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Background
Searching for genomic variants is a fundamental aspect of medical research, whether 
in the study of Mendelian diseases or of somatic, cancer-related alterations [1]. While 
certain variants result in gene dysfunction and disease [2], others are largely asympto-
matic but give rise to neoantigens relevant to immune escape and therapeutic efficacy or 
treatment [3]. Genome variants are also of interest in microbiology to analyze the differ-
ences between microbial strains [4] and reveal mechanisms underlying phenotypes. In 
this study, we address the problem of finding genomic differences between a matching 
pair of high throughput DNA sequencing (DNA-seq) datasets from the same individual 
(human somatic variation) or from two bacterial strains.

Abstract 

Background:  The detection of genome variants, including point mutations, indels 
and structural variants, is a fundamental and challenging computational problem. We 
address here the problem of variant detection between two deep-sequencing (DNA-
seq) samples, such as two human samples from an individual patient, or two samples 
from distinct bacterial strains. The preferred strategy in such a case is to align each 
sample to a common reference genome, collect all variants and compare these vari-
ants between samples. Such mapping-based protocols have several limitations. DNA 
sequences with large indels, aggregated mutations and structural variants are hard 
to map to the reference. Furthermore, DNA sequences cannot be mapped reliably to 
genomic low complexity regions and repeats.

Results:  We introduce 2-kupl, a k-mer based, mapping-free protocol to detect variants 
between two DNA-seq samples. On simulated and actual data, 2-kupl achieves higher 
accuracy than other mapping-free protocols. Applying 2-kupl to prostate cancer whole 
exome sequencing data, we identify a number of candidate variants in hard-to-map 
regions and propose potential novel recurrent variants in this disease.

Conclusions:  We developed a mapping-free protocol for variant calling between 
matched DNA-seq samples. Our protocol is suitable for variant detection in unmappa-
ble genome regions or in the absence of a reference genome.
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Genomic variants include mutations, indels and structural variants (SV). Mutations 
and indels can alter genes by disrupting the genetic code, while SVs, by pulling distant 
regions together or splitting one region into segments, can create chimeric genes or have 
a broader impact on whole chromosomal regions [5]. Variants are typically detected by 
whole-genome (WGS) or whole-exome (WES) sequencing through comparison with 
reference sequences. Aligners such as BWA [6] are first applied to map reads to the ref-
erence sequences. The variant calling step then detects differences between mapped 
reads and the reference. Popular variant callers include MuTect2 [7], VarScan [8], somat-
icsniper [9] and MuSE [10]. Based on variants observed between two sequence samples 
and a common reference genome, these programs can then infer differences between the 
two samples (e.g., in MuTect2’s somatic mode).

Reference-based variant calling has well-known limitations. Aligners may encounter 
difficulties while handling reads with low mapping qualities [11], originating from repeat 
regions, low complexity regions or complex variants. These reads of low mapping qual-
ity are usually discarded. Furthermore, some species have no reliable reference, which is 
common in microbes [12].

Alternative approaches to variant calling involve mapping-free protocols [13]. These 
methods do not rely on a reference genome and can directly predict variants from the 
raw fastq file. A typical strategy is to use a de Bruijn graph (DBG) [14]. A DBG is con-
structed using k-mers (subsequences of fixed size k) decomposed from the sequence 
reads. The occurrence of k-mers harboring a mutant allele and a wild type allele gener-
ates a bubble structure in the DBG. Variant callers developed based on DBGs include 
DiscoSNP++ [15] and Lancet [16]. DBG-based methods also introduce new issues. 
First, complex genomic variants and repeats may result in complicated graphs that are 
difficult to parse [17]. Second, short contigs may be discarded at the post-processing 
step, where branch pruning may cause many false negatives. Furthermore, sequences 
assembled by k-mers without variants have little contribution if the purpose is detecting 
variants. Only reconstructing the active regions spanning the variants is more efficient 
than considering all k-mers [13]. Although it is possible to extend DBG-based methods 
to SV detection, the lack of sensitivity to local events makes these approaches less suit-
able for finding variants in ambiguous regions, such as repeats [18]. This motivates the 
need for a method to detect variants in arbitrary genome regions directly from DNA-seq 
data.

We present 2-kupl, a k-mer-based bioinformatics pipeline that compares matched 
case and control samples to discover case-specific variants. 2-kupl identifies sequence 
fragments (contigs) specific to the mutant dataset and their wild-type counterpart in 
the control dataset. This operation is done without relying on a reference genome. We 
compare the accuracy and CPU-requirements of 2-kupl with that of other variant call-
ing software using both simulated and real DNA-seq datasets. We analyze the nature of 
novel variants detected by 2-kupl and potential reasons for their absence in conventional 
protocols. We also use 2-kupl to detect recurrent variants in prostate adenocarcinoma 
(PRAD) WES samples from the TCGA project [19]. Finally, we evaluate 2-kupl precision 
in bacterial WGS data. Overall, we demonstrate that 2-kupl is a practical and powerful 
alternative for the discovery of genomic variants in hard-to map regions or species with 
no reliable reference.
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Results
A novel algorithm for detecting variants between two DNAseq samples

We developed 2-kupl to predict variants between pairs of matched DNAseq libraries. 
Input libraries consist of a “case” and a “control” sample such as a pair of tumor and nor-
mal tissues from one patient or a pair of mutant and wild-type bacterial strains. Data can 
be either WGS or WES. 2-kupl extracts case-specific k-mers (cs-kmers) and matching 
control k-mers (ct-kmers) corresponding to a putative mutant and reference sequences 
and merges them into contigs. As 2-kupl begins with a shortlist of cs-kmers, the num-
ber of k-mers considered from unaltered regions and non-specific variants is drastically 
reduced compared with DBG-based methods (see Methods). If a reference genome is 
provided, 2-kupl can also align contigs to the reference and generate genomic coordi-
nates just like with mapping-based methods.

Performance on simulated WES data

We first applied 2-kupl to the detection of somatic mutations in a simulated human 
cancer WES dataset containing a known number of spliked-in mutations and indels. 
We compared 2-kupl with three other software, including two mapping-free methods 
(DiscoSNP++ and Lancet) and the leading mapping-based pipeline GATK-MuTect2. 
Results are summarized in the first column of Table 1. The number of cs-kmers to pro-
cess is reduced by nearly 20% after data cleaning by 2-kupl.

88.6% of cs-kmers were matched to ct-kmer, corresponding to predicted point muta-
tions or indels. We evaluated mutations and indel calls by 2-kupl and concurrent meth-
ods (Table 2). For mutation calling, 2-kupl performed better than the other mapping-free 
methods in terms of F1 score (Table 2). Lancet and GATK achieved better recall than 
2-kupl, but Lancet also introduced more false positives. 2-kupl had a higher recall for 
calling indels than DiscoSNP++ and Lancet but was outperformed by DiscoSNP++ in 
FDR and precision (Table  3). Expectedly, GATK-MuTect2 outperformed all mapping-
free approaches regardless of variant types. DiscoSNP++ did not perform as well as oth-
ers in terms of recall ratio due to the different usage. DiscoSNP++ first pooled together 
two samples and screened case-specific variants afterwards. This procedure contributes 
to eliminate many false positives but also leads to ignoring some low frequency variants 
exclusively present in the case sample. Lancet performed well in terms of recall but at a 
high cost of false positives. As expected, most false positives had few reads containing 

Table 1  Number of k-mers and contigs after applying 2-kupl on two matched libraries

Simulated WES TCGA-ZG-A9ND WES

All k-mers (tumor/normal) 465,718,268/465,610,133 184,233,006/177,517,776

Raw cs-kmers 23599 393525

Cleaned cs-kmers 18439 291350

Matched cs-kmers 16914 240360

All contigs 1245 106426

Mutations 1026 9901

Indels 112 1105

Unmapped 0 58

Low confidence 107 312
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the alternative allele, which is frequent with Lancet. The high recall and high rate of false 
positives produced by Lancet are consistent with the conclusions of Meng and Chen 
[20]. The GATK-MuTect2 pipeline outperformed all mapping-free approaches when 
calling mutations. The use of a reference sequence and the Haplotype Caller algorithm 
gives GATK-MuTect2 a clear advantage. Even though 2-kupl got a relatively lower recall 
than GATK-MuTect2, it had better control of the false positives and got a higher preci-
sion when calling indels (Table 3).

Another advantage of 2-kupl is the short running time (Fig. 1a). 2-kupl took 1.6 h 
to analyze the simulated WES data with default parameters. DiscoSNP++ took 

Table 2  Comparison of four approaches on mutations using simulated WES data

Mutations 2-kupl DiscoSNP++ Lancet GATK-MuTect2

True positive 581 373 604 689

False positive 45 3 126 2

False negative 241 530 218 133

Recall 0.71 0.41 0.73 0.84

FDR 0.07 0.01 0.17 0.003

Precision 0.93 0.99 0.83 0.997

F1 score 0.80 0.58 0.78 0.91

Fig. 1  Running time and performance with different types of variants. a Overall running times of four 
software. The time consumed by each process in four protocols is marked in different colors. b Running 
times of 2-kupl for different numbers of cs-kmers. The line with dots represents the exact running time 
corresponding to certain number of cs-kmers. The solid line is the fitted line, and the shaded background is 
the confidence interval
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2.54 h to call variants from both case and control samples. Both Lancet and GATK-
MuTect2 require prior mapping of reads to the human genome (which takes 3.17 h), 
explaining in part their longer runtimes.

To evaluate 2-kupl run time dependency on the number of cs-kmers, we ran 2-kupl 
on datasets with different numbers of cs-kmers (Fig.  1b). Running time increased 
linearly with the number of cs-kmers. Each additional 10,000 cs-kmers increased the 
running time by nearly 50 s.

We estimated the performance of 2-kupl under different parameter combinations. 
Coverage and cs-count thresholds (‘mim_cov’ and ‘min_cs-count’, respectively) were 
varied from 3 to 9. Results are shown in Fig.  2. The min_cs-count parameter was 
negatively related to recall and positively related to false negatives. The min_cov 
parameter was inversely related to F1 score, recall, FDR, and true positives. Preci-
sion reached an inflection point when min_cs-count was set to 4.

Fig. 2  Robustness of 2-kupl using different parameters. The x-axis indicates the min_cs-count parameter 
and the y-axis represents the corresponding ratio or number. The thresholds of coverage and cs-count are 
denoted as min_cov and min_cs-count, respectively. The trend lines under different min_cov parameters are 
represented by four colors

Table 3  Comparison of four approaches on indels using simulated WES data

indels 2-kupl DiscoSNP++ Lancet GATK-MuTect2

True positive 42 29 40 49

False positive 16 1 44 26

False negative 39 52 41 32

Recall 0.52 0.36 0.49 0.60

FDR 0.27 0.03 0.52 0.35

Precision 0.72 0.97 0.47 0.65

F1 score 0.60 0.52 0.48 0.63
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Performance on simulated WGS data

We further benchmarked 2-kupl on a simulated WGS dataset with an average read 
depth of 50X (vs. 230 in WES). For mutation calls, 2-kupl and GATK-MuTect2 achieved 
the same recall ratio of 0.86 (Table 4). The precision of 2-kupl was slightly lower than 
GATK-MuTect2 but still above 0.9. For indels, the recall of 2-kupl dropped to 0.82 
(Table 5). The false positive call rates of 2-kupl increased with WGS data relative to WES 
data due to the lower coverage of WGS. A limitation of 2-kupl is that false signals can 
not be ruled out by allele frequency in low coverage regions. Also, k-mers may be incor-
rectly considered as cs-kmers when there is not enough reads covering the locus in the 
control sample.

The simulated WGS dataset contained 157 SVs (deletions, duplications, and translo-
cations longer than 50bp). Expectedly, GATK-MuTect failed to detect the majority of 
SVs (Table 6). We thus compared 2-kupl with Delly, a software that finds structural vari-
ants based on aligned reads [21]. Overall 2-kupl had a slightly lower precision and recall 
than Delly (Table 6). We investigated 22 SVs missed by Delly and captured by 2-kupl. We 
found these reads were left unmapped by BWA due to multiple hits in the genome and 
thus could not be assessed by Delly (Additional file 6: Table S5). An advantage of 2-kupl 
here is that all k-mers covering SV junctions are kept and assembled regardless of map-
ping status. Furthermore, 2-kupl is capable of detecting small variants in the same run.

Assessing 2‑kupl on a real normal‑tumor WES dataset

To assess 2-kupl results on actual WES data, we applied 2-kupl on one WES dataset of 
matched tumor and normal tissues from the TCGA-PRAD dataset. We first compared 
2-kupl and GDC portal somatic variant calls (see Methods) on the TCGA patient with 
the highest tumor mutational burden. The numbers of k-mers, contigs and variants 
obtained by 2-kupl are shown in the second column of Table 1. Mutation calls by 2-kupl 
and GDC portal variants are shown in Table 7. Although total call numbers were simi-
lar, only 327 calls (  9%) were shared by the two approaches, including 319 mutations 
and 8 indels. Among the variants detected by 2-kupl, 193 (5.13%) mapped to noncod-
ing regions and 101 (2.7%) were annotated as repeats by RepeatMasker [22]. 2-kupl also 
captured 57 (1.5%) unmapped variants. 173 2-kupl variants (4.6%) were mapped to low 
mappability “blacklist” regions [23]. In spite of the small general overlap of 2-kupl and 
GDC portal variants, the two methods have a much stronger agreement on high scoring 
2-kupl calls (Additional file 1: Fig. S1A). Of note, mutation calls obtained on the same 
sample by four different mapping-based protocols also show poor consistency (Addi-
tional file 1: Fig. S1B).

We further analyzed mutations specific to 2-kupl. These calls may have been rejected 
in GDC portal variants for a number of valid reasons, including low mapping quality, 
location in short tandem repeats or presence in normal samples. A real “miss” by the ref-
erence-based pipeline should be recorded only when reads could not possibly be aligned 
to the genome while they indeed contained a valid mutation.

Figure 3a shows a case of false positives introduced due to artifactual cs-kmers. Gen-
erally, k-mers harboring a mutation present in both tumor and normal tissues are sup-
posed to be ruled out. However, erroneous tumor-specific “cs-kmers” can escape the 
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filtering process if the same k-mer in the normal tissue happens to be low quality and is 
discarded.

Certain 2-kupl specific mutations are possibly true positives discarded by mapping-
based protocols due to their location within a repeat region. Figure  3b shows such a 
potential somatic mutation. The mutation is located within a ribosomal RNA gene that 
is repeated multiple times in the genome and further contains a C-rich repeat (rep-
resented in lower cases). Reads generated from these repetitive regions are given low 

Fig. 3  IGV views of variant calls in TCGA-PRAD WES dataset. The two central tracks show aligned reads from 
the tumor (top) and normal (bottom) WES library. The lower track shows gene annotation and 2-kupl contigs. 
a A likely false-positive call by 2-kupl at a position of low mapping quality, b A likely true positive within a 
repeat region. Reads in transparent color have low MAPQ (mapping quality) values (<10)
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MAPQ values by mappers and variants in these regions are then discarded by variant 
callers.

Among unmapped 2-kupl calls, only one has a Phred score in the top 5% (Additional 
file 1: Fig. S2). The mutant sequence and its inferred reference are shown in Additional 
file 1: Fig. S3. The mutant contig is covered by 0 and 47 reads in the Normal and Tumor 

Table 4  Comparison of 2-kupl and GATK-MuTect2 on mutations using simulated WGS data

mutations 2-kupl GATK-MuTect2

True positive 13835 13920

False positive 1248 30

False negative 2220 2135

Recall 0.86 0.86

FDR 0.08 0.002

Precision 0.91 0.99

F1 score 0.89 0.93

Table 5  Comparison of 2-kupl and GATK-MuTect2 on indels using simulated WGS data

indels 2-kupl GATK-MuTect2

True positive 3315 3620

False positive 504 108

False negative 750 445

Recall 0.82 0.89

FDR 0.13 0.02

Precision 0.84 0.96

F1 score 0.84 0.92

Table 6  Comparison of 2-kupl, GATK-MuTect2 and Delly on structural variants using simulated WGS 
data

mutations 2-kupl GATK-MuTect2 Delly

True positive 133 49 135

False positive 27 0 16

False negative 24 108 22

Recall 0.85 0.3 0.86

FDR 0.17 0 0.11

Precision 0.83 1 0.89

F1 score 0.84 0.47 0.88

Table 7  Number of mutations and indels detected by 2-kupl and GDC portal variants

2-kupl GDC portal variants overlap

Mutation 3607 3093 319

Indel 151 823 8

Total 3758 3916 327
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sample, respectively while the reference is covered by 88 and 65 reads in the Normal 
and Tumor sample, respectively (Fig. 4). The sequence maps to a centromeric repeat of 
Chr22, with three mismatches. The mapping procedure would thus miss this highly sig-
nificant variant.

Fig. 4  An unmapped somatic variant from a TCGA PRAD patient. Only reads matching the central k-mer of 
the tumor-specific variant or its inferred counterpart are shown. Reads from the tumor and normal samples 
are distinguished. The position of variation is highlighted
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Recurrent mutations in TCGA‑PRAD

Recurrence across patients is a powerful criterion for distinguishing drivers from pas-
senger mutations [24–26] and has been used to discover drivers and define molecular 
subtypes of prostate cancer [27]. We applied 2-kupl to each pair of Normal/Tumor sam-
ples in the complete PRAD WES dataset (N=498) and identified 3211 recurrent variants 
(Additional file 2: Table S1). For comparison we retrieved from the GDC portal recur-
rent variants predicted for the same dataset (GATK-MuTect2 pipeline, see Methods). 
Among 3734 recurrent variants in the GDC portal, 854 were shared with 2-kupl recur-
rent variants (Additional file 2: Table S1). We further compared the recurrent variants to 
a comprehensive dataset of recurrent prostate cancer mutations from Fraser et al. [28] 
based on 200 whole-genome and 277 whole-exome sequences from multiple sources. 
Comparisons were restricted to exonic regions. Within the 48 recurrent mutations in 
exonic regions from Fraser et al, a similar number was shared with 2-kupl or the GDC-
portal (22 and 21, respectively) (Additional file 3: Table S2). Among recurrent mutations 
specific to 2-kupl, we note the one found at chr14:37592023 within an exon of FOXA1, a 
putative prostate cancer driver [29], in three TCGA-PRAD patients.

We further compared 2-kupl calls to GDC portal variants at the level of genes 
(Detailed in Method section). The GDC portal reported 6944 genes mutated in two or 
more patients, versus 14137 recurrent genes by 2-kupl. Enrichment analysis shows a 
good convergence of the most frequently mutated genes by the two methods (Fig.  5). 
Figure 5b, c show oncoplot views of the top 20 genes according to the GDC portal and 
2-kupl, respectively, showing eight shared genes. Both gene lists are contaminated by 
long (TTN) or highly polymorphic genes (Mucins) whose recurrence is an artifact due 
to higher mutation counts. Although many software are available to account for those 
effects [30], we purposely analyze the uncorrected list of genes here. Among the top 
20 mutated genes by 2-kupl and GDC portal, 7 and 9 genes, respectively, are known 

Fig. 5  Recurrently mutated genes in the TCGA-PRAD WES dataset. a Enrichment analysis of recurrent genes. 
The vertical bars are the common recurrently mutated genes (altered in at least ten patients) between GDC 
portal and 2-kupl. The x axis represents the recurrent genes found by 2-kupl sorted by frequency. The smooth 
curve reflects the degree to which the common genes are overrepresented in the whole 2-kupl recurrent 
genes. b The 20 genes with the highest mutational frequency detected in GDC portal variants. c The top 20 
recurrent genes with the highest mutational frequency detected by 2-kupl
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prostate cancer-related genes. Among those, UBR4, DNAH5 and LRP1 were only 
detected by 2-kupl. When considering the top 50 recurrently mutated genes according 
to 2-kupl and GDC portal, 19 and 23, respectively, are cancer-related. Among those, 
HSPG2, DNAH3, UBR4, COL6A3, CABIN1, IGF2R, PTPRF, DNAH5, HTT and TRRAP 
were only detected by 2-kupl.

UBR4 contains 48 2-kupl mutations, more than any other gene. Additional file 1: Fig-
ure S4 shows read alignment at this gene for patient TCGA-EJ-7125 who carries the 
most UBR4 mutations (8/48 mutations). While seven of these mutations are absent in 
GDC portal variants, all can be visually validated as tumor-specific mutations as per the 
IGV display (Additional file 1: Fig. S4 A-G).

Besides recurrent mutations and indels, we found 20 genes with 43 recurrent struc-
tural variants predicted in at least two patients (Additional file  2: Table  S1). All these 
predicted variants can be supported by at least one read from the tumor library. Three 
recurrent structural variants map to prostate cancer genes SH2B3, ATP10A and FOXA1 
(Fig. 6). Variants in gene ATP10A and SH2B3 have exactly the same junctions in at least 
two patients. As the three variants in gene FOXA1 impact on the same exon, we grouped 
them as one same recurrent event despite not representing the exact same variation. All 
these recurrent structural variants are longer than 10bp. State-of-the-art procedures 
usually miss such variants at the mapping stage.

Performance on bacterial WGS data

2-kupl can be applied to pairwise comparisons of DNA-seq datasets in any species. We 
present here an application to bacterial whole genome sequences. A frequent problem 
in bacterial genetics is identifying mutations in strains for which no reliable reference 
genome is available. We investigated the performance of 2-kupl on 21 DNA-seq datasets 

Fig. 6  Recurrent structural variants mapping to three prostate cancer genes. In each track, lines represent 
the genome sequence (top), annotated genes, and variant contigs identified in different patients
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from a Pseudomonas aeruginosa strain, in which 26 variants had been previously identi-
fied and confirmed by geneticists (see Methods).

About 141 variant contigs were predicted on average for each pair of WT/mutant 
strains, with an average running time of 10 minutes (Fig. 7a, b). Score ranking by 2-kupl 
and DiscoSNP++ allowed a clear separation of TP from FP (Fig. 7c, d). True positive 
calls were ranked first in 19 out of 19 mutant samples by 2-kupl and in 16 out of 16 
samples by DiscoSNP++. Compared with Phred scores used in 2-kupl, DiscoSNP++ 
scales the rank scores from zero to one and thus the true positive variants are more 
concentrated.

2-kupl could recall all true positive variants, including SNVs and large deletions longer 
than 100 bp, while DiscoSNP++ missed three large deletions (555 bp, 213 bp and 109 
bp, Additional file 5: Table S4). Meanwhile, DiscoSNP++ obtained 129 false positives 
versus 45 for 2-kupl (Table 8). Therefore 2-kupl had the best recall and precision on this 
dataset, especially for large indels.

Fig. 7  Performance of 2-kupl on bacterial DNA-seq datasets. a Number of cs-kmers, contigs and variants 
are shown for each bacterial sample. b Running time of 2-kupl on each sample is shown for different steps. 
c Distribution of Phred scores computed by 2-kupl in TP and FP events. d Distribution of DiscoSNP++ score 
ranks in TP and FP events

Table 8  comparison between 2-kupl and DiscoSNP++ on the bacteria DNA-seq data

2-kupl DiscoSNP++

True positive 26 23

False positive 45 129

False negative 0 3

Recall 1 0.88

FDR 0.64 0.85

Precision 0.36 0.15

F1 score 0.52 0.26
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Discussion
Most variant detection protocols rely on reference genomes. However, even for spe-
cies with a high-quality reference genome such as humans, depending on a reference 
is subject to limitations. Genomes contain large numbers of highly variable, repetitive 
or otherwise unmappable regions, which are unsolvable by short-read sequencing tech-
niques. Hundreds of unsolved regions remain in telomeres and centromeres, also known 
as ‘dark matter’ [31]. The X chromosome is the only complete human chromosome as 
of today [32]. Pathogenic variants within these unannotated regions are easily missed 
by mapping-based approaches due to low mapping quality, especially with low depth in 
whole-genome sequencing. Furthermore, the human genome varies across individuals 
and populations and a single reference genome does not account for this diversity [33].

2-kupl is able to detect variants, including mutations, indels and structural variants, 
without relying on a reference genome. Based on matched DNA-seq data, 2-kupl cap-
tures case-specific k-mers and counterpart k-mers (i.e. without the variation) into the 
same bucket. Sequence contigs harboring a local variation and its putative reference are 
inferred through the assembly of k-mers in each bucket.

To control artifacts induced by sequencing errors, 2-kupl takes both base quality and 
coverage into account. The general sequencing error rate in short-read NGS data is 
larger than 0.1% [34]. It is worth consuming computing resources and running time to 
remove these 0.1% artifacts because these sequencing errors result in large numbers of 
artifactual cs-kmers. To reduce the impact from low-quality bases, we combine Cutadapt 
and an ‘OverrideN’ function that flags low quality bases in the mid part of reads. This 
significantly reduces the number of cs-kmers and speeds up the computing procedure.

We compared the performance of 2-kupl with that of three competing methods in 
terms of running time, recall and precision. 2-kupl outperformed mapping-free methods 
DiscoSNP++ and Lancet in terms of recall or precision but did not reach the perfor-
mance of the state-of-the-art alignment-based GATK-MuTect2 on human data.

DiscoSNP++ suffers from limitations of DBG data structures in regions with sequenc-
ing errors, genomic variants and repeats [18]. Efficient solutions searching for bubbles 
from such complicated structures are still under development. Furthermore, short con-
tigs may be discarded within the post-process, cutting branches, for instance [35]. In our 
bacterial DNA-seq analysis, DiscoSNP++ missed three validated large deletions.

Lancet has a higher recall ratio than 2-kupl but also introduces more false positives. 
Furthermore, Lancet missed variants from repetitive regions and is not able to detect 
fusions from distant regions.

2-kupl has a higher F1 score than DiscoSNP++ and Lancet and performs better in 
terms of recall ratio or precision than either of them. Expectedly, 2-kupl did not outper-
form GATK-MuTect2 on WES data. First, GATK-MuTect2 uses a sophisticated Bayes-
ian model to estimate a genotype’s likelihood given the observed sequence reads that 
cover the locus. When GATK-MuTect2 encounters a region showing signs of variation, 
it discards the existing mapping information and completely reassembles the reads in 
that region. This allows GATK-MuTect2 to be more accurate when calling regions that 
are traditionally difficult to call. Despite slightly fewer true positives, 2-kupl also detects 
fewer false positives than GATK-MuTect2. It is worth mentioning that 2-kupl has the 
lowest time complexity among the four methods.



Page 14 of 22Wang et al. BMC Bioinformatics          (2021) 22:304 

By applying 2-kupl to the TCGA-PRAD patients, we were able to detect recurrent 
mutations and indels missed by the GDC portal’s GATK-MuTect2 pipeline. Reads in 
these regions have either low mapping qualities or multiple hits and were discarded 
in the GDC portal pipeline. Mapping-based methods all suffer from this issue and are 
powerless when faced with low complexity regions. 2-kupl identified recurrent muta-
tions and recurrently mutated genes in high agreement with GATK-MuTect2. Mutated 
genes were enriched in PRAD-related genes, some of which specific to 2-kupl. As an 
example, we visually confirmed multiple 2-kupl-specific mutations in UBR4. Recurrent 
variants detected from the unmappable regions by 2-kupl provide insights into potential 
novel somatic variants even though the locus of origin of the contig sometimes cannot 
be determined.

Standard variant calling pipelines may miss mutations for multiple reasons: low allele 
frequencies, tumor contamination, ambiguities in short read alignment, inadequate 
sequencing depth, high GC content, sequencing errors and ambiguities in short read 
alignment. Different programs are affected by these factors to varying degrees. As a con-
sequence, the mutations called by different pipelines are not consistent [36]. 2-kupl is 
not affected by some of these sources (GC content, alignment artifacts and mappability) 
and can detect a number of recurrent mutations (ie. potential driver events) that are not 
found by standard pipelines.

Several natural directions exist for extending 2-kupl. First, 2-kupl lacks sensitiv-
ity in detecting structural variants. All cs-kmers covering the junction are retained 
and extended to contigs. Unfortunately, neither the ct-kmers nor the reads are easily 
obtained when considering a hamming distance of one. A structural variation can be 
detected only if enough supporting reads are covering at least one side of the variation. 
Focusing on the cs-kmers regardless of ct-kmers could address this problem but at the 
cost of more false positives. A second limitation occurs when control samples are con-
taminated with tumor cells, which is relatively frequent in tissue biopsies. To address 
this problem, 2-kupl includes a parameter representing a k-mer count threshold in the 
control sample. However, a fixed contamination threshold may introduce unwanted 
non-specific variants. Future works should evaluate probabilistic approaches to address 
this issue.

Conclusions
In conclusion, the identification of different kinds of variants, using DNA-seq data, 
remains challenging. The leading protocols developed for DNA-seq highly rely on the 
reference. In general, the methods that align sequencing data to the reference (mapping-
based methods), perform better than do the mapping-free methods. However, 2-kupl 
can capture events falling into the difficult-to-map regions, and can perform better 
than other mapping-free protocols. 2-kupl is the fastest tool in the comparison with 
other methods because the mapping procedure is not included. The high agreement in 
top ranking variants by 2-kupl and GDC portal variants indicates the capacity of using 
2-kupl as an extension and supplementation of the mapping-based methods.
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Methods
Outline of 2‑kupl pipeline

The general pipeline is presented in Fig. 8. The input is composed of DNA-seq data from 
two matched samples. Samples typically correspond to control/normal/wild-type and 
a case/tumor/mutant-type. For cancer data, we strongly recommend using as a control 
of a distant tissue such as white blood cells rather than adjacent normal tissues, as the 
later can be contaminated by tumor cells and 2-kupl only considers variant sequences 
that are absent in the control dataset. Sequence types can be either single-end or paired-
end sequencing reads. 2-kupl then identifies pairs of case-specific k-mers (cs-kmers) and 
counterpart k-mers (ct-kmers). 2-kupl returns predicted variants exclusive to the case 
sample, including mutations, indels and structural variations. Variant statistics including 
cs-count, coverage, allele frequency and variant P-value are computed. A variant file and 
an alignment file are produced. 2-kupl accepts multiple threads and uses 10 threads by 
default.

2-kupl is developed purely in Python. The main dependencies include Jellyfish [37] and 
GSNAP [38]. Other dependent python libraries and instructions can be found from the 
Github repository https://​github.​com/​yunfe​ngwan​g0317/2-​kupl

Data cleaning

Low quality sequences are trimmed with Cutadapt [39] (parameter ‘–quality-cutoff’ = 
10). As Cutadapt does not remove low-quality bases within the central part of reads, 
we implemented an overriding function that replaces each low-quality base (Phred 
score<10) with N. This procedure is applied to both case and control libraries.

k‑mer indexing and counting

Jellyfish is used to index and quantify k-mers from both case and control with options 
k=31 and -C (canonical k-mers). As Jellyfish removes k-mers containing Ns, none of 
the low-quality bases is present in the k-mer list. The generated k-mers subsequently 
undergo two filtering steps. First, k-mers with counts below a user-specified cut-
off (default=3) are removed. These low abundance k-mers are assumed to result from 
sequencing errors or off-target regions in the case of WES data. Second, k-mer lists from 
case and control are compared and only case-specific k-mers (cs-kmers) are retained.

Fig. 8  Overall workflow of 2-kupl. This flowchart describes the analysis process of 2-kupl, including the input 
and output file format and function of each module

https://github.com/yunfengwang0317/2-kupl
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Matching counterparts of cs‑kmers

For each cs-kmer harboring a point mutation, there should exist a counterpart k-mer 
(ct-kmer) from the control dataset with only one base substitution (Hamming distance 
=1), which can be considered as a product of the wild type sequence. Note that Ham-
ming distance=1 only considers substitutions. Hence single nucleotide insertions and 
deletions are rejected at this step and will be treated later with unmatched k-mers. Find-
ing the matched ct-kmer for each cs-kmer should allow us to infer the variation without 
reference sequences. We initially build a hash table where the keys are the continuous 15 
bases from each side of cs-kmers. For each 15-bases key, we create a bucket of all k-mers 
starting or ending with the key. Then we survey the buckets and seek all k-mer pairs with 
a hamming distance of one in the same bucket. We thus generate all k-mer pairs (ki, kj) 
with a hamming distance of one. For any pair of k-mers with a Hamming distance of 
one, if one k-mer comes from the cs-kmer list and the other comes from the control, this 
pair of k-mers is considered to be matched. Otherwise, we allocate the cs-kmers to the 
“unmatched k-mers” group. These unmatched k-mers either contain variants of more 
than one nucleotide (multiple mutations, indels and structural variants) or come from 
low coverage regions. The schematic workflow is shown in Fig. 9.

Assembly of cs‑kmers into mutant contigs

cs-kmers are assembled into mutant contigs that correspond to variants and their local 
context. The assembly process is done using the “mergeTag” function from DEkupl 
[40] (https://​github.​com/​Trans​ipedia/​dekupl). Two k-mers overlapping by k-i bases are 
merged iteratively with i ranging from 30 to 25 (min_overlap parameter is set to 25 by 
default). The merging process is interrupted when no k-mers can be added or ambiguity 
occurs (two different overlapping k-mers are encountered).

Fig. 9  Procedure for matching cs-kmers to ct-kmers. Long rectangles represent one 31-mer. Short rectangles 
(keys) represent the head or tail 15 bp of a cs-kmer. Color changes indicate sequence differences

https://github.com/Transipedia/dekupl
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Inferring reference contigs

We use two distinct procedures for reference sequence determination, depending on 
whether or not sufficient ct-kmers are available to build a reference contig.

For each mutant contig, if more than half of its component k-mers are matched, all 
the ct-kmers are merged by the python package pydna [41]. The resulting mutant con-
tigs correspond to isolated mutations. Merged contigs produced by ct-kmers can be 
regarded as putative references. For each pair of mutant and reference contig, we then 
define two values representing counts of supporting k-mers for the mutant allele (cs-
count) and supporting k-mers for both mutant and reference alleles (coverage). The 
cs-count is computed from the median k-mer count of cs-kmers and coverage is cal-
culated from the sum of the median count of cs-kmers and ct-kmers. Herein, we select 
the median count instead of the mean count because mean values are more sensitive to 
high-count k-mers from repeats or copy number amplification regions.

For mutant contigs in which less than half of the k-mers are paired, we consider that 
a reference cannot be assembled from paired-kmers. A procedure was implemented to 
retrieve the reference from the original reads. Reads with at most one mismatch to any 
k-mer from the mutant contig are retrieved from the control fastq file using BBDUK 
[42]. These reads are then assembled by CAP3 [43]. In this way, we can infer the putative 
reference for each contig and evaluate coverage based on the number of reads retrieved 
by BBDUK. The cs-kmers in these contigs have no matching ct-kmers and contigs are 
thus considered to contain multiple mutations, indels and structural variants (Addi-
tional file 6: Table S5).

Filtering low‑quality variants

The cs-count and coverage substantially impact the reliability of events called by 2-kupl. 
For instance, a sequencing error could be repeatedly generated in a region of high cov-
erage. Besides, sequencing errors may, by chance, be detected as mutations with high 
allele frequency in low coverage regions. Thus, false positives are introduced due to 
either high cs-count in high coverage regions or high allele frequency in low cover-
age regions. However, coverage varies between whole-genome sequencing (WGS) and 
whole-exome sequencing (WES) data. WGS does not use an upfront enrichment step so 
it generates a more uniform coverage of the genome. On the other hand, the enrichment 
steps involved in WES lead to non-uniform coverage, generating coverage ‘hot’ and ‘cold’ 
spots [44]. 2-kupl provides several criteria for users to evaluate call reliability. A Fisher’s 
exact test P-value is calculated based on the cs-count and coverage in case and matched 
control libraries for each variation. A Phred quality score is subsequently computed as 
−10log10 P. Users can specify cutoffs for cs-count, coverage, allele frequency and Phred 
to filter false positives. Default cutoffs for cs-count, coverage, allele frequency and Phred 
are set to 3, 10, 0.05 and 5, respectively.

VCF format export

Events identified by 2-kupl are exported as a variant call format (VCF) file [45]. 2-kupl 
outputs the contig harboring the variation and the corresponding putative reference 
without the variation for each event. If users provide an available reference, the mutant 
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contig is mapped to this reference using GSNAP [38]. After the mapping process, actual 
chromosome and position information are provided in the VCF file. Besides the VCF 
file, 2-kupl also exports an alignment of each contig and its putative reference obtained 
using the pairwise2 python package [46]. Contigs corresponding to indels and structural 
variants are further mapped to reference by BLAST [47] (default parameters) which we 
found better suited to fragmented alignments.

Comparison with other software

DiscoSNP++ [15] is designed for detecting SNVs and small indels from fastq files 
without using reference. DiscoSNP++ first generates a DBG of two matched samples 
pooled together [48] and detects variants based on searching bubbles in the graph. The 
context contigs can be extracted from DBG bubbles that correspond to local variants. 
As DiscoSNP++ calls variants in each sample rather than specific to one sample, we 
applied cutoffs to DiscoSNP++ allele frequencies (AF) to extract case-specific calls as 
found by 2-kupl. After testing multiple combinations, DiscoSNP++ achieved the best 
performance when AF cutoffs for both case and control samples were set to 0.05. Lan-
cet [16] relies on localized colored DBG to detect somatic variants in paired samples. 
K-mers shared by two matched samples or specific to either of them are marked in 
different colors in the DBG. In this way, Lancet is able to detect case-specific events. 
It is worth mentioning that Lancet uses bam format files as input so it also leverages 
the reference before variant detection. We also compared 2-kupl with the leading ref-
erence-based GATK-MuTect2 pipeline [7]. GATK-MuTect2 takes mapped sequence 
files as input, detects variants based on the reference and compares the variants of two 
matched samples to identify case-specific variants (somatic mode). Version hg38 of the 
human genome was used in all reference-based procedures. To make runtime compari-
sons fair, we took the mapping procedure into account in Lancet and GATK-MuTect2. 
Alignment was performed using BWA with default parameters. Thus all four protocols 
started with fastq files. To evaluate the dependency of 2-kupl running time on the num-
ber of k-mers, we ignored the part up to k-mer counting. Mapped reads were visualized 
with the Integrative Genomics Viewer (IGV) [49] 2.6.2 on hg38. For structural variant 
detection in simulated WGS data, we also compared 2-kupl with Delly [21] a structural 
variant discovery software. Delly uses BAM alignment files as input and infers structural 
variants at single nucleotide breakpoint resolution using both insert size and split reads 
information.

Simulated WES analysis

We downloaded simulated WES data from Meng and Chen [20]. This dataset was devel-
oped based on the NA12878 pilot genome [50] (reference data set of 5.4 million phased 
human variants validated by genetic inheritance from sequencing a three-generation 
17-member pedigree). The authors used BAM-Surgeon [51] to select genomic loci and 
introduce random SNV and indel spike-ins, and generated 2x100nt reads WES files at 
230X coverage. For our benchmark, we used a tumor sample described by authors as 
one of the most complicated, NA12878_79_snv_indel_sorted.bam (with four sub-pop-
ulations, expected variant allele frequency (VAFs) of 0.5, 0.35, 0.2 and 0.1). Picard was 
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used to convert bam files to fastq format files with default parameters. 2-kupl was run 
using default parameters on pairs of simulated normal-tumor fastq files.

Simulated WGS analysis

A simulated WGS dataset containing two matched samples was generated by DWGSM 
(https://​github.​com/​nh13/​DWGSIM), with a mean coverage of 50X across avail-
able positions. The rates of mutations in case and control group samples were set as 
0.0001 and 0, respectively. The fraction of indels in all variants was restricted to 20%. 
The expected VAF ranged from 0.1 to 0.5. All other parameters were set as default val-
ues. Besides the mutations and indels, the simulated WGS dataset also included struc-
tural variants including deletions, duplications and translocations longer than 50 bp. 
DWGSM generates fastq format files that are directly used as input for 2-kupl.

TCGA‑PRAD data analysis

Matched normal-tumor WES data of 498 patients from TCGA-PRAD (Prostate Ade-
nocarcinoma) [52] were retrieved with permission from dbGAP [53]. BAM files were 
converted to paired-ends fastq files using Picard tools with default parameters. 2-kupl 
somatic variant calls were obtained for each normal/tumor pair using default param-
eters. Detailed analysis of variant calling was performed on the TCGA-PRAD sample 
with the highest tumor mutational burden (barcode TCGA-ZG-A9ND).

2-kupl results on the TCGA-PRAD dataset were compared to variant calls down-
loaded from the GDC portal. Briefly, the GDC portal workflow uses BWA to map reads 
to the human genome and determines variants with five state of the art variant callers, 
as described here: https://​docs.​gdc.​cancer.​gov/​Data/​Bioin​forma​tics_​Pipel​ines/. We used 
the maftools R package [54] to retrieve variants predicted using the GATK-MuTect2 
pipeline and filtered against a “panel of normals”. This mutation dataset is hereafter 
referred to as the “GDC portal” dataset.

To remove putative germline variants from 2-kupl results, we built a boolean matrix 
representing the presence of each k-mer in each normal sample. Any k-mer present in 
at least two normal samples was excluded. Retained recurrent variants were considered 
as tumor-specific (Additional file 2: Table S1). Mutations detected by 2-kupl and absent 
in the GDC portal variants were considered as 2-kupl specific. To verify whether calls 
absent in GDC portal variants were not discarded at earlier stages of the GDC portal 
pipeline, we also retrieved the protected MAF file containing all unfiltered variants 
called by the MuTect2 workflow.

The oncoplot graph for GDC portal variants (Fig. 5a) was drawn using maftools. To 
obtain recurrently mutated genes by 2-kupl, we aggregated variants belonging to the 
same gene in 2-kupl results and constructed a gene-level occurrence matrix that was fed 
to maftools (Fig. 5b). Recurrent variants from 2-kupl and the GDC Portal were also com-
pared with a comprehensive prostate cancer dataset from 200 whole-genome sequences 
and 277 whole-exome sequences from localized prostate tumours [28] (Additional file 3: 
Table S2)

Recurrently mutated genes were annotated using a collection of 1404 PRAD-related 
genes collected from CLINVAR [55], COSMIC [56], DISEASE [57], KEGG [58], 

https://github.com/nh13/DWGSIM
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
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OMIM [59], PheGenl [60] and driver predictions by Martincorena et al. and Armenia 
et al. [29, 61] (Additional file 4: Table S3).

Bacterial genome analysis

We obtained WGS fastq files from the Pseudomonas aeruginosa PAO1Or wild-type 
strain and 24 phage-tolerant mutants [62]. Mutations in the phage-tolerant variants 
were previously validated by mapping of the WGS raw sequences to the PAO1Or 
genome (Genbank accession LN871187) and confirmed by PCR amplification and 
Sanger sequencing. We used one control WGS file and 21 mutant WGS files cor-
responding to 26 validated variants. Detailed variants (Additional file  5: Table  S4) 
include seven mutations, 13 small indels and six large deletions longer than 100 bp. 
2-kupl was run using default parameters on every mutant WGS file compared to the 
control WGS file.
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