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Background
Protein structure prediction is one of the most challenging and active research fields in 
computational biology [1–3]. Over decades of research, fragment assembly proved to be 
one of the most successful ab initio approach [2, 4] although the latest end-to-end solu-
tion AlphaFold2 brought disruptive progress [5]. Fragment assembly has been widely 
used in many popular systems, such as Rosetta [6] and Quark [7]. The high-quality frag-
ment libraries are one of the determining factors to the success of fragment assembly 
[8, 9]. Many fragment library construction algorithms such as NNMake [10], LRFragLib 
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[8], Flib-Coevo [11], and DeepFragLib [12] have been proposed to recruit as many near-
native fragments as possible for each position of the target protein. Fragment libraries 
contain rich structural information, including 1D structural properties such as second-
ary structure and torsion angles, and 2D structural properties such as distances and 
orientations between pairs of heavy atoms. Although fragment libraries are extensively 
utilized in fragment assembly, the rich structural information has not yet been system-
atically analyzed and leveraged by other protein structure prediction approaches.

Exemplified by AlphaFold [13], trRosetta [14], and GDFold [15], recent research heav-
ily used gradient descent to fold protein structures by optimizing potentials derived 
from predicted protein properties, such as Cβ − Cβ pairwise distances and torsion 
angles. These approaches generally consist of two stages: in the protein property predic-
tion stage, many types of structural properties are predicted for a protein sequence; in 
the gradient-descent based protein folding stage, structures are generated by minimizing 
the energy potential derived from protein properties. Given that the energy potentials 
are mainly derived from the predicted protein properties, the accuracy of the predicted 
protein properties, to a large extent, determines the quality of final predicted structures.

In recent research and industrial pipelines of protein property prediction, such as 
the prediction of secondary structures [16, 17], torsion angles [16] and inter-residue 
distances [18], the most widely used features, including sequence profiles and multiple 
sequence alignments, are derived from protein sequences. Such features, when coupled 
with carefully designed algorithms, lead to good predictions empirically. However, those 
features only leverage sequential information, and incorporating new features from 
known protein structures could serve as a complement and thus benefit protein property 
predictions. In addition, some recent works such as [19, 20] adopted structural informa-
tion in other bioinformatics fields and the considerable performance gains indicate the 
huge potential of protein structural information.

In this study, to leverage the structural information provided by fragment librar-
ies, we first directly extracted multiple structural properties from fragment libraries 
and proposed novel fragment-level metrics for evaluation. We used DeepFragLib, the 
state-of-the-art fragment library construction approach when benchmarked on recent 
CASPs [21], to generate fragment libraries for subsequent studies. Then we broadened 
the usage of such structural information by employing fragment libraries both as poten-
tials for gradient descent-based protein folding and as input features of a deep learning 
model for protein property prediction. For protein folding, protein properties directly 
extracted from fragment libraries were fitted with a set of weighted Gaussian Mixture 
Models (wGMM) and then incorporated as protein-specific potentials into a gradient-
descent based folding system, SAMF [22]. For protein property prediction, we designed 
FA-DNN, a deep neural network that encodes fragment libraries into features using a 
fragment library encoder and predicts multiple protein properties. Different from state-
of-the-art protein property predictors such as SPOT-1D and Spider3 that only use 
sequential information to predict 1D properties, i.e., torsion angles and backbone angles, 
FA-DNN further takes the structural information extracted from fragment libraries 
and predicts both 1D properties and 2D properties (e.g., inter-residue distances) with 
a higher accuracy. The evaluation on CASP13 FM (free modelling), CASP13 TBM 
(template-based modelling), the “hard” targets from Continuous Automated Model 
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Evaluation (CAMEO) [22] and the latest CASP14 FM showed that the incorporation of 
fragment libraries improved the performance of both protein property prediction and 
protein folding.

We summarize our findings as follows. First, our comprehensive analysis of fragment 
libraries clearly showed their potential in facilitating protein structure-related tasks. 
Second, our attempt to leverage fragment libraries as potential functions in gradient 
descent-based protein modelling pipelines brought small improvements in TM-Score, 
but it helped moderately in quality assessment. Finally, our proposed FA-DNN that 
employs fragment libraries as inputs showed superior prediction performance for tor-
sion angles, backbone angles and Cβ distances when compared to state-of-the-art pro-
tein property predictors on four independent test sets.

Results
Rich and accurate structural information in fragment libraries

Initially designed to serve in fragment assembly-based simulations, fragment libraries 
are lists of short template structures (i.e., fragments) that are considered resemble to 
continuous regions of the structure of a target protein. Although a fragment library con-
sists of thousands of fragments and thus contains rich structural information about the 
target protein, such information is lack of exploration and seldom used beyond fragment 
assembly. To obtain a quantitative understanding of structural information embedded in 
fragment libraries, we constructed fragment libraries for proteins in all three independ-
ent test datasets, CASP13 FM, CASP13 TBM and CAMEO [23] using three state-of-
the-art algorithms, DeepFragLib [12], NNMake [10] and Flib-Coevo [11], respectively. 
The overall performance (Fig. 1a, b) on the three test sets were evaluated on two classi-
cal metrics, precision and coverage, at different RMSD cutoff values ranging from 0.1 to 
2.0 Å. DeepFragLib outperformed NNMake and Flib-Coevo with a large margin on pre-
cision and achieved a coverage of about 90% at 2.0 Å cutoff, which indicates that Deep-
FragLib recruited much more near-native fragments for most of the positions of target 
proteins than other algorithms.

Although precision and coverage can be used to evaluate fragment libraries on an 
overall level, they generally fail to reflect the accuracy of detailed structural properties of 
a fragment library. To quantitively analyze the structural information of fragment librar-
ies, we devised seven novel fragment-level metrics for corresponding structural prop-
erties, namely the accuracy of fragment secondary structure, the error of two torsion 
angles, φ and ψ, the error of two backbone angles θ and τ [24] and the error of Cα − Cα 
and Cβ − Cβ pairwise distances (see Methods for more details). These fragment-level 
metrics were defined as the expectations of errors (or accuracy for fragment secondary 
structure) of all positions of a target protein, where the expectation for each position 
was defined as errors (or accuracies) of structural properties of all fragments at this posi-
tion. Therefore, different from previous metrics for protein property evaluation (e.g., the 
accuracy of secondary structure or the accuracy of torsion angles), which were directly 
defined on a single residue and evaluated for the target protein, our proposed metrics 
are all defined on the fragment level and thus can better evaluate fragment libraries 
constructed by different algorithms. As shown in Fig.  1c–f and Additional file  1: Fig-
ure S1–S3, seven kinds of structural properties were extracted from fragment libraries 
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and analyzed using our proposed metrics. All fragment libraries achieved high accu-
racy on fragment secondary structure and low error values on other properties, with 
DeepFragLib outperforming the other two algorithms except for ERRφ. These results 
demonstrate that fragment libraries provide rich and high-quality structural informa-
tion that is lack of evaluation before. To get more accurate structural information for 
protein structure prediction, we further assigned a confidence score for each fragment 
in DeepFragLib according to the predicted RMSD value using a softmax function with 

Fig. 1  Quality analysis of fragment libraries on all targets of CASP13 FM, CASP13 TBM and CAMEO test 
sets. a and b Fragment libraries constructed by NNMake (blue), Flib-Coevo (green) and DeepFragLib (red) 
were evaluated using precision (a) and coverage (b) at a series of RMSD thresholds. c–f Fragment libraries 
were evaluated using fragment level metrics for seven structural properties, i.e., the accuracy of fragment 
secondary structure, the error of torsion angles, φ, ψ, the error of backbone angles, θ, τ and the error of 
Cα − Cα distances and Cβ − Cβ distances. See Additional file 1: Figures S1–S3 for performance on respective 
test sets
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T = 0.1 and constructed weighted fragment libraries (see Methods for more details). As 
shown in Additional file  1: Table  S1, all seven kinds of structural information derived 
from weighted fragment libraries are more accurate than those from vanilla fragment 
libraries built by DeepFragLib, which indicates the predicted RMSD value can work as 
a confidence score for extracting more accurate structural information from fragment 
libraries. Furthermore, we run AbInitioRelax from Rosetta v3.10 [25] to implement a 
fragment-assembly based protein folding pipeline with fragment libraries constructed 
by DeepFragLib and NNMake (the default fragment library construction algorithm in 
Rosetta), respectively (see Supplementary Material for more details). Results (Additional 
file  1: Table  S2) show that DeepFragLib generally has better performance in fragment 
assembly. Considering that DeepFragLib outperformed the others in terms of both the 
accuracy of structural information and the applicability for protein structure prediction, 
we chose DeepFragLib to conduct the subsequent experiments in the study.

Fragment libraries as potentials for gradient‑descent based protein folding

Gradient-descent based protein folding is an approach that predicts protein 3D struc-
tures by directly minimizing protein property constraints. The quality of protein prop-
erty constraints usually determines the accuracy of predicted structures. Considering 
that most constraints including inter-residue pairwise distances and torsion angles [13, 
14] are derived from sequential information, we propose to complement these con-
straints with the structural information extracted from fragment libraries. Therefore, 
we devised an approach that transformed structural information of fragment libraries 
into protein-specific potentials, and folded protein structures with inter-residue dis-
tance potentials predicted by trRosetta. As shown in Fig. 2a, the approach starts with a 
“smoothing” operation that normalizes fragments of variable lengths to a series of sub-
fragments with a fixed length of 7 residues by using a sliding window. Then, different 
kinds of protein properties in the smoothed fragment library are extracted and modeled 
by weighted Gaussian mixture models (termed as wGMM). Finally, these wGMM mod-
els are converted to protein-specific potentials by a negative log likelihood function and 
incorporated into the distance potential for protein structure prediction (see Methods 
for more details).

In this approach, six kinds of structural properties were extracted from fragment 
libraries, including two torsion angles (φ and ψ), two backbone angles (θ and τ) and two 
pairwise distances within a fragment (Cα − Cα and Cβ − Cβ). A wGMM model was built 
for each property and each position of the target protein, respectively. To choose the 
number of components in each wGMM model, we fitted wGMMs on the torsion angle 
φ using a series of numbers of components ranging from 2 to 30 and used the averaged 
BIC (Bayesian Information Criterion) score as the criterion to evaluate on CASP12FM 
dataset. As shown in Additional file 1: Figure S4, wGMM models with four components 
had the lowest BIC score and thus four components were chosen for wGMM modeling. 
Figure 2b–e illustrates an example (the first residue of the 67th position of T0969-D1) 
of the distributions in wGMM models of the torsion and backbone angles. Each param-
eterized distribution colored in blue forms a peak, and the ground truth of the corre-
sponding property colored in red is very close to the peak in each model, demonstrating 
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Fig. 2  The overall pipeline of building wGMM models and protein-specific potentials from fragment libraries. 
a The overall pipeline that transforms fragment libraries into potentials for gradient descent-based protein 
folding. Fragments of variable lengths are first cut into a series of 7-residue fragments by smoothing. The 
color of a fragment denotes its “source” fragment (i.e., three fragments with 7 residues colored in blue in 
the second subfigure are all cut from the 9-residue fragment colored in blue in the first subfigure). Protein 
properties are extracted from the smoothed fragment library and fitted by weighted Gaussian mixture 
models (wGMM models). wGMM models are converted into potentials and utilized in SAMF [22] for protein 
folding. b–e Visualization of the wGMM models for φ (b), ψ (c), θ (d), τ (e) of the first residue of 67th position 
of T0969-D1. The red lines mark the corresponding properties of the native protein structure



Page 7 of 18Liu et al. BMC Bioinformatics          (2021) 22:351 	

that it is reasonable to employ wGMM models to fit the structural information extracted 
from fragment libraries.

To evaluate the usefulness of structural information for protein folding, we bench-
marked this approach on all three independent test sets. Taking distance constraints gen-
erated by trRosetta as a base potential, 50 decoys were generated for each target protein 
with or without the potentials derived from the fragment wGMM models respectively, 
and all decoys were ranked according to their energies assigned by the sum of all poten-
tials. The top1 decoys with lowest energies and the best decoys with highest TM-Score 
values were both picked up, and two metrics including the averaged TM-Score of all tar-
gets and the number of targets that have correct topologies, i.e. with TM-Score greater 
than 0.5 [26, 27], were used for evaluation. As shown in Table 1, when evaluated on all 
independent test sets, predicted structures with wGMM models outperformed those 
without wGMM models in all four metrics and especially an improvement of 8.84% 
was achieved on average TM-Score of top1 decoys. This result indicates that structural 
information of fragment libraries modelled by wGMMs improved the accuracy of pro-
tein structure prediction. Since protein targets considerably vary in terms of topologies, 
predicted protein structures within a test set exhibit a wide range of TM-Score values, 
which results in a moderate standard deviation. To further examine the significance of 
improvement when adopting fragment derived potentials, we then performed one-sided 
paired student T-tests on all protein targets in the three test sets (the test set denoted as 
“Overall” in Table 1). The p values for the best models and the top1 models are 0.01315 
and 0.00098, respectively, which indicates the improvement on predicted protein struc-
tures is significant. Furthermore, it is worth noting that using potentials from fragment 
libraries narrowed the gap of TM-Score values between the best decoys and top1 decoys 
from 0.1189 to 0.0827, which indicates that the potentials derived from fragment librar-
ies not only have their value on predicting more accurate protein structures, but also 
help to select more native structures among predicted decoys.

Table 1  Overall performance of protein folding with potentials derived from fragment libraries

Potentials derived from fragment libraries were utilized to predict protein structures with trRosetta distance potential as 
a baseline. For each target, the top1 decoy with lowest energy and the best decoy with the highest TM-Score were picked 
up for evaluation. The mean and standard deviation of TM-Scores of all targets and the number of selected decoys with 
TM-Score > 0.5 were evaluated. The better performance in each category is highlighted in bold

Test set Potentials Avg. TM of Best 
(± s.d.)

Avg. TM of Top1 
(± s.d.)

# Best 
with 
TM > 0.5

# Top1 
with 
TM > 0.5

CASP13 FM trRosetta Cβ dist 0.5523 (± 0.1154) 0.4572 (± 0.1547) 22 15
trRosetta Cβ dist + Fra‑

gLib wGMM
0.5689 (± 0.1082) 0.4660 (± 0.1647) 23 15

CASP13 TBM trRosetta Cβ dist 0.6619 (± 0.1069) 0.4806 (± 0.2119) 53 26

trRosetta Cβ dist + Fra‑
gLib wGMM

0.6610 (± 0.1098) 0.5806 (± 0.1800) 52 43

CAMEO trRosetta Cβ dist 0.5932 (± 0.1326) 0.4953 (± 0.1779) 101 70

trRosetta Cβ dist + Fra‑
gLib wGMM

0.6011 (± 0.1322) 0.5212 (± 0.1765) 102 78

Overall trRosetta Cb dist 0.6051 (± 0.1279) 0.4862 (± 0.1839) 176 111

trRosetta Cβ dist + Fra‑
gLib wGMM

0.6119 (± 0.1278) 0.5292 (± 0.1788) 177 135
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Fragment libraries as features for protein property prediction

Besides directly utilizing fragment libraries to facilitate protein structure prediction, the 
structural information extracted from fragment libraries can also serve as features for 
protein property prediction. For this purpose, we designed FA-DNN (Fragment-Assisted 
Deep Neural Network), a deep neural network consisting of a fragment library encoder 
module and a structural property predictor module (Additional file  1: Figure S5). The 
fragment library encoder takes a fragment library as input and encodes its structural 
information via a deep neural network. The protein property predictor adopts the hid-
den representations output by the fragment library encoder as well as sequence-derived 
features as input and predicts multiple protein properties, namely the backbone torsion 
angles (φ, ψ, θ and τ), and Cβ − Cβ pairwise distances (see Methods for more details). 
We first built a dataset called HR5916 by culling 5916 high-quality chains from PDB 
using PISCES [28] and randomly divided them into a training set and a validation set, 
which contained 90% and 10% of the chains, respectively. All hyperparameters were 
optimized on HR5916 validation set. For fair comparison, we also designed a baseline 
model by only removing the fragment encoder. The baseline model was trained with the 
same hyperparameters as control. The performance of FA-DNN and the baseline model 
was evaluated on three independent test sets, namely CASP13 FM, CASP13 TBM and 
CAMEO. A parameter-less model that simply averaged the property values from frag-
ment libraries was also evaluated. Notably, considering that this model provides the 
prediction of inter-residue distances only for intra-fragment residue pairs, it cannot be 
compared with the other two models on Cβ − Cβ distance prediction.

We evaluated the accuracy of the real-valued predictions of protein properties by 
mean absolute error (MAE). As shown in Fig. 3, when evaluated on all targets of CASP13 
FM, CASP13 TBM and CAMEO test sets (respective evaluation shown in Additional 
file  1: Figure S6–S8), FA-DNN outperformed the baseline model with a large margin 
in terms of the accuracy of all four torsion angles, while simply averaging protein 1D 
properties from fragment libraries achieved the poorest performance. For prediction of 

Fig. 3  Performance analysis of FA-DNN for protein property prediction on three independent test sets. 
The FA-DNN consists of a fragment library encoder and a protein property predictor for protein property 
prediction (red bars). As control, a model without the fragment library encoder was trained with the same 
hyperparameters (blue bars). The performance of the two neural networks were evaluated on all targets of 
the three test sets. Additionally, performance of simply extraction from fragment libraries was also evaluated 
(green bars). The mean absolute error (MAE) of torsion angles (φ, ψ, θ and τ) and the MAE of Cβ − Cβ pairwise 
distances are shown in the left and right subfigures, respectively
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pairwise Cβ − Cβ distances, incorporating features of fragment libraries led to a moder-
ate improvement in accuracy.

We further compared the performance of FA-DNN and state-of-the-art algorithms for 
protein property prediction. As shown in Table 2, FA-DNN outperformed Spider3 with 
a large margin in all four 1D properties. It is worth noting that although FA-DNN is 
a single deep learning model, it achieved better performance than SPOT-1D that is an 
ensemble of multiple models. Employing an ensemble of multiple FA-DNNs may further 
improve the performance. For 2D predictions, FA-DNN outperformed two state-of-the-
art algorithms RaptorX and trRosetta in terms of the MAE (mean average error of real 
value) of Cβ − Cβ distances with a large margin.

We further made a point-to-point comparison between our FA-DNN with SPOT-1D 
and trRosetta on the latest CASP14 FM test set. As is shown in Fig.  4, FA-DNN had 
a small improvement over SPOT-1D on most CASP14 FM targets, and outperformed 
trRosetta in general, with large improvements on two targets, T1037 and T1042. Care-
ful examination of the prediction pipelines shows that each of the two targets has very 
limited number of multiple sequence alignments (MSA) and trRosetta only uses MSA 
as input, leading to its degenerate performance on these two targets. As a comparison, 
using structural information from fragment library in FA-DNN may compensate the 
limited sequence information to some extent and thus leads to better predictions.

Discussion and conclusion
This work, to our knowledge, is the first attempt to exploit structural information 
from high-quality fragment libraries for both protein property prediction and gradi-
ent-descent based protein folding. By explicitly extracting structural information from 
fragment libraries and designing corresponding potentials with wGMM models, we 
demonstrate that leveraging fragment libraries leads to performance gains for protein 
structure prediction. Therefore, it might be of interest to find out what leads to the 
improvements. One obvious observation is that fragment libraries provide rich struc-
tural information which works as constraints beyond those predicted from sequential 
information. A fragment library consists of many fragments for each position of the tar-
get protein, where each fragment is a local 3D structure, containing almost all kinds of 
structural properties like a protein can have. Different from constraints predicted from 
sequence-based information, such as pairwise inter-residue distances, which mainly pro-
vide global constraints among residues, fragments capture short-ranged and local struc-
tural information. Therefore, constraints extracted from fragment libraries and those 

Table 2  Comparison of predicted protein properties between FA-DNN and state-of-the-art 
algorithms on three independent test sets

The MAE of real values of protein properties were evaluated. The best performance of each category is shown in bold

Category SPOT-1D Spider 3 RaptorX trRosetta FA-DNN

MAE (φ) 0.312 0.337 – – 0.303
MAE (ψ) 0.430 0.495 – – 0.429
MAE (θ) 0.041 0.062 – – 0.041
MAE (τ) 0.428 0.479 – – 0.418
MAE (Cβ − Cβ Dist.) – – 8.636 8.304 7.766



Page 10 of 18Liu et al. BMC Bioinformatics          (2021) 22:351 

predicted from sequence-derived information, are complementary to each other. None-
theless, we found that such local structural information can only bring limited improve-
ment for protein folding and the gap to the best approach in the CASP competitions is 
still large. In this study, due to the limited number of fragments, the wGMM models 
were built for each kind of protein property and for each position of a target protein 
respectively. Taking into consideration the interactions among different protein proper-
ties and different positions, a potentially better way is to employ multivariate wGMMs 
to model such properties and thus produce more accurate potentials for the subsequent 
gradient-based protein folding.

With its information implicitly extracted by a neural network, fragment library also 
makes a difference in protein property prediction. Considering the quality of fragment 
libraries for different proteins varies from one to another, we further estimated the relation-
ship between the quality of fragment libraries and the performance gains of protein prop-
erty prediction. As shown in Additional file 1: Figure S9, the precision of fragment library 
is highly correlated to the averaged value of MAE of three torsion angles (ρ =  − 0.801 with-
out two outliers T0955-D1 and T1008-D1), indicating a nearly linear negative correlation 

Fig. 4  Point-to-point comparison between FA-DNN and state-of-the-art protein property prediction 
algorithms on CASP14 FM targets
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between these two metrics. Therefore, recruiting more high-quality fragments for target 
proteins is an essential way to improve the accuracy of predicted protein properties.

Although both the fragment derived potentials and FA-DNN with fragment libraries 
as inputs showed effectiveness on their own, how to fully utilize the advantages from the 
two aspects and avoid redundancies still requires further study. An end-to-end model 
that integrates the two approaches in a single deep neural network and simultaneously 
optimizes predicted properties and 3D structures, can be expected in the future.

Methods
Datasets

To evaluate the performance of fragment libraries, we adopted three independent 
test sets, including 31 targets in CASP13FM (Additional file 1: Table S3), 56 targets in 
CASP13TBM (Additional file 1: Table S4) and 137 targets in CAMEO (Additional file 1: 
Table S5). Specifically, CASP13FM and CASP13TBM consist of all free modeling (FM) 
domain targets and all template-based modeling (TBM) domain targets extracted from 
the official website of CASP13 competition [21], respectively. To test the robustness of 
our approaches for different proteins and make evaluation on more targets, we culled all 
targets in the “hard” category from CAMEO official website [23] released within the year 
of 2019 (from 2019.01.04 to 2019.12.28). For dataset construction, targets with discon-
tinuous chains, targets whose lengths are less than 40 residues and targets which Flib-
Coevo failed to construct fragment libraries were discarded, leading to a slightly smaller 
number of targets than that in the corresponding official websites.

CASP13FM test set was first used to evaluate the performance of protein structure 
prediction by Rosetta while all three independent test sets were then employed to assess 
the effectiveness and contribution of fragment libraries in the gradient-descent based 
protein folding software, SAMF [22]. In addition, for optimization of potentials derived 
from fragment libraries in SAMF, we built a dataset from CASP12FM proteins (Addi-
tional file  1: Table  S6) which included 34 FM domain targets with continuous chains 
extracted from CASP12 competition [29].

To train the deep neural network including a fragment library encoder and a pro-
tein property predictor for protein property prediction, we culled 5916 high resolution 
protein chains from PISCES (termed as “HR5916”) [28] with chain length < 400 resi-
dues, resolution < 1.5 Å, pairwise sequence identity < 30% and PDB release date before 
CASP13 competition (2018.05.01). We randomly chose 5325 chains to build the training 
set and the remaining 591 chains formed the validation set. CASP13FM, CASP13TBM 
and CAMEO were also utilized as independent test sets for performance evaluation. 
Furthermore, twelve CASP14 FM targets (Additional file 1: Table S7) were also used in 
the performance comparison between FA-DNN and state-of-the-art algorithms. Nota-
bly, considering that all samples in CASP12FM and HR5916 are before CASP13 com-
petition, there is no overlap between the training samples and the independent test 
sets, which ensures a fair evaluation. As a sanity test, for each target in the test sets, 
we performed an MSA search against Lib956, the template structure library from which 
DeepFragLib recruits fragments, with jackhmmer [30] 3.3.1 and an E-value of 1e−3. 
The average MSA depths (the number of detected homologous proteins), as shown in 
Additional file 1: Table S8, are smaller than 1.0 for all test sets, which indicates for most 
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targets, no homologous structure can be found in Lib956 and thus confirms that the test 
sets have no overlap with the fragment libraries.

Fragment library construction and comprehensive analysis

We built fragment libraries for all targets in CASP13FM, CASP13TBM and CAMEO 
test sets by DeepFragLib v1.0 [12]. 50–200 fragments with known structures were 
recruited for each position of the target protein. During the construction process, all 
databases queried by DeepFragLib were strictly restricted to the archived versions with 
timestamps before CASP13 competition. For performance evaluation, we also built frag-
ment libraries for these test sets by NNMake [10] and Flib-Coevo [11] with their default 
parameters, respectively. Duplicate fragments at the same position generated by Flib-
Coevo were excluded for fair comparison. All fragment libraries constructed by different 
algorithms were converted to the uniform NNMake’s format for further analysis.

We first assessed the performance of fragment libraries constructed by different algo-
rithms with two classical evaluation metrics, namely precision and coverage. Precision 
is the proportion of good fragments in the whole fragment library and coverage is the 
proportion of positions in each protein which are spanned by at least one good frag-
ment. A good fragment is defined as a fragment with an RMSD smaller than a given 
threshold. Furthermore, in order to make a comprehensive evaluation on the structural 
properties of fragment libraries, we took seven protein structure properties into consid-
eration, namely the 1D properties including the secondary structures, the torsion angles 
φ, ψ, the backbone angles θ, i.e., the planar angle between three successive Cα atoms 
( Ci−1

α − Ci
α − Ci+1

α  ) and τ, i.e., the dihedral angle between four successive Cα atoms 
( Ci−1

α − Ci
α − Ci+1

α − Ci+2
α  ) and the 2D properties including the Cα − Cα and Cβ − Cβ 

pairwise distances. Though these properties were originally defined on the residue level, 
we proposed novel metrics describing the accuracy of these properties on the fragment 
level.

Similar to previous research, the secondary structures of fragments are divided into 
four classes: mainly helix (termed as H), mainly strand (termed as E), mainly coil (termed 
as C) and others (termed as O). A fragment is defined as H or E or C if more than half 
residues of the fragment are assigned with the corresponding secondary structures. Oth-
erwise, the secondary structure of the fragment is defined as O. The accuracy of frag-
ment secondary structure on the fragment level is defined as follows,

where FL denotes the fragment library, E denotes the mathematical expectation, pi 
denotes all fragments at position i, fi denotes a fragment at position i, f* denotes the cor-
responding fragment of the target protein and SS(f ) denotes the fragment secondary 
structure of fragment f. Thus, the accuracy of fragment secondary structure of the whole 
fragment library ACC​SS(FL) is defined as the expectation of the accuracy of each posi-
tion, which is then defined as the expectation of the accuracy of all fragments at this 

(1)ISS
(

fi
)

=
{

1, if SS
(

fi
)

= SS
(

f∗
)

0, otherwise

(2)ACCss(FL) = Epi
[

Efi
[

ISS
(

fi
)]]
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position. Similar to the above definition, we further proposed the accuracy of angles (φ, 
ψ, θ and τ) as follows,

where |x| denotes the absolute value of x, angji denotes the angle value of residue j of the 
fragment i, angj∗ denotes the angle value of the corresponding residue in the target pro-
tein and errang(fi, f*) denotes the mean absolute error of the angle of the fragment i. The 
angle error of a fragment library is defined as the expectation of those of all positions, 
where the angle error of a position is then defined as the expectation of those of all frag-
ments at this position. Finally, we proposed the accuracy of two 2D properties (Cα − Cα 
and Cβ − Cβ pairwise distances) as follows,

where errdist(fi, f*) denotes the mean absolute error (MAE) between pairwise Cα − Cα or 
Cβ − Cβ distances within a fragment fi compared with the native structure f*. With these 
novel metrics, we made a comprehensive evaluation of fragment libraries constructed by 
NNMake, Flib-Coevo and DeepFragLib on three independent test sets.

Fragment library for gradient‑descent based protein folding

As illustrated above, we extracted and analyzed structural information embedded in 
fragment libraries. To further exploit the rich information from fragment libraries for 
gradient-descent based protein folding, we built a series of models to make an explicit 
representation of fragment libraries and then utilized these models to design protein-
specific potentials in a differentiable way. As shown in Fig. 2a, six 1D and 2D properties 
of each fragment including the angles of φ, ψ, θ, τ and the pairwise distances between 
Cα − Cα and Cβ − Cβ atoms were extracted from the fragment library. Considering that 
fragments have variable lengths, we designed a “smoothing” operation which cuts frag-
ments into a series of 7-residue long fragments by a sliding window. This operation 
results in all fragments having the same length of 7 residues. We employed Gauss-
ian mixture models to delineate the distribution of these properties for each position. 
Considering that each fragment recruited by DeepFragLib has a predicted RMSD, we 
regarded this value as a confidence score for the fragment and assigned a weight accord-
ing to all fragments at the same position as follows,

where F denotes the set of fragments at the same position, fi denotes a fragment in F, 
predRMSDi denotes the predicted RMSD value of fragment fi and T is the temperature 
(0.1 is used throughout the experiments).

(3)errang
(

fi, f∗
)

= 1
N

N
∑

j=1

min
{∣

∣

∣
ang

j
i − ang

j
∗

∣

∣

∣
, 360◦ −

∣

∣
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∣

∣
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}

(4)ERRang (FL) = Epi
[

Efi
[

errang
(

fi, f∗
)]]

(5)ERRdist(FL) = Epi
[

Efi
[

errdist
(

fi, f∗
)]]

(6)wfi =
e(5.0−predRMSDi)/T

∑F
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/T
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Furthermore, the probability density function of a Gaussian distribution is shown 
in Eq. 7, where y is the value of a property weighted by the wfi in Eq. 6, µ denotes the 
weighted mean and σ2 denotes the weighted variance. We then built weighted Gauss-
ian mixture (wGMM) models of each property for each residue with four components 
(Fig. 2). Consequently, for each position, seven wGMM models for each of four 1D prop-
erties and 21 wGMM models for each of two 2D properties were constructed, resulting 
in 70 wGMM models in total.

wGMM models were then converted to potentials using a negative log likelihood func-
tion. Notably, fragment-derived potentials are customized for each protein owing to pro-
tein-specific wGMM models. For example, the protein-specific loss function of φ angles 
(1D property) and inter-residue Cβ − Cβ distances (2D property) are defined as follows,

where Eq. 8 is the potential for φ, Eq. 9 is the potential for Cβ − Cβ distances, x denotes 
a predicted protein structure, K is the number of components in the wGMM model, w, 
µ and σ are the fitted parameters of each component of the wGMM model, φi is the φ  
angle at the i-th residue in x and dCβ

j1,j2 is the distance between the Cβ atom of the j1 resi-
due and the Cβ atom of the j2 residue in x. Potentials for other properties are defined in a 
similar way which led to a total of six potential functions (one for each property).

SAMF is a gradient descent-based protein folding framework that folds protein struc-
tures in a self-adaptive way [22]. To evaluate the performance of fragment library for 
gradient-descent based protein folding, we employed the most basic version of SAMF 
as the baseline, which only relies on Cβ − Cβ pairwise distances predicted by trRosetta 
[14] as protein-specific constraints, the fundamental geometry potentials to avoid stereo 
clashes as well as a naïve quality analysis module that sums all potentials. We imple-
mented the potentials of the fragment library in SAMF with the combined potential 
function LFL(x) as follows,

where LFL(x) is defined as the weighted sum of the six potentials and w denotes the 
weight of a potential for each property. The combined potential was calculated and then 
minimized to update the protein structure during each step of the gradient descent pro-
cess. All weights in Eq. 10 were manually tuned on CASP12FM set by maximizing the 
mean TM-Score of predicted structures. The performance of protein structure predic-
tion was then evaluated on CASP13FM, CASP13TBM and CAMEO test sets.

(7)p
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y;µ; σ
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= 1√
2π |σ | exp
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− (y−µ)
2

2σ 2

)

(8)Lϕ(x) = −
∑
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K
∑
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(9)LCβ (x) = −
∑
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∑
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(10)
LFL(x) = wϕLϕ(x)+ wψLψ(x)+ wθLθ (x)+ wτLτ (x)+ wCαLCα (x)+ wCβ

LCβ (x)
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FA‑DNN: the fragment library encoder and the protein property predictor

To facilitate protein property prediction, we designed FA-DNN, a deep neural network 
featuring a fragment library encoder that implicitly extracts high-level representations 
of a fragment library and encodes it into an embedding vector. The fragment library 
encoder is connected with a protein property predictor which predicts multiple pro-
tein structural properties (Additional file 1: Figure S5A). For each position, we picked 
up 50 fragments with the lowest predicted RMSD values and extracted six kinds of fea-
tures, namely the one-hot representation of residue secondary structure and the sine 
and cosine values of torsion angle φ, ψ, θ and τ. We padded all fragments of variable 
lengths to 15-residues long and the fragment library for a target protein was represented 
as an L × 50 × 15 × D tensor accordingly, where L denotes the length of the protein and 
D denotes the dimension of features. As shown in Additional file 1: Figure S5B, the frag-
ment library encoder had a hierarchical architecture which contained three levels of 
encoding process. First, two 1D convolutional operations in each building block were 
implemented on the third dimension of the input tensor (the dimension of fragment 
length). A convolution kernel with the size of 3 and 64 filters were utilized in each con-
volutional operation and an ELU activation layer was adopted between two convolu-
tional layers [31]. In order to fully learn the interactions between neighboring residues 
within a fragment, a total of 8 blocks were stacked with residual connections [32]. Con-
sidering that the index of the first residue of a fragment corresponds to the position of 
the target protein, the hidden representation of the first residue of each fragment was 
picked up, eliminating the dimension of the fragment length of tensors. Finally, an L × D’ 
output tensor was obtained by averaging the entries of all 50 fragments at the same posi-
tion, where D’ is the number of filters of convolutional layers in the first step.

We then designed a protein property predictor which took the output of fragment 
library encoder as an input. In addition, the primary sequence of target protein, the 
position-specific frequency matrix (PSSM) of homologous proteins detected by Deep-
MSA [33] and the pairwise statistics derived from direct coupling analysis (DCA), were 
also fed into the predictor. The 1D features, namely all inputs from the fragment library 
encoder as well as the one-hot encoding of the target sequence and PSSM were trans-
formed into two dimensions by tiling both horizontally and vertically, which were then 
concatenated with the pairwise statistics to form the total input of the predictor model. 
To examine the usefulness of the fragment library encoder, we also built a baseline pre-
dictor model as control which only takes the MSA-based feature as inputs.

Both the protein property predictor with inputs from the fragment library encoder and 
the baseline model share the same backbone architecture, i.e., a 2D residual neural net-
work with 30 residual blocks and each residual block consisting of two convolutional lay-
ers with 64 filters, 3 × 3 kernel size and ELU activations. To prevent overfitting, a dropout 
rate of 0.15 [34] was used and two BatchNorm layers [35] were adopted after each con-
volutional layer (Additional file 1: Figure S5C). The output of the final residual block was 
symmetrized and then fed into two respective branches to predict different protein prop-
erties. The first branch began with a pooling operation to project the 2D feature map into 
an 1D vector. Following this operation, a fully connected layer was adopted to output 1D 
predicted properties of each residue similar to the raw feature from the fragment library, 
namely the four torsion angles φ, ψ, θ and τ. The other branch directly predicted the real 
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value of Cβ − Cβ distances respectively by a full-connected layer. To favor the gradient for 
residue pairs with short distances, we employed a distance mapping function similar to 
[36] as follows,

where di,j denotes the true distance between two atoms, d′i,j denotes the mapped distance 
and tanh denotes the hyperbolic tangent function. The 2D outputs from the predictor 
were mapped back by the inverse function of Eq. 11 to get the corresponding real-valued 
distances. A weighted sum of the mean absolute errors (MAE) of all properties was used 
as the loss function. FA-DNN was trained on the HR5916 dataset with a learning rate 
of 1e−5. It took about one day to train the model on 8 Nvidia V100 GPUs. The baseline 
model was trained with the same hyper-parameters. The performance of all 1D and 2D 
predictions was evaluated on CASP13FM, CASP13TBM, CAMEO and CASP14 FM test 
sets.
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