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Background
Face recognition is critical in many applications, including criminal identification, video 
surveillance, and smart city. It can be performed by using different feature extraction 
and classification techniques. Because of the low cost and availability of conventional 
CCD/CMOS cameras, most of the existing approaches have been biased towards the vis-
ible spectrum for face recognition. Unfortunately, it is still a challenge to achieve robust 

Abstract 

Background: A thermal face recognition under different conditions is proposed in 
this article. The novelty of the proposed method is applying temperature information 
in the recognition of thermal face. The physiological information is obtained from the 
face using a thermal camera, and a machine learning classifier is utilized for thermal 
face recognition. The steps of preprocessing, feature extraction and classification are 
incorporated in training phase. First of all, by using Bayesian framework, the human 
face can be extracted from thermal face image. Several thermal points are selected as 
a feature vector. These points are utilized to train Random Forest (RF). Random Forest is 
a supervised learning algorithm. It is an ensemble of decision trees. Namely, RF merges 
multiple decision trees together to obtain a more accurate classification. Feature vec-
tors from the testing image are fed into the classifier for face recognition.

Results: Experiments were conducted under different conditions, including nor-
mal, adding noise, wearing glasses, face mask, and glasses with mask. To compare 
the performance with the convolutional neural network-based technique, experi-
mental results of the proposed method demonstrate its robustness against different 
challenges.

Conclusions: Comparisons with other techniques demonstrate that the proposed 
method is robust under less feature points, which is around one twenty-eighth to one 
sixtieth of those by other classic methods.
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face recognition in real-world environment [1, 2]. There are some variations causing the 
trouble of face recognition in visible spectrum such as pose, illumination, and disguises. 
The face recognition in visible spectrum is still one of the most active research topic.

To solve the problem of illumination changes in visible spectrum, one solution is to use 
a 3D device that is not so sensitive to lighting variations. However, the processing speed 
of the system is not so efficient. The problem above may be overcome by the techniques 
of infrared image. The infrared (IR) spectrum is usually divided into four sub-bands: 
(1) wavelength 0.75–1.4 μm—Near IR (NIR), (2) wavelength 1.4–3 μm—Short Wave IR 
(SWIR), (3) wavelength 3–8 μm—Medium Wave IR (MWIR), (4) wavelength 8–15 μm—
Long Wave IR (LWIR). The thermal infrared imagery of the wavelength ranges in the 
0.35 to 0.74 μm [3–5]. Thermal radiation has several benefits compared to visible light. 
Moreover, thermal infrared can be transmitted in bad illumination environment includ-
ing complete darkness.

Nowadays, researchers have investigated the techniques and applications of thermal 
infrared imagery such as lie detection [6], and human activity recognition [7]. Thermal 
cameras can detect thermal radiation emitted from an object, convert this radiation 
to temperature, and display an image of temperature distribution [8–10]. As we know, 
people undergoes physiological changes while facing stress. Zhu et  al. [6] proposed a 
segmentation for the extraction of forehead signatures in thermal video clips which can 
further be used in deception detection. It depends on tracking a forehead Region of 
Interest (ROI). By using robust features and a deep recurrent neural network, Uddin and 
Torresen [7] proposed a thermal camera-based human activity recognition. The pro-
posed approach is very useful to monitor humans in dark environments which is supe-
rior to the RGB cameras.

It is attractive to consider thermal sensors in face recognition, due to the develop-
ment of thermal infrared technology. Skin temperature can be visualized and measured 
with a thermal camera. Generally, human facial skin temperature is closely related to the 
underlying blood vessels. Many factors (physiological, environmental, and imaging con-
ditions) may affect the thermal imaging of a human face [11, 12]. A facial thermal pat-
tern, which is unique, is decided by the vascular structure of each face. While taking the 
images at different times, there is little change on its structure [13, 14]. These constant 
thermal features will be utilized to match the thermal signature to a specific individual. 
A technique analogous to fingerprint recognition [15] is adopted for identifying facial 
identities.

Buddharaju et  al. [16] presented a recognition system based on characteristic and 
time-invariant physiological information. The superficial blood vessel network was local-
ized with image processing technology. By using white top hat segmentation, the vascu-
lar structure was acquired from the surface of the skin. Then, Thermal Minuta Points 
(TMP)-based feature vectors were employed for recognition. Vigneau et  al. [17] ana-
lyzed the problems resulting from temporal variations of infrared face images. They used 
five traditional feature-based methods to develop a thermal face recognition. Hermosilla 
et al. [18] proposed a computer vision system based on the DrunkSpace. The dimension-
ality of the feature vectors was reduced with Fisher linear discriminant (FLD) method to 
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construct a subspace called DrunkSpace. A Bayesian classifier based on Gaussian mix-
ture models (GMM) is exploited to identify if an individual is drunk.

We propose a thermal face recognition under different conditions, motivated by [18], 
in this paper. The most representative points on the face are chosen for references [19]. 
The positions of several points are based on the veins and capillaries that cross the face. 
These points are selected as a feature vector, and the Random Forest algorithm [20] is 
adopted to construct the classifier. The RF algorithm is a supervised learning algorithm 
that can merge multiple decision trees together to obtain a more accurate classification 
result. During the testing phase, the corresponding feature vectors are extracted from 
testing images and inputted into the classifier for the identity of the individual. For per-
formance evaluation of the proposed method, experiments will be conducted under dif-
ferent conditions, including normal, adding noise, wearing glasses, and face mask. This 
system is able to recognize the identity of an individual using the information from the 
thermal image. The novelty of our method is to adopt the most representative thermal 
information on the face as a feature vector for classifier training. In comparison with 
the performance of the CNN-based technique [21], experimental results of the proposed 
method demonstrate its feasibility against different challenges.

Methods
As can be seen in Fig.  1, the proposed flowchart of thermal face recognition has two 
phases: training and testing phases. During the training phase, it contains three steps: (1) 
preprocessing, (2) feature extraction, (3) classification. First, the human face is acquired 
with the Bayesian framework [16] from the thermal image, and the face image is then 
normalized to a uniform size. A grid of several points is extracted from each of the ther-
mal images to generate a feature vector. This vector is then used for training RF classifier. 
During the testing phase, the corresponding feature vectors are extracted from the test-
ing images and inputted into the classifier for face identification.

Dataset

For the evaluation of the proposed method, the PUCV Drunk Thermal Face (PUCV-
DTF) [18] and the UCH Thermal Temporal Face (UCH-TTF) [17] databases are used to 
conduct experiments. While a great number of databases designed for different tasks, 
only some relevant thermal face databases have been presented so far. To further verify 
the feasibility of the proposed method in a real environment, we extend the scope of the 
experiment. The original images are modified in both databases for simulating real con-
ditions such as noise, and occlusion. A content description of each database is addressed 
as follows.

The samples of the PUCV-DTF database is shown in Fig. 2. These images are taken 
over time using FLIR Tau2 thermal imaging cameras [22]. This thermal database 
includes 46 people, each of them has five subsets, and each subset has 50 images. This 
results in a total of 250 images. In preprocessing, according to the coordinates of the 
eyes, each image is cropped and aligned. This leads to a resolution of 81 × 150 pixels.

Figure 3 shows the samples of the UCH-TTF database. These images are taken from 7 
different people, each of them has 50 images, by using a FLIR TAU 320 thermal cameras 
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[23]. In preprocessing, the images are cropped and aligned to 150 * 81 and 125 * 225 
pixels.

Fig. 1 The proposed flowchart of thermal face recognition

Fig. 2 The sample images in PUCV-DTF database
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Figure 4 shows five different experiment samples, including normal (original images), 
noise (with noise), glasses (in glasses), mask (in mask), and both (in glasses and mask). 
The normal image is shown in Fig. 4a. As the most common noise in thermal images 
[24], Gaussian noise is applied on thermal images, as shown in Fig.  4b. Glasses are 
opaque to most of the thermal spectrum, including LWIR, MWIR, and SWIR [5]. This 
means that a portion of the face might be occluded when wearing glasses, causing the 
loss of information near the eyes. In Fig. 4c, a specific mask in the eye position is added 
to the original images for simulating the wearing of glasses. To simulate face mask, a 
little bit nose and the mouth of the original images are masked, as shown in Fig. 4d. In 
Fig. 4e, to simulate the wearing of glasses and mask, both specific masks are added to the 
original images.

Feature extraction

The most representative thermal points on the face are selected as a feature vector and 
used for the classifier training. In Fig. 5, each black block is a neighborhood of 3 × 3 pix-
els. The average intensity of every black block is computed to compensate for the influ-
ence of noise. In [18], a different grid of 22 points was chosen from different regions of 
the face, as shown in Fig. 5a. Figure 5b shows the feature vectors of 12 positions, which 
might not be occluded by glasses and mask.

Random forest classification

RF [20] can be used for solving different classification problems. The main idea of the 
algorithm is based on multiple decision tree to construct an optimal classification model. 
This algorithm is also a variant of the bagging algorithm in the training process of deci-
sion trees. It can build a number of de-correlated trees to reduce the correlation between 
trees. Therefore, the performance of generalization is improved.

During the training phase, RF algorithm is employed to construct the classifier for 
multiclass classification. The feature vectors are used for classifier training. These vec-
tors are fed to each decision tree, and each tree votes for a class. Finally, the class belong-
ing of the object is decided according to the highest number of votes.

The implementation of the RF is based on Scikit-Learn package. Firstly, the Rand-
omizedSearchCV method of Scikit-Learn was used to do the Hyperparameter Tuning of 

Fig. 3 The sample images in UCH-TTF database



Page 6 of 17Lin et al. BMC Bioinformatics          (2021) 22:313 

Fig. 4 The original and modified experiment samples a Normal images b Noise images c Glasses images d 
Mask images e Glasses and Mask images
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the Random Forest for getting the best parameter of RF. The parameters of RF is listed 
as {’criterion’: ’gini’, ’max_depth’: 70, ’n_estimators’: 700, ’n_jobs’: -1, ’random_state’: 777, 
’warm_start’: True}.

Convolutional neural network

CNN [21] is a class of neural networks commonly used to analyze visual imagery in deep 
learning. It can be used to solve complex image classification problems [25, 26]. CNN 
consists of different layers that include the Input layer, Output layer, Convolution layer, 
Pooling layer, Flatten layer, and Fully connected layer (FC). The convolutional layers 
effectively process images to extract features from training sets. By the overlap of the 

Fig. 5 Feature vectors a 22 positions b 12 positions
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small images, these layers maintain the spatial relationship among the pixels. FC layers 
calculate the predicted values of the test image through the feature vector of the last 
convolution layer. The recognition result is the category related to the highest probabil-
ity. In this study, the architecture of CNN is designed referring to VGGNet [27]. VGG-
Net’s weight configuration has been used as a baseline feature extractor, it is publicly 
available. VGG16 architecture weights are quite large, which may be a little bit difficult 
to handle. The simple and better structure in CNN model is decided by choosing the 
best accuracy associated with different kernel configurations and architectures. Table 1 
lists our architecture of CNN.

Results
In this section, the proposed method is realized in Python language. The experiments 
are conducted on Windows PC with 3.2 GHz and 8G RAM.

Different feature vector sizes

In Table 2, parameter F represents the size of the feature vector, and parameter N indi-
cates the images per individual used for the classifier training. The model is trained 
using the normal image, and tested using images with glasses and mask. For example, 

Table 1 Our architecture of CNN

Convolution layer-1 (5 * 5, 16)

maxpool

Convolution layer-2 (3 * 3, 32)

maxpool

Convolution layer-3 (3 * 3, 46)

maxpool

Convolution layer-4 (3 * 3, 128)

maxpool

FC-1024

FC-1024

soft-max

Table 2 Performance of images with glasses and mask (both databases)

Glasses and mask Normal
N = 5 N = 10 N = 15 N = 20 N = 25 N = 30

PUCV-DTF

 10 97.57 99.13 99.96 100 100 100

 12 98.96 100 100 100 100 100

 14 96.63 98.46 98.59 99.35 99.57 99.63

 22 35.17 36.65 36.57 37.04 37.91 38.65

UCH-TTF

 10 76.14 82.57 83.29 83.57 85.57 86.86

 12 77.57 84.61 84.86 86.86 89.57 90.14

 14 75.14 82.43 82.57 83.29 84.29 86.14

 22 27.14 29.43 29.86 30.29 31.43 32.71
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N = 30 means we adopt the first 30 images in database for training, and test the last 20 
images out of 50 images with glasses and mask. The experiment is conducted to analyze 
the performance of different feature vector size under occlusion (in glasses and mask). 
This analysis will allow us to decide the size of feature vectors with the best performance 
in the case of occlusion. The results of the experiments are compared to conclude which 
of the four feature vector size gives the best performance. In both databases, the size of 
feature vectors for F = 12 outperforms the rest of sizes.

Three different experiments

Figure  6 presents three different experiments. Five experiment images, as shown in 
Fig. 4, are used to conduct these experiments. In the first experiment, the normal image 
is trained and each image dataset is tested separately, as shown in Fig.  6 1-a and 2-a. 
Each experiment image is utilized for training and testing, respectively, as shown in 
Fig. 6 1-b and 2-b. In Fig. 6 1-c and 2-c, all experiment images are merged for training 
set, and each experiment image is tested separately.

Performance evaluation

Tables 3 and 4 present results of three different experiments, each of them has five 
experiment images, including normal, noise, glasses, mask, and both. The experi-
ment results are obtained by RF approach with 22 and 12 thermal points. With 

Fig. 6 Three different experiments. 1-a, 2-a The normal image is trained and each image dataset is tested 
separately, 1-b, 2-b Each experiment image is utilized for training and testing, respectively, 1-c, 2-c All 
experiment images are merged for training set, and each experiment image is tested separately
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normal and noise images of the PUCV-DTF database in Table 3, experimental results 
for F = 22 are very impressive, even the number of training images is not many. 
When the size of feature vectors is reduced, the performance will decrease, as shown 
in Table 4. It is obvious that the size of feature vectors determines the recognition 
rate. With the occluded images, the first experiment proves that the recognition rate 
of RF approach with 22 thermal points is not satisfactory.

In the second and third experiments, the recognition rate of RF approach with 22 
thermal points is improved significantly. However, in the third experiment, when the 
parameter N is more than 5, the experimental results for F = 22 are worse than those 
for F = 12 in the occluded images. The reason why the recognition rate for F = 22 is 
worse is because the occluded thermal points are used in classifier training. Based 
on the comparisons between Tables 3 and 4, it is concluded the RF approach with 12 
thermal points achieves better performance.

There are some articles targeting issues of thermal image using CNN-based meth-
ods [28, 29]. Table 5 lists two experiment results for dynamic feature selection with 
F = 22 or 12 and CNN approaches. The glasses or mask blocks a large portion of 
thermal energy, resulting in a loss of information near this region. The system can 
adaptively choose different feature vector size under different conditions (in normal, 
noise, glasses, mask, glasses and mask). In the case of occlusion (G, M, and G + M), 
feature vector size F = 12 has the better performance. On the other hand, in the case 
of non-occlusion (normal and noise), feature vector size F = 22 has the better per-
formance. In both databases, when the number of training images is less than 10, 
the results of CNN is worse than those of RF approach. This experiment proves that 
more samples are required for CNN approach to obtain a better performance. The 
recognition rate of the proposed RF method is still comparable for the UCH-TTF 
database. This means the RF approach is competitive while having small database.

To demonstrate the robustness of our method, comparisons with 6 methods on 
UCH-TTF database [17] were conducted as well. As shown in Fig.  7, the original 
and modified experiment samples were selected from UCH-TTF database. Image is 
divided into 10 regions for each object (5 rows, 2 columns). One of ten regions is 
then randomly masked to simulate the situation of occlusion (see Fig. 7b). As shown 
in Fig. 7c–e, the noise is added to the original coordinates of the image. The percent-
age of noise is related to the intensity of gray values between the centers of two eyes. 
The noise levels for each image are randomly selected between 0% and the maxi-
mum gray value of 2.5%, 5% or 10% to generate three different levels of noise.

The recognition rates for UCH-TTF together with average (Avg) face recognition 
and standard deviation (SD) are listed in Table 6. We selected 20 samples from each 
person of the UCH-TTF dataset as gallery set and the remaining as test sets (normal, 
occlusion, noise2.5%, noise5% and noise10%). The gallery set contains only normal 
images without occlusion or noise. The proposed method outperforms other clas-
sic appearance based methods, except for the WLD and GJD methods [17]. How-
ever, the total feature points per target used in our experiment for training model 
is 440 (22 feature points with 20 images), which is around one twenty-eighth to one 
sixtieth of those by other classic methods. Moreover, the standard deviation of the 
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proposed method is 3.32 comparing to 6.8 of GJD and 6.9 of WLD methods. Our 
proposed method is apparently more robustness.

Discussion
All experiments are conducted under different conditions. When the facial face 
is occluded, this results in the difficulty of face recognition. The experiment with 
occluded images is more difficult than other experiment because the eyes and mouth 
on face are masked, leading to the loss of important information. In the case of face 
masking, the performance of recognition is not satisfactory for the RF approach with 
22 thermal points. In summary, the dynamic model (RF) with F = 22 or 12 obtains a 
robust recognition rate under different conditions.

We analyze the relationship between training set and testing set, leading to three 
different experiments. In Fig. 6 1-a and 2-a, only training the normal images cannot 
effectively represent the features of different images. As shown in Fig. 6 1-b and 2-b, 
training set is customized according to the specific image. Therefore, the recogni-
tion rate of five experiment images has the best performance, as listed in Tables  3 
and 4. This proves better recognition rate comes from more specific training data. In 
Fig. 6 1-c and 2-c, all experiment images are merged for classifier training to obtain 

Fig. 7 The original and modified experiment samples. a Normal images, b Occlusion images, c Noise2.5% 
images, d Noise5% images, e Noise10% images

Table 6 Recognition rates for UCH-TTF database

Normal Occlusion Noise2.5% Noise5% Noise10% Avg SD

Normal 93.10 92.85 96.57 93.71 87.42 92.73 3.32
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the performance of generalization. Finally, comparing with the PUCV-DTF database, 
the UCH-TTF database has more temporal variation. This leads to the decrease of the 
performance.

Conclusions
In this article, thermal face recognition under different conditions has been proposed. 
The proposed method can effectively exploit physiological information to perform 
face recognition. The method has two phases: (1) training phase (2) testing phase. 
The first phase contains three steps, including preprocessing, feature extraction, and 
classification. A grid of 22 or 12 thermal points is extracted from the face for generat-
ing a feature vector. The feature vector corresponding to each experiment image is 
exploited for the RF classifier training and the face recognizing in the testing phase. 
Comparisons with other techniques prove that the proposed method is robust under 
less feature points, which is around one twenty-eighth to one sixtieth of those by 
other classic methods. Besides, the standard deviation of the proposed method is one 
half to one fifth of other methods.

To deal with real world situation, we combine five experiment images (normal, 
noise, and occlusion) as a training set to improve the robustness and generalization 
of the model. In comparison with the performance of CNN, the experimental results 
of the proposed RF method demonstrate its performance against different challenges. 
The novelty of our method is to use the most representative temperature area on the 
face for thermal face recognition. Even in occluded situations, experimental results 
are still stable. On the other hand, it took 69 days for the collection of the UCH-TTF 
database. This results in the difficulty of thermal face recognition.

Abbreviations
CNN: convolutional neural network; RF: random forest; IR: infrared; NIR: near infrared; SWIR: short wave infrared; MWIR: 
medium wave infrared; LWIR: long wave infrared; ROI: region of interest; FLD: Fisher linear discriminant; GMM: Gaussian 
mixture models; TMP: thermal minuta points; PUCV-DTF: PUCV drunk thermal face; UCH-TTF: UCH thermal temporal face; 
FC: fully connected layer.

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Bioinformatics Volume 22 Supplement 5 2021: Proceedings of the Inter-
national Conference on Biomedical Engineering Innovation (ICBEI) 2019–2020. The full contents of the supplement are 
available at https:// bmcbi oinfo rmati cs. biome dcent ral. com/ artic les/ suppl ements/ volume- 22- suppl ement-5

Authors’ contributions
SFL, and WSC have made substantial contributions to the conception and design of the work. SFL, WSC, and LMC have 
made substantial contributions to the acquisition, analysis, and interpretation of data. SFL, and LMC have drafted the 
work and substantively revised it. All authors have read and approved the final manuscript.

Funding
This work is supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 109-2221-E-259-016-MY3. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manu-
script. Publication costs are funded by authors.

Availability of data and materials
The data that support the findings of this study are available from [17, 18] but restrictions apply to the availability of 
these data.

Declarations

Ethics approval and consent to participate
Not applicable.

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-5


Page 16 of 17Lin et al. BMC Bioinformatics          (2021) 22:313 

Consent to publish
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 23 May 2021   Accepted: 1 June 2021

References
 1. Lin SD, Liu BF, Lin JH. Combining speeded up roust features with principal component analysis in face recognition 

system. Int J Innov Comput Inf Control. 2012;8(12):8545–56.
 2. Adini Y, Moses Y, Ullman S. Face recognition: the problem of compensating for changes in illumination direction. 

IEEE Trans Pattern Anal Mach Intell. 1997;19:721–32.
 3. Kopaczka M, Kolk P, Merhof D. A fully annotated thermal face database and its application for thermal facial expres-

sion recognition. In: The IEEE international instrumentation and measurement technology conference (I2MTC), 
2018; pp 1–6.

 4. Pavlović M, Stojanović B, Petrović R, Stanković S. Fusion of visual and thermal imagery for illumination invariant face 
recognition system. In: The 14th symposium on neural networks and applications (NEUREL), 2018; pp 1–5.

 5. Ghiass RS, Arandjelović O, Bendada H, Maldague X. Illumination-invariant face recognition from a single image 
across extreme pose using a dual dimension AAM ensemble in the thermal infrared spectrum. In: The international 
joint conference on neural networks (IJCNN), 2013; pp 1–10.

 6. Zhu Z, Tsiamyrtzis P, Pavlidis I. Forehead thermal signature extraction in lie detection. In: The 29th annual interna-
tional conference of the IEEE engineering in medicine and biology society, 2017; pp 243–246.

 7. Uddin MZ, Torresen J. A deep learning-based human activity recognition in darkness. In: Colour and visual comput-
ing symposium, 2018; pp 1–5.

 8. Kirimtat A, Krejcar O, Selamat A, Herrera-Viedma H. FLIR vs SEEK thermal cameras in biomedicine: comparative 
diagnosis through infrared thermography. BMC Bioinform. 2020;21:88.

 9. Socolinsky DA, Selinger A. Thermal face recognition in an operational scenario. In: The proceedings of the IEEE 
computer society conference on computer vision and pattern recognition, Washington, DC, USA, 2004; pp 
II-1012-II-1019.

 10. Chiang LW, Guo SJ. The research of infrared thermal image diagnostic model for building external wall tiles. Adv 
Technol Innov. 2017;2(2):56–60.

 11. Chen X, Flynn J, Bowyer W. Visible-light and infrared face recognition. In: The proceedings of the workshop multi-
modal user authentication, 2003; pp 48.

 12. Hermosilla G, Ruiz-del-Solar J, Verschae R, Correa M. A comparative study of thermal face recognition methods in 
unconstrained environments. Pattern Recogn. 2012;45(7):2445–59.

 13. Guzman AM, Goryawala M, Adjouadi M. Generating thermal facial signatures using thermal infrared images. In: The 
IEEE international conference on emerging signal processing applications, 2012; pp 21–24.

 14. Buddharaju P, Pavlidis I. Physiological face recognition is coming of age. In: The IEEE conference on computer vision 
and pattern recognition, Miami, FL, 2009; pp 128–135.

 15. Song HK, AlAlkeem E, Yun J, Kim TH, Yoo H, Heo D, Chae M, Yeun CY. Deep user identification model with multiple 
biometric data. BMC Bioinform. 2020;21:315.

 16. Buddharaju P, Pavlidis IT, Tsiamyrtzis P, Bazakos M. Physiology-based face recognition in the thermal infrared spec-
trum. IEEE Trans Pattern Anal Mach Intell. 2007;29(4):613–26.

 17. Vigneau GH, Verdugo JL, Verdugo L, Farias Castro G, Pizarro F, Vera E. Thermal face recognition under temporal varia-
tion conditions. IEEE Access. 2017;5:9663–72.

 18. Hermosilla G, Verdugo JL, Farias G, Vera E, Pizarro F, Machuca M. Face recognition and drunk classification using 
infrared face images. J Sens 2018; 1–8.

 19. Rustemeyer J, Radtke J, Bremerich A. Thermography and thermoregulation of the face. Head Face Med. 2007;3:17.
 20. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
 21. LeCun Y, Bengio T. Convolutional networks for images speech and time series. The Handbook of Brain Theory and 

Neural Networks. Cambridge: MIT Press; 1995. p. 255–8.
 22. FLIR Tau 2 product specification, 2014. http:// cvs. flir. com/ tau2- produ ct- spec (visited on 10/11/2020).
 23. Tau Feature Comparison, 2017. http:// www. flir. com/ cores/ displ ay/? id= 60983 (visited on 10/11/2020).
 24. Petrović R, Stojanović B, Pavlović S, Stanković S. ThermalImagery noise influence on face recognition performance. 

In: The 18th international symposium INFOTEH-JAHORINA (INFOTEH), 2019; pp 1–5.
 25. Yu I, Kim D, Park J, Hou J, Choi S, Lee H. Identifying photorealistic computer graphics using convolutional neural 

networks. In: The IEEE international conference on image processing (ICIP), 2017; pp 4093–4097.
 26. Yang J, Ren P, Zhang D, Chen D, Wen F, Li H, Hua G. Neural aggregation network for video face recognition. In: The 

IEEE conference on computer vision and pattern recognition (CVPR), 2017; pp 5216–5225.
 27. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: The international 

conference on learning representations, 2015.
 28. Vuković T, Petrović R, Pavlović M, Stanković S. Thermal image degradation influence on R-CNN face detection perfor-

mance. In: 27th telecommunications forum (TELFOR), 2019; pp 1–4.
 29. Kumar S, Singh SK. Occluded thermal face recognition using bag of CNN (BoCNN). IEEE Signal Process Lett. 

2020;27:975–9.

http://cvs.flir.com/tau2-product-spec
http://www.flir.com/cores/display/?id=60983


Page 17 of 17Lin et al. BMC Bioinformatics          (2021) 22:313  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Thermal face recognition under different conditions
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Dataset
	Feature extraction
	Random forest classification
	Convolutional neural network

	Results
	Different feature vector sizes
	Three different experiments
	Performance evaluation

	Discussion
	Conclusions
	Acknowledgements
	References


