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Background
Combination drug therapy is increasingly used to manage complex diseases such as dia-
betes, cancer, and cardiovascular diseases. In particular, patients with type 2 diabetes 
often do not only suffer from symptoms of elevated blood glucose levels but also have 
several comorbidities that require multifactorial pharmacotherapy. Older patients may 
receive 10 or more concomitant drugs to manage multiple disorders [1, 2]. However, the 
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usage of concomitant drug significantly increases the risk of harm associated with drug-
drug interaction (DDI), doubling for each additional drug prescribed [3–7]. DDIs are 
the major cause of adverse drug events (ADEs) [8, 9], accounting for 20–30% of ADEs 
[10], and one of the leading reasons for drug withdrawal from the market [11]. DDIs 
can induce clinical consequences ranging from diminished therapeutic effect to exces-
sive response or toxicity as a result of pharmacokinetics, pharmacodynamics, or a com-
bination of the mechanism [12]. Adverse effects from DDIs may not be recognized until 
a large cohort of patients has been exposed to clinical practices due to limitations of the 
in  vivo and in  vitro models used during the pre-marketing safety screen. As a result, 
advanced computational methods to predict future DDIs are crucial to reducing unnec-
essary ADEs.

Over the past decade, deep learning has achieved remarkable success in a number of 
research areas [13]. Because of its ability to learn at higher levels of abstraction, deep 
learning has become a promising and effective tool for working with biological and 
chemical data [14]. Some deep learning techniques have been applied to predict DDI, 
and significantly improved the prediction accuracy. For example, Ryu et  al. proposed 
DeepDDI, a computation model that predicts DDI with a combination of the structural 
similarity profile generation pipeline and deep neural network (DNN) [15]. Lee et  al. 
built the same DNN model but included three types of features as input: structural simi-
larity profiles, Gene Ontology term similarity profiles, and target gene similarity profiles 
of known drug pairs; and used autoencoder to reduce the dimensions of each profile 
[16]. Rohani and Eslahchi developed a neural network-based method with the input of 
the model being an integrated similarity profile of various information about drug pairs 
by a non-linear similarity fusion method called SNF [17]. Compared with Random For-
est, K-nearest neighbor, and support  vector  machine, the DNN used in those models 
shows better performance in DDI prediction [15–17]. Karim et al. used LSTM to learn 
the overall relationship of feature sequences to predict DDIs [18]. Zheng et  al. con-
structed a gene-drug pair sequence of length 2 and input it into the LSTM to predict 
drug-target interactions. Their results show that LSTM’s classification performance is 
better than other deep learning methods [19].

In Euclidean space, every pixel in an image can be regarded as a vertex in a graph, 
and each vertex is connected with a fixed number of adjacent pixel points. Convolu-
tional neural network (CNN) can greatly speed up the training tasks related to images. 
Dhami et  al. used CNN to predict DDIs directly from images of drug structures [20]. 
However, due to the inconsistency of the number of adjacent points of each vertex in the 
graph data structure, the image convolution operation is not applicable in non-Euclid-
ean space. Kipf and Welling proposed a graph convolutional neural network (GCN), 
which extended convolution to the non-Euclidean space [21]. Feng et  al. proposed a 
DDIs predictor combining GCN and DNN, in which each drug was modeled as a node 
in the graph, and the interaction between drugs was modeled as an edge. Features were 
extracted from the graph by GCN and input into DNN for prediction [22]. Zitnik et al. 
proposed Decagon, a DDIs prediction model based on GCN and multimodal graph, 
which embedded the relationship between drugs, proteins, and side effects to provide 
more information [23]. In general, similar structures and properties of drugs are associ-
ated with similar drug side effects [24, 25]. Ma et al. encoded each drug into a node in 
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the graph and the similarity between drugs was coded into an edge. A multi-view graph 
autoencoder (GAE) based on drug characteristics was used to predict DDIs [26].

Due to a large amount of diverse drug information data, DDI prediction in silico 
remains a challenge and there is still room for improvement in prediction performance. 
In 2010, the National Institute of Health (NIH) funded the Library of Integrated Net-
work-based Cellular Signatures (LINCS) project. This project aims to draw a compre-
hensive picture of multilevel cellular responses by exposing cells to various perturbing 
agents [27]. The L1000 database of the LINCS project has collected millions of genome-
wide expressions induced by 20,000 small molecular compounds on 72 cell lines [28]. 
Applying deep learning, the L1000 database has previously been used to predict adverse 
drug reactions [29], drug pharmacological properties [30, 31], and drug-protein interac-
tion [32]. However, whether this unified and comprehensive transcriptome data resource 
can be used to build a better DDI prediction model is still unclear. In this study, based on 
drug-induced transcriptome data in the L1000 database, we aim to explore DDI predic-
tion by developing a new deep learning model with GCAN and LSTM.

Results
GCAN embedding of drug‑induced transcriptome data

Since the original drug-induced transcriptome data contains technical noise, the cor-
relation observed between drug-induced transcriptome data and drug structure is very 
low. In order to reduce the impact of noise, the drug-induced transcriptome data was 
embedded before building a DDI prediction model. To establish a stronger relation-
ship between the drug structure and drug-induced transcriptome data, we used both 
the structure information of drugs and the similarity information between drugs in the 
process of embedding with GCAN. As shown in Fig. 1a, without embedding, the Pear-
son correlation coefficients between drug-induced transcriptome data and drug struc-
ture are 0. After the GCAN embedding, the majority of Pearson correlation coefficients 
between GCAN embedded features and drug structures increased to 0.25. In addition, 
20 drug molecules were randomly selected to calculate their similarity based on differ-
ent features. The heat maps of similarity between those drugs in Fig. 1b show that over-
all relationships between GCAN embedded features and drug structures are improved. 

Fig. 1  The Embedding of Drug-Induced Transcriptome Data by GCAN. a The correlation analysis between 
drug-induced transcriptome data, embedded features (autoencoder and GCAN) and drug structure. b The 
heat map of drug similarity
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We also tried to only use the structure information of drugs to embed drug-induced 
transcriptome data through an autoencoder network. Compared with GCAN embed-
ded features, we observed less improvement in the correlation between the autoencoder 
embedded drug features and the drug structure (Fig. 1a, b).

DDI prediction with GCAN embedded features

To explore whether GCAN embedded features can improve DDI prediction, we com-
pared different drug features as input in various machine learning methods [15–17], and 
the prediction performance was evaluated through fivefold cross-validation. Results are 
summarized in Table  1. In contrast to the original drug-induced transcriptome data, 
GCAN embedded features significantly improved DDI performance in all models. In the 
traditional multi-label classification models such as MLKNN and Random forest, GCAN 
embedded feature led to larger improvement than autoencoder embedded features. The 
macro-F1 and macro-precision between GCAN embedded features and autoencoder 
embedded features for DDI prediction are not significantly different in the DNN model, 
but GCAN embedded features have a better DDI prediction macro-recall.

To further evaluate the performance of GCAN embedded features, we examined the 
results of the DNN model under each DDI type. Compared with the original drug-
induced transcriptome data, comparable or better classification F1-score is observed for 
52 out of 80 DDI types when using GCAN embedded features, and for 41 out of 80 DDI 
types when using autoencoder embedded features (Fig. 2).

Further improve DDI prediction with LSTM

DDIs often involve one drug changing the pharmacological effect of another [33], so 
it may be better to predict DDIs by treating the two drugs as a sequence. However, 
the DNN-based methods reported above simply combined the two drugs after feature 
extraction, without considering the sequence relationship between the drugs [15–17]. 
For this reason, we used LSTM to model this sequence relationship (For more details, 
see Additional file  1: Fig. S3 and Table  S5). Experimental results in Table  2 show 
that LSTM is superior to DNN in macro-F1 or macro-recall for both the original 

Table 1  DDI prediction performance of various machine learning models with different drug 
features as input. The p value compared with using GCAN features is added in brackets

Bold indicates the best prediction performance

Method Feature Macro-F1 Macro-recall Macro-precision

DNN Original 90.1% ± 1.9% (0.001) 90.7% ± 1.8% (0.0051) 91.3% ± 2.3% (0.009)

Autoencoder 91.3% ± 0.7% (0.0655) 90.8% ± 0.9% (0.0223) 93.2% ± 1.1% (0.6219)

GCAN 93.3% ± 1.4% (–) 93.9% ± 1.7% (–) 93.7% ± 1.4% (–)
Random forest Original 40.7% ± 1.8% (4E − 05) 35.7% ± 1.5% (4.3E − 05) 58.6% ± 1.4% (0.0008)

Autoencoder 45.2% ± 2% (0.0004) 39.9% ± 1.9% (0.0004) 62.9% ± 2.3% (0.001)

GCAN 57.6% ± 3% (–) 51.6.9% ± 2.9% (–) 75.7% ± 4.2% (–)
MLKNN Original 40.5% ± 1.2% (1.2E − 05) 34.7% ± 1.1% (1E − 05) 54.9% ± 2.4% (2.9E − 05)

Autoencoder 51.5% ± 1.5% (5.5E − 05) 46.5% ± 1.9% (0.0001) 63.5% ± 2% (6.6E − 06)

GCAN 74.3% ± 2.1% (–) 70.3% ± 1.9% (–) 83.4% ± 2.2% (–)
BRkNNaClassifier Original 29.9% ± 1.7% (1E − 05) 23.4% ± 1.5% (9E − 06) 52.2% ± 2.8% (4.2E − 05)

Autoencoder 39.1% ± 1.3% (4.4E − 05) 32.3% ± 1.3% (2.7E − 05) 59.2% ± 2.1% (0.0003)

GCAN 67.5% ± 2.4% (–) 61.1% ± 2.4% (–) 83.4% ± 3.3% (–)
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drug-induced transcriptome data and embedded drug features. GCAN embedded 
drug features plus LSTM model has better prediction performance with a macro-F1 
of 95.3% ± 1.5%, macro-precision of 94.6% ± 1.9%, and macro-recall of 96.6% ± 1.3% 
(Table 2).

DDI prediction performance in other cell lines and on other DDI databases

The above analysis demonstrates that the GCAN embedded features plus LSTM 
model is the best strategy for DDI prediction. In order to further validate its per-
formance for DDIs across different cell lines, we processed the drug-induced tran-
scriptome data of A357, A549, HALE, and MCF7 cells by GCAN, and compared the 
DDI prediction performance of these GCAN embedded features and original drug-
induced transcriptome data within DNN vs LSTM based models. Table 3 shows the 
macro-F1, macro-recall and macro-precision indicators of GCAN embedded features 
for all four cell lines outperform the original drug-induced transcriptome data in both 
deep learning models, proving that GCAN embedded features are more suitable for 
DDI prediction. Additionally, when the LSTM model surpasses the DNN in terms 
of DDI prediction performance, it means that the LSTM model is better at learning 

Fig. 2  DDI prediction F1-score for each DDI type with DNN

Table 2  Comparison of DDIs prediction performance on LSTM and DNN model. The p value 
compared with LSTM is added in brackets

Bold indicates the best prediction performance

Feature Method Macro-F1 Macro-recall Macro-precision

Original DNN 90% ± 1.9% (0.0008) 90.7% ± 1.8% (0.0007) 91.3% ± 2.3% (0.0056)

LSTM 94.2% ± 1.9% (–) 95.5% ± 1.9% (–) 93.5% ± 1.9% (–)
Autoencoder DNN 91.2% ± 0.7% (0.086) 90.8% ± 0.9% (0.0013) 93.2% ± 1.1% (0.0445)

LSTM 92.5% ± 1.5% (–) 95.2% ± 1.6% (–) 90.8% ± 1.6% (–)

GCAN DNN 93.3% ± 1.4% (0.004) 93.9% ± 1.7% (0.008) 93.7% ± 1.4% (0.12)

LSTM 95.3% ± 1.5% (–) 96.6% ± 1.3% (–) 94.6% ± 1.9% (–)
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potential drug relationships than the traditional DNN. Furthermore, GCAN embed-
ded features plus LSTM achieve the best DDI prediction performance for all four cell 
lines. The findings also support that the proposed GCAN embedded features plus 
LSTM model can improve large-scale drug-induced transcriptome data analysis for 
DDI prediction.

In addition, we have replicated our model on two datasets (DS1 and DS2) from Rohani 
and Eslahchi’s report [17]. As compared with the prediction method used in their report, 
our model achieves better prediction performance (Additional file  1: Table  S3 and 
Table S4).

Advantage of GCAN embedded features for DDI prediction

One of the fundamental assumptions in building a computational model for drug 
research is that the more similar the drugs are, the more similar their effects are [23], 
which is also the basic assumption in many DDI prediction studies. As a neural network 
is a black box, it is difficult to determine whether the knowledge learned by a neural 
network also aligns with this assumption. Under this consideration, we explored the 
ability of our model to identify the most similar samples in the training set when pre-
dicting DDIs. In our training set, there are 12 drugs that interact with the drug cabergo-
line and can lead to decreased adverse reaction; and there are 114 drugs that can cause 
an increased adverse reaction. The number of drugs that interact with the drug amodi-
aquine and can lead to decreased QTC prolongation or increased QTC prolongation is 
12 and 96, respectively. Using GCAN embedded features plus LSTM for DDI prediction, 
92.75% of the drugs that are predicted to interact with cabergoline and increase adverse 
reaction are most similar to one of the drugs that are known to interact with cabergoline 
and increase adverse reaction in the training set (Fig.  3). However, using autoencoder 

Table 3  Comparison of model performance in other cell lines. The p value compared with 
GCAN + LSTM is added in brackets

Bold indicates the best prediction performance

Cell Method Macro-F1 Macro-recall Macro-precision

A357 Original + DNN 85.3% ± 3% (0.001) 86.9% ± 3.5% (0.0003) 86.4% ± 2.8% (0.005)

GCAN + DNN 88.8% ± 2% (0.03) 89.9% ± 2% (0.035) 89.8% ± 2.1% (0.029)

Original + LSTM 89.2% ± 2.7% (0.005) 90.5% ± 3.6% (0.012) 89.5% ± (0.004)

GCAN + LSTM 92.8% ± 2.5% (–) 94.4% ± 2.7% (–) 92.4% ± 2.4% (–)
A549 Original + DNN 87.4% ± 1.2% (0.001) 88.2% ± 1.4% (0.001) 89% ± 1.3% (0.01)

GCAN + DNN 89.8% ± 1.6% (3.7E − 05) 90% ± 2.1% (0.0002) 91.5% ± 1.9% (0.112)

Original + LSTM 90.4% ± 1.1% (0.003) 91.9% ± 1.5% (0.011) 90.2% ± 0.8% (0.63)

GCAN + LSTM 92.7% ± 1.6% (–) 94.1% ± 2.4% (–) 92.3% ± 1.6% (–)
HA1E Original + DNN 86.4% ± 2% (0.0007) 87.9% ± 1.9% (0.0004) 87.4% ± 2.2% (0.003)

GCAN + DNN 90.8% ± 1.4% (0.001) 91.3% ± 1.7% (0.002) 91.8% ± 1.4% (0.002)

Original + LSTM 91.6% ± 1.3% (0.012) 92.3% ± 1.7% (0.01) 91.9% ± 1.1% (0.021)

GCAN + LSTM 94.5% ± 0.8% (–) 95.9% ± 0.7% (–) 94.1% ± 0.9% (–)
MCF7 Original + DNN 88.9% ± 1.3% (0.001) 89.3% ± 1.4% (0.001) 90.5% ± 2.2% (0.021)

GCAN + DNN 92.9% ± 1.2% (0.005) 93.5% ± 1.4% (0.0004) 93.5% ± 1.2% (0.741)

Original + LSTM 93% ± 1.1% (0.01) 94.9% ± 1.8% (0.011) 92.3% ± 1.1% (0.104)

GCAN + LSTM 94.8% ± 1.6% (–) 96.7% ± 1.9% (–) 93.6% ± 1.6% (–)
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embedded features or original drug-induced transcriptome data, this discrimination is 
much lower, 81.25% and 70% respectively. In addition, we found that the highest propor-
tion of drugs that are predicted to interact with amodiaquine and increase QTC prolon-
gation are most similar to one of the drugs that are known to interact with amodiaquine 
and increase QTC prolongation in the training set by using GCAN embedded features. 
Therefore, it indicates that GCAN embedded features may improve DDI prediction 
by increasing the differentiation between drugs and is more consistent with the basic 
assumptions used in the drug-related computational model.

Validation of new DDI predictions with an application in diabetes

The next question that we aimed to answer is whether our proposed DDI prediction 
model can be used for the discovery of new DDIs. To find new DDIs, the entire DDI 
dataset (total 89,970 drug pairs) was input into the trained model to predict DDIs. After 
excluding the existing DDIs, a total of 21,670 new DDIs were predicted. Then we used 
the latest version of the DrugBank database (version 5.1.7) data released in April 2020 

Fig. 3  Similarity between drugs predicted to increase adverse reaction (with cabergoline) or QTC 
prolongation (with amodiaquine) and drugs (increased or decreased adverse reaction with cabergoline) or 
drugs (increased or decreased QTC prolongation with amodiaquine) of training set. The most similar drugs in 
each row are represented by blue-green dots
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to verify the prediction results and found that 975 new DDIs were included in the latest 
DrugBank database (version 5.1.7) (Fig. 4a).

Cytochrome P450 enzyme (CYP450) is a key enzyme for drug metabolism in vivo. The 
inhibition of this enzyme’s activity will lead to drug accumulation and cause potential 
drug side effects [34, 35]. Sulfonylurea hypoglycemic drugs are mainly metabolized by 
CYP2C9 of CYP450 enzyme in the human liver. It has been reported that drugs with 
inhibition on CYP450, such as antibacterial drugs, antidepressants, and cardiovascular 
drugs, can interact with sulfonylurea hypoglycemic drugs, affecting the metabolism of 
sulfonylurea hypoglycemic drugs, and increase the risk of hypoglycemia [36]. Through 
our prediction model, we also identified new DDIs between sulfonylurea hypoglycemic 
drugs and antibacterial drugs (ATC code beginning with J01), antidepressants (ATC 
code beginning with N06), and cardiovascular drugs (ATC code beginning with C) can 
cause hypoglycemia. In addition, we also found that drugs indicated for many other dis-
eases can interact with sulfonylureas hypoglycemic drugs to cause hypoglycemia. Online 
target prediction analysis [37] shows that almost all of these drugs may bind to the 
CYP450 enzyme (Fig. 4b).

Fig. 4  The new prediction DDIs. a New predicted DDIs are validated with latest DrugBank database. 
b Sulfonylurea hypoglycemic drugs interact with other disease drugs and cause hypoglycemia. c The 
interaction between metformin and other drugs of diseases leads to lactic acidosis. In the network diagram, 
the red circle indicates that DDIs can be explained through molecular mechanism, and the yellow circle 
indicates that DDIs cannot be explained, triangle for diabetes drugs
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Metformin has been used in the treatment of type 2 diabetes for more than 60 years 
and is still a first-line hypoglycemic drug widely used in the clinic. Metformin is not 
easily metabolized after entering the human body, 80–100% of metformin will be dis-
charged from the renal tubules in the form of the prototype [38], thus the drugs that 
affect the renal function will affect the metabolism of metformin. Studies have shown 
that the elimination of metformin is mediated by the transporters MATE1, MATE2K, 
and OCT2 in the kidney [39]. Cimetidine, a drug for the treatment of peptic ulcers, can 
lead to metformin accumulation by competing with metformin for OCT2 or MATE1, 
which can result in a significant increase in the concentration of lactate in blood [40]. 
Our model also finds that many drugs that inhibit OCT2, MATE1, or MATE2K can 
interact with metformin and lead to lactic acidosis (Fig. 4c).

Discussion
With the rapid development of high-throughput sequencing technology in recent 
years, multiple drug-induced transcriptome datasets have been accumulated in the 
LINCS L1000 database, which provides new mediums for characterizing drugs and 
new approaches for building predictive models for DDIs. The main contribution of this 
study is the development of a better deep-learning-based DDI prediction model using 
large-scale drug-induced transcriptome data. We utilized the information on chemical 
structures of drugs and the similarity between drug structures to embed the original 
drug-induced transcriptome data through GCAN. Our results show that GCAN embed-
ded features is more effective for the prediction of DDIs, and the performance of DDI 
prediction is significantly improved in contrast to using original drug-induced transcrip-
tome data in multiple machine learning methods. Several studies have reported that the 
DNN model based on drug structure data can significantly improve DDI prediction [15–
17], but the prediction performances of other deep learning methods are still unclear. By 
comparing DNN and LSTM, we found that the macro-F1, macro-precision, and macro-
recall predicted by LSTM is significantly higher than that of DNN. Finally, our proposed 
GCAN embedded features plus LSTM model significantly improves the prediction of 
DDIs based on drug-induced transcriptome data.

In addition, we verified some of the newly predicted DDIs by our model from two 
aspects. On the one hand, we searched the latest DrugBank database (version 5.1.7) and 
found that the number of newly recorded DDIs is predicted by our model. On the other 
hand, we analyzed the potential molecular mechanisms of newly predicted DDIs of anti-
diabetic agents through online drug-target interaction prediction [38]. We found that 
the predicted interacting drugs of sulfonylureas can cause hypoglycemia and interacting 
drugs of metformin can cause lactic acidosis, both of which have effects on the proteins 
involved in the metabolism of sulfonylureas and metformin in vivo. These results demon-
strate that our model is superior in the prediction of DDIs.

With the development of drug delivery technology, more attention has been focused 
on macromolecule drug [41, 42]. One of the obvious characteristics of macromolecular 
drugs is the larger molecular structure. Therefore, the current approach in character-
izing structures of small molecules is not suitable to accurately describe the structure 
of large molecules, and the existing DDI prediction model based on small molecular 
structures cannot predict DDIs of large molecular drugs. In contrast, drug-induced 
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transcriptome data is the response of cells to drug-related properties, it can well char-
acterize the macromolecular drugs. Thus, using drug-induced transcriptome data is a 
promising approach toward building an accurate macromolecular drug-related DDIs 
prediction model. However, since the small molecular structure information is used to 
embed drug-induced transcriptome data, the model proposed here cannot be directly 
used to predict DDIs related to macromolecular drugs. In future work, one potential 
solution is to use the target gene [43, 44], side effects [45], and Gene Ontology informa-
tion [46] of drugs to embed the drug-induced transcriptome data with GCAN.

Conclusions
In this paper, we propose GCAN embedded features plus LSTM model for the pre-
diction of DDIs on drug-induced transcriptome data. Through evaluation of different 
models, the proposed model is demonstrated to significantly improve the prediction 
performance of DDIs. With a deep analysis of drugs interacting with sulfonylureas and 
metformin, we show that the new DDIs predicted by our model have good molecular 
mechanism support and many of the predicted DDIs are listed in the latest DrugBank 
library (version 5.1.7). These results indicate that our model has the potential to provide 
accurate guidance for drug usage.

Methods
Extraction of drug features

We used the LINCS L1000 dataset that includes ~ 205,034 gene expression profiles per-
turbed by more than 20,000 compounds in 71 human cell lines. LINCS L1000 is gener-
ated using Luminex L1000 technology where the expression levels of 978 landmark genes 
are measured by fluorescence intensity. The LINCS L1000 dataset provides five different 
levels of data depending on the stage of the data processing pipeline. Level 1 dataset con-
tains raw expression values from the Luminex 1000 platform; Level 2 contains the gene 
expression values of 978 landmark genes after deconvolution; Level 3 provides normal-
ized gene expression values for the landmark genes as well as imputed values for an addi-
tional ~ 12,000 genes; Level 4 contains z-scores relative to all samples or vehicle controls 
in the plate; Level 5 is the expression signature genes extracted by merging the z-scores 
of replicates. We utilized the Level 5 dataset marked as exemplar signature, which is rel-
atively more robust, thus a reliable set of differentially expressed genes (DEGs). We took 
the subtraction expression values of 977 landmark genes between drug-induced tran-
scriptome data and their untreated controls, resulting in a vector of 977 in length to rep-
resent each drug. The drug-induced transcriptome data in the PC3 cell line was used to 
build and evaluate the model. Data from the A375, A549, HA1E, or MCF7 cell lines were 
used to further validate the model. The reason we picked up data on these cells is that 
there are enough drug-induced transcriptome data on these cells.

Preparation of the gold standard DDI dataset

The reported total of 2,723,944 DDIs described in the form of sentences were down-
loaded from DrugBank (version 5.1.4). Drugs with more than one active ingredient, 
proteins, and peptidic drugs were not considered in this study, and drugs with no tran-
scriptome data in the PC3 cell line from the L1000 dataset were also excluded. Since our 
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model was trained and evaluated with fivefold cross-validation, adverse DDI types with 
less than 5 drug pairs in them were excluded. Finally, a total of 89,970 DDIs were classi-
fied into 80 DDI types and used to construct the DDI prediction model (For more infor-
mation, see Additional file 1: Table S1).

Proposed deep learning model for DDI prediction

The DDI prediction model proposed in this study consists of two parts (Fig. 5). First, a 
GCAN is used to embed the drug-induced transcriptome data. Then the embedded drug 
features are input into LSTM networks for DDIs prediction.

In the GCAN graph [47], each node represents a single drug which connected to other 40 
drugs with the most similar chemical structure described by the Morgan fingerprint. The 
Tanimoto coefficient [48] is calculated to measure the similarity between drug structures. 
After the similarity matrix between drug structures is built, a maximum of 40 values are 
retained in each row and the rest are replaced by 0. Then each row of this similarity matrix 
is normalized to represent the weight of connecting edges between drugs. The GCAN net-
work combined features information of each node and its most similar nodes by multiply-
ing the weights of the graph edges, and then we use sigmoid or tanh function to update 
the feature information of each node. The whole GCAN network is divided into two parts: 
encoder and decoder, summarized in Additional file 1: Table S2. The encoder has three lay-
ers with the first layer being the input of drug features, the second and third are the coding 
layers (dimensions of the three layers are 977, 640, 512 respectively). There are also 3 lay-
ers in the decoder where the first layer is the output of the encoder, the second layer is the 
decoding layer, and the last layer is the output of the Morgan fingerprint information (three 

Fig. 5  GCAN plus LSTM model for DDI prediction
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layers of the drug features dimension are 512, 640, 1024 respectively). After obtaining the 
output of the decoder, we calculate the cross-entropy loss of the output and Morgan finger-
print information as the loss of the GCAN and then use backpropagation to update the net-
work parameters (learning rate is 0.0001, L2 regular rate is 0.00001). Every layer except the 
last layer uses the tanh activation function and the dropout value is set to 0.3. The GCAN 
output is the embedded data to be used in the prediction model.

Since DDI often involves one drug causing a change in the efficacy and/or toxicity of 
another drug, treating two interacting drugs as sequence data may improve DDI prediction. 
Thus, we choose to construct an LSTM model by stacking the embedded features vectors of 
two drugs into a sequence as the input of LSTM. Optimization of the LSTM model in terms 
of the number of layers and units in each layer by using grid search, and is shown in Addi-
tional file 1: Fig. S1. Finally, the LSTM model in this study has two layers, each layer has 400 
nodes, and the forgetting threshold is set to 0.7. In the training process, the learning rate is 
0.0001, the dropout value is 0.5, the batch value is 256, and the L2 regular value is 0.00001.

We also perform DDI prediction using other machine learning methods including DNN, 
Random Forest, MLKNN, and BRkNNaClassifier. By using grid search, the DNN model is 
optimized in terms of the number of layers and nodes in each layer. It is shown in Addi-
tional file 1: Fig. S2. The parameters of Random Forest, MLKNN, and BRkNNaClassifier 
models are the default values of Python package scikit-learn [49].

Evaluation metrics

The model performance is evaluated by fivefold cross-validation using the following three 
performance metrics:

where TP, TN, FP, and FN indicate the true positive, true negative, false positive, and false 
negative, respectively, and n is the number of labels or DDI types. Python package scikit-
learn [49] is used for the model evaluation.

Correlation analysis

In this study, the drug structure is described with Morgan fingerprint. The Tanimoto coef-
ficient is calculated to measure the similarity between drug structures. The transcriptome 
data or GCAN embedded data are all floating-points and the similarity can be calculated 
using the European distance as follow:

(1)Marco− recall =

∑n
i=1

TPi
TPi+FNi

n

(2)Marco− precision =

∑n
i=1

TPi
TPi+FPi

n

(3)Marco− F1 =
2(Marco− precision)(Marco− recall)

(Marco− precision)+ (Marco− recall)

(4)drug_similarity(X, Y) =
1

∑d
i=1 (Xi − Yi)

2
+ 1
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where X and Y represent transcriptome data, d stands for characteristic dimension.
To measure the relationship between different characteristic vectors of drugs, the 

Pearson correlation coefficients are calculated. First, the similarity between drugs is 
calculated with different characteristics of drugs. Then the similarity between drugs 
is used to represent drugs, and the Pearson correlation coefficients is calculated with 
this new characteristic as follows:

where E is the mathematical expectation, σ is the variance, and x and y are two dif-
ferent drug vectors.
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