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Abstract 

Background:  Mining gene regulatory network (GRN) is an important avenue for 
addressing cancer mechanism. Mutations in cancer genome perturb GRN and cause 
a rewiring in an orchestrated network. Hence, the exploration of gene regulatory net‑
work rewiring is significant to discover potential biomarkers and indicators for discrimi‑
nating cancer phenotypes.

Results:  Here, we propose a new bioinformatics method of identifying biomarkers 
based on network rewiring in different states. It firstly reconstructs GRN in different 
phenotypic conditions from gene expression data with a priori background network. 
We employ the algorithm based on path consistency algorithm and conditional 
mutual information to delete false-positive regulatory interactions between independ‑
ent nodes/genes or not closely related gene pairs. And then a differential gene regula‑
tory network (D-GRN) is constructed from the rewiring parts in the two phenotype-
specific GRNs. Community detection technique is then applied for D-GRN to detect 
functional modules. Finally, we apply logistic regression classifier with recursive feature 
elimination to select biomarker genes in each module individually. The extracted fea‑
ture genes result in a gene set of biomarkers with impressing ability to distinguish nor‑
mal samples from controls. We verify the identified biomarkers in external independent 
validation datasets. For a proof-of-concept study, we apply the framework to identify 
diagnostic biomarkers of breast cancer. The identified biomarkers obtain a maximum 
AUC of 0.985 in the internal sample classification experiments. And these biomarkers 
achieve a maximum AUC of 0.989 in the external validations.

Conclusion:  In conclusion, network rewiring reveals significant differences between 
different phenotypes, which indicating cancer dysfunctional mechanisms. With the 
development of sequencing technology, the amount and quality of gene expression 
data become available. Condition-specific gene regulatory networks that are close 
to the real regulations in different states will be established. Revealing the network 
rewiring will greatly benefit the discovery of biomarkers or signatures for phenotypes. 
D-GRN is a general method to meet this demand of deciphering the high-throughput 
data for biomarker discovery. It is also easy to be extended for identifying biomarkers of 
other complex diseases beyond breast cancer.
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Background
Gene regulatory network (GRN) is a model that characterizes the complex relation-
ship between genes in a cell [1]. In a GRN, nodes represent genes and edges describe 
the regulatory relationships among them. From a physical perspective, the interac-
tions between genes are through their products like proteins and RNAs. The weight of 
edge describes the direction and strength of an interaction. The alternation or muta-
tion of one gene may affect the activity of many other genes through the network [2, 
3].

Cancer is recognized as a complex disease caused by gene mutations, which will per-
turb the normal interactions among genes and lead to the disorder of connection mode 
or strength [4–6]. In other words, gene mutations cause perturbation and rewiring of 
GRNs [7, 8]. The rewired interactions generate changes in normal biological processes 
and that is crucial for cancerogenesis. Thus, the investigation of the rewiring GRN is 
significant in discovering potential biomarkers of indicating certain phenotypic states.

Breast cancer is the most commonly diagnosed cancer and the second leading cause 
of cancer death in women worldwide [9, 10]. Biomarkers play important roles in its early 
diagnosis and prognostic evaluation [11–13]. Nowadays, the accurate identification of 
biomarkers for breast cancer early detection is still very challenging. There are some bio-
markers that have been validated like BRCA1 and HER2 [14]. However, new biomarkers 
and their combinations are still urgently needed to quantify the treatment effects with 
classical clinical prognostic factors. They also indicate the potential risks and pathogen-
esis of breast cancer [15, 16].

With the development of high-throughput sequencing technologies, an increasing 
amount of gene expression data become available. Various methods have been devel-
oped to find efficient biomarkers from high-throughput data [17–20]. For instance, the 
methods construct a dynamic network model and perform a multi-omics data integra-
tion for biomarker discovery [21]. However, there are few methods to solve this problem 
from the perspective of network rewiring, which indicates the dysfunctional mechanism 
of cancer.

In this paper, we propose a framework to identify potential biomarkers of breast can-
cer based on network rewiring. The disease and normal GRN are reconstructed from 
gene expression data with a reliable background GRN. CMI-PC (conditional mutual 
information-based path consistency) algorithm is employed to delete false positive 
interactions between independent genes or pairs that are not connected closely in a spe-
cific condition from the integrative background network. Comparing the GRNs in the 
two phenotypic conditions, a differential GRN, called D-GRN, containing the rewired 
nodes with differential regulations will be extracted. In D-GRN, we detect the commu-
nity structures which are intensively connected nodes in the form of subnetwork mod-
ules. Finally, we apply logistic regression with recursive feature elimination (LR-RFE) 
to select biomarkers in each module respectively. We use cross-validations to find the 
optimal number of biomarkers individually. The maximum AUC in these module-based 
biomarkers achieves 0.985 in the internal validation. The selected biomarkers are also 
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verified in external independent datasets and they achieve the maximum AUC value of 
0.989 in classification.

Results
In this work, the proposed biomarker discovery framework focuses on the rewiring gene 
network between disease and normal conditions. Condition-specific GRNs are recon-
structed through the integration of prior knowledge of an integrative background net-
work and phenotypic gene expression data. CMI-PC algorithm is employed to remove 
redundant regulatory interactions from the background network. D-GRN is extracted 
from the two specified networks in two different states. We detect the communities in 
the D-GRN. And then machine learning method is applied to find the best feature com-
bination in classification experiments. The selected features are more likely to be poten-
tial biomarkers. Here, we apply our framework to breast cancer and identify potential 
network-based module biomarkers.

Network rewiring

The reconstructed normal GRN has 430 edges (regulations) and 198 nodes (genes), 
while the disease GRN has 301 edges and 137 nodes. There are 71 same genes and 115 
common edges between them. We merge the same nodes that have different connec-
tions and their neighbors to construct a D-GRN which contains 509 regulations and 238 
genes.

After community detection, the D-GRN has been divided into 5 modules (in the next 
section). To illustrate the network rewiring in normal and disease states, Fig. 1a, b show 
the Module 4’s gene regulatory interactions in normal condition and disease condition 
respectively. Figure 1c illustrates this part of D-GRN, including 30 nodes. Black, green 
and red lines represent edges in common, only in the normal network and only in the 
disease network respectively. Figure 1d shows the gene expression boxplot details in the 
normal and disease conditions and P values of difference. It can be easily observed that 
most nodes have significantly different gene expressions between the two conditions. 
Interestingly, few genes are not differentially expressed, but the regulatory interactions 
rewire in the two conditions. Instead of the node-centric difference, D-GRN identifies 
the edge-centric difference between the two phenotypes, i.e., normal and cancer state by 
the rewiring gene regulations.

To further demonstrate the perturbations in the two GRNs, Fig.  2a, b present the 
heatmaps of Pearson’s correlation coefficient (PCC) between genes in normal and dis-
ease conditions. Obviously, there is a marked difference between them and it proves the 
effectiveness of our identification of the rewiring GRN across two conditions.

Detected communities

The community detection results in D-GRN are shown in Fig. 3. Different colors cor-
respond to different modules. The 5 modules include 118, 46, 41, 30, and 3 members 
of genes individually. The global D-GRN is then divided into five functional blocks 
in the form of network-based modules. These subnetworks provide a pool of module 
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biomarker candidates. To remove the redundant genes in the five detected modules, we 
perform feature selection for discovering biomarker gene sets respectively.
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Fig. 1  Network rewiring and gene expression analysis of an identified module (Module 4). a Regulatory 
interactions in normal condition. b Regulatory interactions in disease condition. c D-GRN. d Gene expression 
profiles in normal and disease
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Fig. 2  Correlation between genes in Module 4. a Normal condition. b Cancer condition



Page 5 of 14Wang and Liu ﻿BMC Bioinformatics  2022, 22(Suppl 12):308	

Breast cancer biomarkers identification and validation

Table 1 lists the selected genes in each module after logistic regression with recursive 
feature elimination (LR-REF) with tenfold cross-validations. F1-scores in classification 
experiments are also shown. Due to the number of genes in each module is diverse and 
some specific genes may have better discrimination abilities, there is a fluctuation of 
F1-score in the five modules. However, all of them are over 0.86, which means they per-
form well in the classification of distinguishing disease samples from controls. Figure 4 

Module1
Module2
Module3
Module4
Module5

Fig. 3  Community detection result in D-GRN

Table 1  Five module biomarkers after LR-RFE selection

Module Biomarker genes F1-score

1 KLF9 UHRF1 CDC25A CCNE1 CDK2 CCNE2 TUBB TAF11 POLE2 PKMYT1 
KLHDC1 CDC45 ZBTB4 UBE2S CDKN2C NEK2 TOMM40 TACC3 GPR19 
TCEAL5 FUS SIK2 AP1S1 SHB HS6ST1 TP73 GATA3 HOXA10 CD3EAP 
SLC20A1 XKR5 SOX4

0.93

2 NFKB2 NFYA NR3C1 MAZ BAX TNIP2 DGKZ PIK3R1 IL4I1 0.92

3 KDM4B STAT5B BCL2 TRIM59 0.96

4 TNXB MAFF CTGF KLF4 JUN 0.86

5 BRCA1 RAD51 0.86
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shows the receiver operating characteristic (ROC) curves of the selected biomarkers 
underlying the five modules in the internal validation dataset. The highest area under the 
ROC curve (AUC) value achieves 0.985, and the lowest reaches 0.923.

For validating of our finding module biomarkers, we perform the classification experi-
ments in the external independent dataset GSE42568, which contains 104 disease sam-
ples and 17 controls. Figure 5a demonstrates the ROC curves of each selected gene sets 
in the independent validation data. As shown, the 5 gene modules all perform well in the 
classifications. The highest AUC value achieves 0.989, and the lowest AUC value reaches 
0.934. In addition, Fig. 5b shows the diverse ability of classification in module biomark-
ers and in the corresponding random gene sets with the same size. The P-value is 0.0382, 

Fig. 4  Classification performance of identified biomarkers in internal validation data

Fig. 5  Classification performance of identified biomarkers and random genes in the independent validation 
data. a ROC curves of module biomarkers. b Comparison of the classification ability between module 
biomarkers and equal amount of random genes
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indicating a significant difference for them in classification. The results provide evidence 
that they are potential molecular markers for diagnosing breast cancer.

To further demonstrate the dysfunctions of selected biomarkers, we employ net-
work ontology analysis (NOA) [22] to perform gene ontology (GO) enrichment analy-
sis on the rewired regulatory network across normal and disease states. Table 2 lists 
the enriched functions in the discovered biomarkers. As shown, some important can-
cerous dysregulations related ‘metabolic process’, ‘cell cycle’, ‘cell proliferation’ and 
‘lymphocyte differentiation’ are significantly enriched. They are consistent with the 
prior knowledge of breast cancer pathogenesis during occurrence and development 
[23]. In turn, the functional analysis also provides evidence for the effectiveness of 
our proposed biomarker discovery method via network rewiring.

Discussion
Identification of biomarkers for complex diseases such as cancer is of paramount impor-
tance in treatment, diagnosis and prognosis. Although numerous methods have been 
proposed to characterize biomarkers, few are from the perspective of regulatory net-
work rewiring. GRN is one important strategy for revealing the disease mechanism 
from a systematic perspective. The investigation of cancer mutation and perturbation 
through GRN rewiring is of significance for addressing the underlying causal regulations 
responding to phenotypic transition. In this paper, we proposed a novel framework for 
identifying biomarkers based on network rewiring. Disease and normal condition-spe-
cific GRNs have been reconstructed from gene expression data with a priori background 
network respectively. The gene regulatory interactions changed between them illustrated 
the results of disease mutation and perturbation. D-GRN is extracted and modules in it 
are detected sequentially. LR-RFE is employed to find diagnostic biomarkers from mod-
ules. And cross-validation is used to set optimal number of biomarkers in each module.

Here, we applied the proposed framework D-GRN for identifying biomarkers of breast 
cancer. The integrative background network based on prior knowledge and condition-
specific gene expression data have been used to construct normal and disease GRNs. We 
have to admit that there is limitation on missing nodes and edges, which is also expected 
to be as complete as possible. Totally, a D-GRN including 509 edges and 238 nodes have 
been extracted. Five potential biomarker gene sets in the form of subnetwork modules 
have been identified and they performed well in the classification of disease/normal 
samples in both internal and external validation datasets.

The focus of this work is to provide a computational pipeline for cancer biomarker 
discovery. In our framework, we select optimal genes serving as biomarkers in the net-
work modules by machine learning. The rewired regulations as well as the weights or 
coefficients on these regulations have not been fully considered in biomarker discovery. 
The rewiring edges and patterns are expected to be embedded in the future discovery of 
biomarkers. In this work, another potential limitation is that the rewiring mechanism 
and gene dysfunction across different phenotypes have not been included in our feature 
selection. The genetic and epigenetic factors need be integrated together for addressing 
the causality of these identified gene regulatory rewiring. These will provide more valu-
able information for detecting more precise biomarkers for breast cancer.
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Table 2  The enriched GO biological processes of identified biomarkers in D-GRN

GO term Description Adjusted P-value Biomarker

GO:0031323 Regulation of cellular metabolic 
process

1.90E−30 NFKB2, DGKZ, JUN, KLF9, RAD51, 
UHRF1, CDC25A, CCNE1, CDK2, 
CCNE2, TAF11, PKMYT1, ZBTB4, 
UBE2S, CDKN2C, KDM4B, BCL2, 
TCEAL5, NFYA, NR3C1, MAZ, MAFF, 
CTGF, KLF4, STAT5B, TP73, GATA3, 
HOXA10, SOX4, BRCA1

GO:0060255 Regulation of macromolecule meta‑
bolic process

7.40E−29 NFKB2, BAX, JUN, KLF9, RAD51, UHRF1, 
CCNE1, CDK2, TAF11, ZBTB4, UBE2S, 
KDM4B, BCL2, TCEAL5, NFYA, NR3C1, 
MAZ, MAFF, CTGF, KLF4, STAT5B, TP73, 
GATA3, HOXA10, SOX4, BRCA1

GO:0051171 Regulation of nitrogen compound 
metabolic process

4.00E−26 NFKB2, JUN, KLF9, RAD51, UHRF1, 
CCNE1, CDK2, TAF11, ZBTB4, KDM4B, 
TCEAL5, NFYA, NR3C1, MAZ, MAFF, 
KLF4, STAT5B, TP73, GATA3, HOXA10, 
SOX4, BRCA1

GO:0051726 Regulation of cell cycle 3.30E−24 DGKZ, JUN, CDC25A, CDK2, CCNE2, 
PKMYT1, CDKN2C, NEK2, TACC3, 
BCL2, CTGF, STAT5B, TP73, BRCA1

GO:0019219 Regulation of nucleobase, nucleo‑
side, nucleotide and nucleic acid 
metabolic process

8.80E−24 NFKB2, JUN, KLF9, RAD51, UHRF1, 
CCNE1, CDK2, TAF11, ZBTB4, KDM4B, 
TCEAL5, NFYA, NR3C1, MAZ, MAFF, 
KLF4, STAT5B, TP73, GATA3, HOXA10, 
SOX4, BRCA1

GO:0010604 Positive Regulation of macromol‑
ecule metabolic process

1.10E−23 JUN, RAD51, CCNE1, CDK2, TAF11, 
UBE2S, BCL2, NFYA, CTGF, STAT5B, 
TP73, SOX4, BRCA1

GO:0051173 Positive regulation of nitrogen com‑
pound metabolic process

2.10E−23 JUN, RAD51, CCNE1, CDK2, TAF11, 
NFYA, STAT5B, TP73, SOX4, BRCA1

GO:0009893 Positive regulation of metabolic 
process

2.40E−23 JUN, RAD51, CCNE1, CDK2, TAF11, 
UBE2S, BCL2, NFYA, CTGF, STAT5B, 
TP73, SOX4, BRCA1

GO:0006357 Regulation of Transcription from RNA 
polymerase II promoter

1.00E−16 JUN, KLF9, UHRF1, NFYA, STAT5B, 
BRCA1

GO:0042127 Regulation of cell proliferation 1.20E−16 JUN, CDK2, CDKN2C, BCL2, CTGF, KLF4, 
STAT5B, SOX4, BRCA1

GO:0048545 Response to steroid hormone 
stimulus

5.60E−15 CCNE1, BCL2, CTGF, STAT5B, GATA3, 
BRCA1

GO:0051716 Cellular response to stimulus 1.70E−11 DGKZ, JUN, RAD51, UHRF1, CCNE1, 
POLE2, BCL2, PIK3R1, STAT5B, TP73, 
BRCA1

GO:0010941 Regulation of cell death 5.10E−10 BAX, JUN, TUBB, CDKN2C, BCL2, CTGF, 
STAT5B, TP73, SOX4, BRCA1

GO:0043067 Regulation of programmed cell 
death

1.70E−09 BAX, JUN, TUBB, CDKN2C, BCL2, CTGF, 
STAT5B, TP73, SOX4, BRCA1

GO:0042325 Regulation of Phosphorylation 6.80E−09 DGKZ, JUN, CDC25A, CCNE2, PKMYT1, 
CDKN2C, BCL2, CTGF, TP73

GO:0007346 Regulation of mitotic cell cycle 7.00E−09 DGKZ, CDK2, PKMYT1, NEK2, BCL2, 
STAT5B

GO:0051094 Positive regulation of developmental 
process

1.20E−08 BAX, JUN, CCNE1, BCL2, STAT5B

GO:0006974 Response to DNA damage stimulus 5.20E−07 DGKZ, RAD51, UHRF1, POLE2, TP73, 
BRCA1

GO:0000075 Cell cycle checkpoint 2.00E−06 DGKZ, CCNE2, BRCA1

GO:0045786 Negative regulation of cell cycle 2.60E−06 DGKZ, CDKN2C, BCL2, TP73

GO:0030522 Intracellular receptor mediated 
signaling pathway

2.90E−06 KLF9, CCNE1, BRCA1

GO:0048729 Tissue morphogenesis 4.00E−05 BCL2
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Conclusion
In conclusion, network rewiring reveals significant information about cancer mecha-
nisms. With the development of high-throughput technology, the amount of high quality 
gene expression data will keep arising. Condition-specific networks that are close to the 
real gene network will be established. The rewiring network components will be more 
clearly revealed, which will greatly benefit the discovery of biomarkers or signatures for 
breast cancer diagnosis. Obviously, our proposed strategy is rather general and it can be 
used to discovering biomarkers for other complex diseases.

Methods
Data sources and pre‑processing

The RNA-seq gene expression data are downloaded from the TCGA data portal that 
includes 1097 patients with BRCA (breast invasive carcinoma) and 112 normal controls. 
The dataset provides gene expression values in the form of mean-centered number for 
17,924 genes in all samples. In this study, 60% samples are used for training and testing 
purpose. We call them as internal training datasets. The remaining 40% samples are used 
for internal validation. We also download an independent dataset from NCBI GEO data-
base (ID: GSE42568) for validating the identified biomarkers. It has 104 cancer samples 
and 17 controls. They are called external independent validation data.

The integrative human GRN is downloaded from our RegNetwork knowledgebase 
[24]. RegNetwork is a comprehensive repository for GRN by collecting the documented 
gene regulations from more than 20 databases and the predicted gene regulations by 
aligning transcription factor binding sites. Here, we use a new version of it containing 
151,215 regulations in 19,719 genes.

Framework

Figure 6 shows the framework of biomarker identification. It mainly contains three steps. 
First, as shown in Fig. 6a, it acquires the background of GRN through our prior knowl-
edge about gene regulations in humans. It is a non-specific regulatory network with 
many redundant gene regulations. Gene expression data in normal and disease samples 
are used to evaluate the prior gene–gene interactions in specific phenotypes and elimi-
nate redundant ones in the background GRN. Second, by comparing the normal and 
disease specific GRNs reconstructed from gene expression data, we can clearly iden-
tify the rewiring network sections across the two phenotypic states. A differential GRN 
called D-GRN can be extracted by comparing them. Community detection algorithm 
is then employed to find closely-connected nodes in the form of modules as shown in 
Fig. 6b. Third, we apply a logistic regression with recursive feature elimination (LR-RFE) 
approach to find biomarker genes as shown in Fig. 6c.

Table 2  (continued)

GO term Description Adjusted P-value Biomarker

GO:0030217 T cell differentiation 8.10E−05 BCL2, STAT5B, SOX4

GO:0002009 Morphogenesis of an epithelium 1.50E−04 BCL2

GO:0030098 Lymphocyte differentiation 8.90E−04 BCL2, STAT5B, SOX4
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Gene regulatory network rewiring

Determining GRN is an important avenue for revealing disease mechanisms. In this 
study, disease GRN and normal GRN are reconstructed respectively based on the cor-
responding gene expression profiling data on a background network. The prior network 
is deposited in RegNetwork, a knowledge-based genome-wide regulatory network data-
base by integrating amount of data resources [24].

Numerous methods have been developed to reconstruct GRN from gene expression 
profile [25, 26]. Here, we particularly concern about the regulatory connection changes 
between disease and normal states. So we apply CMI-PC method to reconstruct the dis-
ease and normal GRNs [27–29]. Mutual information (MI) is a measure of the mutual 
dependence between the two variables. It is increasingly popular in GRN reconstruction 
for the ability to measure non-linear dependency [30, 31]. Conditional mutual informa-
tion (CMI) in gene pairs is the expected value of the mutual information of two interest 
genes given the joint regulation by other genes [32]. MI is a special case of zero-order 
CMI. The MI of variables X and Y, CMI of variables X and Y given Z are calculated by a 
widely-used estimation method [33] as

The approach partitions the supports of X, Y, Z into bins with finite size, where the mar-
ginal, joint, and conditional probability mass functions are denoted by p with the appro-
priate subscripts. px(i) = ∫

i
dxµx(x), py(i) = ∫

i
dyµy

(

y
)

, p
(

i, j
)

= ∫
i
∫
j
dxdyµ

(

x, y
)

 , and ∫
i
 

means the integral over the bin i.

(1)I(X ,Y ) = log
∑

i,j

log
p(i, j)

px(i)py(j)

(2)I(X ,Y |Z) =
∑

i,j,k

px,y,z(i, j, k) log
pz(k)px,y,z(i, j, k)

px,z(i, k)py,z(j, k)

Fig. 6  The framework of biomarker discovery based on network rewiring. a Reconstruct the disease and 
normal GRNs respectively by integrating prior background network and gene expression data. b Extract the 
rewiring regulations and establish a D-GRN. Module detection is implemented to find closely-connected 
nodes in D-GRN. c Identify biomarkers in each module through LR-RFE
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Similar to MI, a higher CMI value indicates a closer relationship between the variables 
X and Y given variable(s) Z. Path consistency (PC) algorithm is used to remove the edges 
from the background network based on CMI values. The process is, for an adjacent gene 
pair X and Y, first, calculate MI (0-order CMI). If the value is low or zero, delete the edge 
between them. Next, select the adjacent gene Z of them and compute first-order CMI 
I(X,Y|Z) and repeat the step to delete edges that are independent or not strongly con-
nected until no edge that can be deleted. The procedure will continue until there is no 
higher order CMI. The threshold values for deletion are the same in the two different 
conditions.

In this way, we obtain two specific GRNs in disease and normal samples respectively. 
The different interaction between genes shows the rewiring raised by the disease effects. 
We extract the rewiring parts and construct a D-GRN. In detail, we find the same genes 
with different connections and add their adjacent genes. Then we connect them based 
on the normal and disease GRNs.

Community detection

The communities in D-GRN are imperative in the understanding of the functional mod-
ule about the difference between normal and disease conditions. We apply a fast greedy 
detection algorithm [34] in the D-GRN to identify the closely-connected gene modules. 
This algorithm can be briefly described as follows: assuming every independent node in 
the network is a module. And then it merges modules to make the evaluation standard 
Modularity (Q) increase most until all nodes are involved in one module. Finally, a tree 
graph will appear with leaves representing gene nodes. Modules can be divided by dif-
ferent tree levels. The most reliable dividing corresponds to the maximum modularity. 
Modularity (Q) can be described as:

where eij is the ratio of numbers of edges connected module i and module j to total 
edges.

Biomarker discovery based on LR‑RFE

Biomarkers should be able to effectively distinguish disease from normal samples [17, 
35]. The detected network-based gene communities provide a pool of module biomarker 
candidates. To select better biomarkers in each module, we employ RFE with cross-vali-
dations based on logistic regression [36] classifier. Compared to other machine learning 
methods, LR is easier to implement, interpret, and also is a very efficient classification 
algorithm [37]. Because of its mathematical interpretability, it has a wide range of appli-
cations in the field of biomedicine [38]. The logistic regression can be considered as 
follows

(3)Q =
∑

i

(

eii − a2i

)

(4)ai =
∑

j

eij
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where Xi = (xi1, xi2, . . . , xip)
T , denotes the p-dimensional gene expression vector. yi is a 

corresponding binary variable. θ is the vector of the coefficients.
For over-fitting problem, we choose L2 regularization techniques to avoid, which is 

defined as

where λ is a positive tuning parameter used to balance the loss term and penalty term.
RFE law is in the process of continuously training the model [39]. Each time the 

training is completed, the specified number of low-importance features are deleted. 
Then new features are trained again. The importance of features is obtained again, 
and unimportant characteristics are deleted until the number of characteristics meets 
the predefined settings. In this paper, we delete one gene each time and through 
cross-validation to find the optimal number of features. If reducing the features will 
cause a performance loss, then no features will be removed. The selected biomarkers 
are further verified in the validation datasets.
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