sequencing chemistry [12, 
13]. These laboratory based methods are, however, labor-intensive and time consuming, 
and thus infrequently applied in clinical diagnostics.

The human genome contains many regions that are known as long contiguous 
stretches of homozygosity (LCSH) [14,15]. Their presence in unrelated individuals across 
different populations is attributed to a lower average recombination rate in these regions 
of the human genome [14].

The human atypical chemokine receptor 1 gene (ACKR1, MIM #613,665) [16] encodes 
a multi-pass trans-membrane glycoprotein. It is a receptor for pro-inflammatory 
cytokines [17] and malaria Plasmodium parasites (P. vivax and P. knowlesi) [18]. The 
ACKR1 glycoprotein carries the five antigens of the Duffy blood group system (Fy) [19, 
20]. Recent sequencing studies in the ACKR1 gene have identified approximately 30 
haplotypes, albeit at limited lengths of 2.1 kb [21], 2.5 kb [22], 5.2 kb [23], and 5.6 kb 
[24], respectively. We previously applied these ACKR1 haplotypes to predict the Duffy 
phenotype in Neanderthal samples [21]. Later, high-coverage genome sequences of 
Neanderthals were established [25–27], which confirmed our prediction [21]. A recent 
similar comparative study, involving long genomic segments, identified a 50 kb segment 
in humans, which was inherited from Neanderthals and represented a genetic risk factor 
in SARS-CoV-2 infection [28].

The 1000 Genomes Project (1000GP) provides a comprehensive database of genotypes 
and haplotypes in 2,504 unrelated individuals across 26 populations worldwide [29, 30]. 
As a proof of principle using data from the 1000GP for the ACKR1 gene, we establish a 
list of 902 haplotypes, some more than 80 kb long. Our scalable approach can be applied 
to any gene in any population.

Materials and methods
Algorithm workflow

A Python algorithm was developed (Supplementary Information, File S1) to down-
load and analyze genotype data for 80.6  kb region of chromosome 1 (between posi-
tions NC_000001.11: 159,203,314–159,283,887) flanked between 2 genes, CADM3 and 
FCER1A, and encompassing the ACKR1 gene (Fig. 1) for all 2,504 unrelated individuals 
of the final release 1000GP panel (Phase 3; GRCh38) using Bcftools [31]. The SNV data 
was downloaded from the dbSNP database [32]. Individual sequences with heterozy-
gosity at a single site or with complete homozygosity were automatically extracted as 
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an unambiguous ACKR1 haplotype that can be considered experimentally confirmed, 
which applied a time-proven concept [4]. The algorithm outputs three files: a sequence 
file containing the distinct haplotypes, a meta-data file containing information about the 
population in which the haplotypes are found, and a folder containing graphical repre-
sentations of the population distribution of the distinct haplotypes.

Validation

Phased haplotype data for 80.6  kb region of chromosome 1 (between positions 
NC_000001.11: 159,203,314–159,283,887) was manually downloaded for all 2535 indi-
viduals of the 1000GP panel (Phase 3; GRCh37) from the 1000 Genomes browser. 
After removing 31 related individuals, haplotype data from 2504 unrelated individuals 
was imported into Microsoft Excel. Individuals with heterozygosity at a single site or 
with complete homozygosity in the 1,626 nucleotide-long ACKR1 gene (NG_011626.3; 
NC_000001.11:159,204,875–159,206,500) allowed unambiguous assignment of an 
ACKR1 haplotype. These unambiguous ACKR1 haplotypes were further analyzed indi-
vidually using Excel spreadsheets, and their sequences were extended in both 5’- and 
3’-directions until a heterozygous SNV was encountered. The region between 2 SNVs 
was catalogued as a haplotype and compared with the previous automated results. 
The manual analysis was performed and thus a validation dataset generated before the 
Python algorithm was developed.

Neanderthal genome

The published DNA sequence of the Neanderthal genome (Chagyrskaya, Altai, and 
Vindija 33.19, http://​cdna.​eva.​mpg.​de/​neand​ertal/) [25–27] was analyzed (Integrative 
genomics viewer version 2.3.20) [33] and aligned to the human genome (NCBI Build 

Fig. 1  Schematic representation of chromosome 1 region analyzed. The ACKR1 gene is bordered by the 2 
genes CADM3 in centromeric and FCER1A in telomeric direction at chromosomal position 1q23.2 (a). The 
structure of the ACKR1 gene (b) comprises 2 exons (closed boxes) and include the coding sequence (CDS,  
black) and the 5’- and 3’-untranslated region (UTR, grey). The intron 1 joins the 2 exons (black line). The 
number of SNVs observed in the for the dbSNP (b) and 1000GP databases (c) are shown for the 5’-UTR, CDS, 
intron, CDS and 3’-UTR​

http://cdna.eva.mpg.de/neandertal/
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GRCh38/hg38). We searched for the longest match, if any, with the haplotypes in the 
1000GP.

Results
Using the 1000GP database and a Python algorithm, we extracted and catalogued 
long haplotypes that encompassed the ACKR1 gene and were flanked between 2 SNVs 
(Fig.  1). Among 2,504 individuals included in the 1000GP database, 1,520 individuals 
were homozygous for the 1,626 nucleotide-long ACKR1 gene or heterozygous with only 
1 SNV. The ACKR1 sequences for these individuals were further analyzed both upstream 
and downstream of ACKR1 gene until SNVs were encountered. The extension in both 
directions allowed us to identify long ACKR1 haplotypes that can be considered experi-
mentally verified. The results obtained with our computational approach were validated 
by a manual method, performed in a blinded fashion.

ACKR1 and SNVs

For the ACKR1 gene (Fig. 1), the dbSNP database [32] lists 549 SNVs spread over 1,626 
nucleotides (Fig. 1b). We encountered, however, only 43 SNVs of the ACKR1 gene in the 
1000GP database (Fig. 1c) out of the 549 known SNVs.

ACKR1 haplotypes

We identified 31 distinct haplotypes with ≥ 10 observations (Table  1). They ranged in 
length from 2,383 nucleotides to 17,739 nucleotides. A total of 902 haplotypes were 
observed, ranging in length from 1,901 nucleotides to 80,584 nucleotides, some extend-
ing into the adjacent CADM3 and FCER1A genes (Fig. 2). The combined length of hap-
lotype sequences comprised 19,895,388 nucleotides with a median of 16,014 nucleotides 
(Quartile 1 – Quartile 3: 7,588 – 30,729 nucleotides; Interquartile Range: 23,141 nucleo-
tides). The length of the haplotypes was inversely proportional to the number of obser-
vations (Fig. 3). Most of the common haplotypes (70.13%) were small (< 10 kb; Table 2) 
and ranged in length between 1,901 to 9,927 nucleotides. The most common ACKR1 
allele observed was the Duffy-null allele (FY*02  N.01) followed by FY*A (FY*01) and 
FY*B (FY*02), respectively (Table  3). For each of these 3 common ACKR1 alleles, we 
were able to identify reference sequences longer than 80 kb (Table 3).

ACKR1 alleles in the Neanderthal samples

The 3 Neanderthal samples were GATA box negative (-67 T) and represented the ances-
tral FY*B allele (Table 4). None of the 3 Neanderthal ACKR1 sequences (Chagyrskaya, 
Altai, and Vindija 33.19) fully matched any of the 902 haplotypes. The 2 haplotypes clos-
est to the Neanderthal sequences had 1 mismatch in the GATA box (Table 4).

Discussion
In the current study, we identified 902 experimentally confirmed reference haplotypes 
for the ACKR1 gene, using only publicly available data from the large scale 1000GP study 
database. Our approach is easily scalable. It can be applied to similar databases, includ-
ing the UK10K Consortium [34], the African Genome Variation Project [35] and the 
upcoming All of Us Research Program [36]. For proof of principle, we demonstrated the 
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application using a Python algorithm for one gene. The approach can, however, define 
reference sequences for any segment of the genome, with genes or without.

We showed that reference sequences can be obtained from databases and verified 
without ambiguity at lengths exceeding 80  kb. Such reference sequences can be cata-
logued inexpensively for use in clinical diagnostics. The catalogue comprised the set 
of the longest unique haplotypes that can be distinguished by the gene’s nucleotide 
sequence. In clinical diagnostics with molecular-based assays, common and well docu-
mented (CWD) [37] reference haplotypes are routinely applied, for example in HLA typ-
ing [1]. Exact matching at the haplotype level improves survival following bone marrow 

Table 1  Experimentally confirmed ACKR1 haplotypes with ≥ 10 observations in the 1000GP 
database*

* Besides these haplotypes with ≥ 10 observations, a total of 902 ACKR1 haplotypes were confirmed (see Fig. 2), 871 of which 
had < 10 observations each
† Super-population as defined by the 1000GP [29,2: Table S1)

Haplotype Length 
(nucleotides)

Observations (n) Total

Super-population†

AFR AMR EAS SAS EUR

01 3385 1 39 149 83 28 300

02 3386 1 37 149 76 21 284

03 5168 161 1 0 0 0 162

04 5168 160 1 0 0 0 161

05 2483 107 1 0 0 0 108

06 2483 107 1 0 0 0 108

07 4871 0 6 42 0 1 49

08 4871 0 5 42 0 1 48

09 4376 0 0 36 0 0 36

10 4376 0 0 35 0 0 35

11 6276 27 0 0 0 0 27

12 6276 25 0 0 0 0 25

13 9091 20 1 0 0 0 21

14 17,406 0 4 1 15 1 21

15 14,785 0 4 4 10 2 20

16 2383 0 5 0 3 11 19

17 17,405 19 0 0 0 0 19

18 2383 0 5 0 3 11 19

19 17,739 16 1 0 0 0 17

20 3385 0 2 0 7 7 16

21 2620 0 7 0 0 9 16

22 2620 0 7 0 0 9 16

23 6310 0 0 15 0 0 15

24 6310 0 0 15 0 0 15

25 4869 0 3 10 2 0 15

26 2706 0 1 1 4 8 14

27 2706 0 1 1 4 8 14

28 9092 11 1 0 0 0 12

29 4644 0 2 0 4 5 11

30 4643 11 0 0 0 0 11

31 4644 0 2 0 4 4 10
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Fig. 2  ACKR1 haplotypes observed in the 1000GP. A total of 902 unique haplotypes were observed and 
sorted according to their length (bars). All haplotypes comprise the ACKR1 gene (shaded column), their 
positions in the ACKR1 gene locus (top, see Fig. 1) is indicated. The cumulative number is listed (right). 
Haplotypes of similar lengths are grouped together (for exact lengths see Supplementary Information, Excel 
files S1 and S2)
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Fig. 3  Correlation between length and observations of ACKR1 haplotypes. The length of the ACKR1 
haplotypes (x-axis) observed in the 1000GP was inversely proportional to the number of observations (y-axis)

Table 2  ACKR1 haplotypes and length distribution in the 1000GP database among 1520 individuals

* Among 2,504 individuals included in the 1000GP database, 1,520 individuals (3,040 chromosomes) were homozygous for 
the 1,626 nucleotide-long ACKR1 gene or heterozygous with only 1 SNV

Length range (nucleotides) ACKR1 haplotypes

Observations* (n) Frequency (%)

 < 10,000 2,132 70.13

10,000 – 19,999 468 15.39

20,000 – 29,999 128 4.21

30,000 – 39,999 132 4.34

40,000 – 49,999 34 1.12

50,000 – 59,999 52 1.71

60,000 – 69,999 26 0.86

70,000 – 79,999 16 0.53

 ≥ 80,000 52 1.71

Total 3,040 100

Table 3  Length distribution of the 3 common ACKR1 alleles observed in the 1000GP

* The nucleotides at the 15 SNV positions are shown in 5’ to 3’ orientation (Additional file 5:Table S4)
† Variant positions in the intron and synonymous variants in exons are ignored. Rare Fy(a+w) and Fy(b+w) encoding alleles 
are also ignored (see Additional file 5:Table S4)

ISBT allele Haplotype* Observations† Length range Mean ± standard 
deviation

Median

FY*01 TGC​CGC​GCC​GCG​GGC​ 389 2241—80,576 24,628 ± 22,298 16,874

FY*02 TAC​CGC​GCC​GCG​GGC​ 166 1901—80,576 24,851 ± 23,186 13,779

FY*02 N.01 CAC​CGC​GCC​GCG​GGC​ 344 1977—80,584 18,482 ± 15,755 15,125

Total 899 1901—80,584 22,098 ± 19,903 16,315
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transplantation [38] and reduces alloimmunization in chronically transfused patients 
[39–41]. A limited number of common haplotypes represented the majority in the popu-
lation [42], and identifying haplotypes from databases is an economical way to obtain 
such reference sequences.

Apart from clinical diagnostics, long-range haplotypes are also useful to understand 
the influence of environment on positive selection of genes in human populations [43], 
for association mapping of genes that contribute to disease and other phenotypes [44], 
for correlating the geographical distribution of haplotypes with endemicity of disease 
[45], for identifying evolutionarily conserved elements and regulatory elements [46], and 
for improving the reliability of genotype imputation [47]. Long haplotypes identified by 
using SNV data from high-density oligonucleotide arrays and the International HapMap 
Project [48] have been shown to be population dependent and can provide important 
insights into human evolutionary history [49]. These studies may also identify regions of 
positive selection with important roles in human health and disease [50].

Next generation sequencing is increasingly used for blood group genes [51–78]. In 
contrast to HLA [79], most blood group genes lack well documented long reference 
sequences associated with them [80]. Hence, a comprehensive reference database for 
blood group genes will facilitate blood group genotyping by NGS. The Erythrogene data-
base [59] contains the complete coding region sequence of many different blood group 
alleles obtained from the 1000GP. However, it lacks information for sequence variants in 
the non-coding regions, such as promoter, splice sites and long intronic regions, which 
can also affect the expression of antigens and helps to ascertain the allele and its coding 
sequence [81–84].

Table 4  ACKR1 alleles in the 1000GP and 3 Neanderthal samples

* Nucleotide positions are shown according to the human reference sequence (NG_011626.3) and defined using the first 
nucleotide of the coding sequence (CDS) of the NM_002036.2 isoform as nucleotide position 1. Only variant positions with 
respect to the 2,032 nucleotides of the HAP897 are listed
† ACB = African Caribbeans in Barbados; LWK = Luhya in Webuye, Kenya
‡ ACKR1 reference allele per ISBT [95]

NA, not applicable; Y = T or C

Haplotype Observations Nucleotides position* Length 
(base 
pairs)

Species Population† n c.-
67 T > C

c.21 + 115 T > C c.21 + 235 T > C c.125G > A

NG_011626.3‡ H. sapiens NA NA T T T G 1,626

HAP897 H. sapiens ACB 1 C C T A 2,032

HAP899 H. sapiens LWK 1 C C T A 1,978

Chagyrskaya H. nean-
dertha-
lensis

NA 1 T C T A NA

Altai H. nean-
dertha-
lensis

NA 1 T C T A NA

Vindija H. nean-
dertha-
lensis

NA 1 T C Y A NA
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A large number of haplotypes were more than 50 kb long with some extending at least 
to 80.5 kb in length (Fig. 2). Our observations are consistent with previous reports sug-
gesting that most of the human genome is contained in blocks of a few kb to more than 
100 kb [85, 86]. However, most of the ACKR1 haplotypes in the 1000GP were small and 
concentrated closely around the ACKR1 gene. The number of haplotypes decreased as 
their length increased and extended into the intergenic regions (Fig. 3). This is explained 
because most of the variants in the dbSNP database resides in the intergenic regions 
[87].

Our 2 haplotypes HAP897 and HAP899 (Additional file  4:Table  S3), observed once 
each in African populations, were closest to the 3 Neanderthal samples. Both haplotypes 
carried the GATA box mutation (c.-67C), which all Neanderthal samples lacked (c.-67T). 
Individuals homozygous for the GATA box mutation (c.-67C) do not express the Duffy 
glycoprotein on the red cell surface [81] making them resistant to invasion by the malar-
ial parasite P. vivax [88–90]. This similarity in alleles, discrepant at nucleotide position 
c.-67 only, was consistent with the fact that the GATA box mutation (c.-67C) started to 
spread in Africa only around 30,000  years ago [91], while the 3 Neanderthals Vindija, 
Altai and Chagyrskaya are 50,000, 120,000 and 50,000 years old, respectively [25–27].

In clinical diagnostics for patients, long-range haplotypes harboring novel or rare 
SNVs can only be detected when the haplotype is sequenced at full-length [92]. Using 
Sanger sequencing, we have previously characterized the ERMAP [93], ICAM4 [94], 
and ACKR1 [23] blood group genes at the haplotype level and identified prevalent long-
range reference alleles, a time consuming and low throughput approach. We showed in 
this study how long contiguous stretches of homozygosity (LCSH) can serve to gener-
ate a database of long haplotypes, as defined by full length nucleotide sequences rather 
than the concatenation of known SNVs. Relying on SNV data would miss patients car-
rying novel or rare alleles with possible clinical relevance, which are not identical to the 
reference sequences. Features of the 1000GP allowed us to catalogue these extended 
nucleotide sequences with population specific frequencies. Our approach will enable the 
positive identification of patients carrying these reference sequences.

We plan to extend this approach to all blood group systems recognized by the Inter-
national Society of Blood Transfusion (ISBT) [95]. A tool under development will allow 
researchers the customized online extraction of long haplotypes from databases and 
genes or genomic regions of their choice. Eventually, our approach can be applied to any 
region of a chromosome. For now, the 902 ACKR1 alleles identified through our novel 
approach will be useful as templates for analyzing data from NGS, thus enhancing the 
reliability of clinical diagnostics.

Web Resources

1000 Genomes browser (https://​www.​ncbi.​nlm.​nih.​gov/​varia​tion/​tools/​1000g​enomes/) 
accessed on Aug 05, 2019. ISBT (https://​www.​isbtw​eb.​org/​filea​dmin/​user_​upload/​
Table_​of_​blood_​group_​syste​ms_​v6.0_​6th_​August_​2019.​pdf). Max Planck Institute for 
Evolutionary Anthropology (http://​cdna.​eva.​mpg.​de/​neand​ertal/).

https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
https://www.isbtweb.org/fileadmin/user_upload/Table_of_blood_group_systems_v6.0_6th_August_2019.pdf
https://www.isbtweb.org/fileadmin/user_upload/Table_of_blood_group_systems_v6.0_6th_August_2019.pdf
http://cdna.eva.mpg.de/neandertal/
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