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Abstract 

Background:  The recognition of pharmacological substances, compounds and 
proteins is essential for biomedical relation extraction, knowledge graph construction, 
drug discovery, as well as medical question answering. Although considerable efforts 
have been made to recognize biomedical entities in English texts, to date, only few lim-
ited attempts were made to recognize them from biomedical texts in other languages. 
PharmaCoNER is a named entity recognition challenge to recognize pharmacological 
entities from Spanish texts. Because there are currently abundant resources in the field 
of natural language processing, how to leverage these resources to the PharmaCoNER 
challenge is a meaningful study.

Methods:  Inspired by the success of deep learning with language models, we com-
pare and explore various representative BERT models to promote the development of 
the PharmaCoNER task.

Results:  The experimental results show that deep learning with language models can 
effectively improve model performance on the PharmaCoNER dataset. Our method 
achieves state-of-the-art performance on the PharmaCoNER dataset, with a max 
F1-score of 92.01%.

Conclusion:  For the BERT models on the PharmaCoNER dataset, biomedical domain 
knowledge has a greater impact on model performance than the native language (i.e., 
Spanish). The BERT models can obtain competitive performance by using WordPiece to 
alleviate the out of vocabulary limitation. The performance on the BERT model can be 
further improved by constructing a specific vocabulary based on domain knowledge. 
Moreover, the character case also has a certain impact on model performance.
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Background
Effectively recognizing biomedical entities from texts is of great value to biomedical 
research [1]. With the rapid increase in literature scale, it is no longer possible to rec-
ognize biomedical entities from texts through manual annotations. Therefore, using 
natural language processing (NLP) methods to recognize these entities automatically 
has attracted plenties of attention. Biomedical named entity recognition (BioNER) is 
such an NLP task. The importance of biomedical entity recognition motivated several 
shared tasks, such as the CHEMDNER track [2], the SemEval challenge [3], and the 
i2b2 challenge [4]. Most biomedical and clinical NLP studies are conducted on English 
texts, while only few works are done using non-English texts. However, it is essential 
to note that many texts are published in non-English, especially in clinical case reports, 
mostly written in the native language. Therefore, it is necessary to recognize biomedi-
cal named entities in non-English literature. PharmaCoNER [5] is the first BioNER chal-
lenge devoted to recognizing chemical and protein entities from biomedical literature in 
Spanish. The primary purpose is to promote non-English BioNER tools, determine the 
best performing method, and compare the systems that obtain state-of-the-art (SOTA) 
performance [5]. The PharmaCoNER challenge consists of two sub-tracks: NER offset 
and entity classification and concept indexing. In this work, we only focus on the first 
sub-track.

In the previous works, the implementation of BioNER methods [6, 7] mainly depended 
on feature engineering, i.e., using various NLP tools and external resources to construct 
features. This is a skill-dependent and laborious task. To overcome the limitations, neu-
ral network methods with automatic feature learning abilities have been widely pro-
posed [8–11]. These methods use pre-trained word embeddings [12–14] to learn the 
semantic information of each word and combine neural network models such as LSTMs 
and CNNs to encode the context information to implement BioNER tasks. However, 
once the word embeddings are pre-trained, the word will be mapped to a specific vec-
tor, and therefore, the word embeddings can only learn context-independent representa-
tions. Recently, neural language models [15–17] have improved the performance of NLP 
methods to a new level. Unlike traditional word embeddings such as Word2Vec [12, 13] 
and GloVe [14], the word embeddings pre-trained by language models depend on the 
context. Therefore, the same word can have different semantic information in different 
contexts. Due to the great success of language models, it has gradually developed into 
the mainstream method to implement BioNER tasks.

During the PharmaCoNER challenge, a total of 22 teams participated in the NER 
sharing task, and the top three models ranked by performance were all based on lan-
guage models. Specifically, Xiong et al. [18] achieved the best performance, reaching an 
F1-score of 91.05%. In their approach, they first employed Multilingual BERT [17] as 
language representations, and then combined the character-level representation, part-
of-speech (POS) representation and word shape representation of each word to the 
BERT representation. Finally, a conditional random field (CRF) layer is appended to 
these representations for the BioNER task. Stoeckel et al. [19] obtained the second-best 
performance. They trained a BiLSTM-CRF sequence tagger with stacked pooled con-
textualized embeddings, word embeddings and sub-word embeddings using the FLAIR 
framework [16, 20]. Sun et al. [21] leveraged Multilingual BERT [17] and BioBERT [22] 
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to implement solutions for the PharmaCoNER challenge, and their solutions obtained 
third-place performance. From the PharmaCoNER challenge, neural language mod-
els, especially BERT, obtain SOTA performance in the NER task. Compared with other 
methods (i.e., CRF and BiLSTM-CRF), neural language models can effectively learn 
latent context information and improve model performance. BERT has become the most 
representative language model with its powerful performance and abundant resources 
among these language models. Leveraging existing BERTs to obtain SOTA performance 
has important research implications for non-English NER tasks with fewer resources. 
Although some BERT models have been employed during the PharmaCoNER challenge, 
there are still many representative BERT models in the NLP community that have not 
been explored. In this article, we compare and explore the impact of these BERTs on the 
PharmaCoNER corpus.

Methods
PharmaCoNER

The goal of the PharmaCoNER task is to recognize chemical and protein entities from 
a given input sentence or article in Spanish. The PharmaCoNER corpus is a partial col-
lection of the Spanish Clinical Case Corpus (SPACCC). It contains 1000 clinical cases, 
of which 500 are used as the training set, 250 as the development set, and 250 as the test 
set. Each clinical case is composed of two standoff-style annotation documents, i.e., a 
‘txt’ document used for describing the clinical record, and an ‘ann’ document used for 
tagging biomedical entities of the case. In this work, the input of the BERT model is sen-
tences, which are obtained by splitting the documents from the PharmaCoNER corpus 
according to sentence symbols (e.g. ‘.!?’). There are three types of entities to be evaluated 
in the PharmaCoNER corpus, namely ‘NORMALIZABLES’ entities, ‘NO_NORMAL-
IZABLES’ entities, and ‘PROTEINAS’ entities. The ‘NORMALIZABLES’ entities repre-
sent chemical entities that can be manually standardized as unique concept identifiers 
(primarily SNOMED-CT). The ‘NO_NORMALIZABLES’ entities represent chemical 
entities that cannot be manually standardized as unique concept identifiers. The ‘PRO-
TEINAS’ entities denote protein and gene entities that can be annotated according to 
the BioCreative GPRO track guidelines [23], and it also includes peptides, peptide hor-
mones and antibodies. Furthermore, the PharmaCoNER corpus also contains a type of 
‘UNCLEAR’ entities, which denote general substance entities of clinical or biomedical 
relevance, including pharmaceutical formulations, general treatments, chemotherapy 
programs, vaccines. The ‘UNCLEAR’ entities are not used to evaluate the Pharma-
CoNER task but as additional annotations of biomedical relevance. Table 1 illustrates the 
statistical information of the PharmaCoNER corpus.

Figure 1 shows the flowchart of our approach. We use Begin, Inside, Outside (BIO) 
scheme to tag the input sequence and formulate the PharmaCoNER task as a multi-
class classification problem. Take the “C1q y fibrinógeno fueron negativos.” sentence 
from the training set as an example. Because ‘C1q’ and ‘fibrinógeno’ are ‘PRO-
TEINAS’ entities and other tokens are not biomedical entities, the corresponding BIO 
tags can be expressed as “B-PROTEINAS O B-PROTEINAS O O O”. Moreover, BERT 
uses WordPiece to alleviate the out-of-vocabulary (OOV) problem. Therefore, in the 
training phase, the input sentence needs to be further processed by the WordPiece 
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tokenizer, and the final processed tokens are used as the model input. Correspond-
ingly, the BIO tags predicted by the BERT model also need to be processed by De-
WordPiece to obtain the BIO tags of the original sentence in the test phase. Formally, 

Table 1  The statistical information of the PharmaCoNER corpus

Set Training Development Test Total

Documents 500 250 250 1000

Sentences 7003 3454 3403 13860

NORMALIZABLES 2304 1121 973 4398

NO_NORMALIZABLES 24 16 10 50

PROTEINAS 1405 745 859 3009

UNCLEAR 89 44 34 167

Fig. 1  The processing flowchart of our approach
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given an input sequence S = {w1, · · · ,wi, · · · ,wn} , the objective of PharmaCoNER is 
to estimate the probability P(t|wi) , where wi is the i-th word/token, T = {O, B-NOR-
MALIZABLES, I-NORMALIZABLES, B-NO_NORMALIZABLES, I-NO_NORMAL-
IZABLES, B-PROTEINAS, I-PROTEINAS}, t ∈ T  , and 1 ≤ i ≤ n.

The performance on the PharmaCoNER challenge is measured with the precision 
(P), recall (R), and micro-averaged F1-score (F1). The formulas are:

where TP, FP and FN denote true positive, false positive, and false negative, respectively.

BERT architecture

BERT [17], which stands for bidirectional encoder representations from Transform-
ers [24], is a contextualized word representation model. It aims to pre-train a deep 
bidirectional context representation based on the left and right contexts of all layers. 
Because BERT has been widely used in various NLP tasks, and our implementation 
is effectively identical to the original, we refer readers to read the original paper [17] 
for more details about BERT. In this work, we only use the BERT model to imple-
ment solutions for the PharmaCoNER task. Figure  2 shows the architecture of the 
BERT model on the PharmaCoNER task. The BERT model first uses the WordPiece 
tokenizer [25] to tokenize the input sentence and adds unique tokens ‘[CLS]’ and 
‘[SEP]’ to indicate the head and tail of the sentence. Then, the representation of each 
token in the input sentence is constructed by summing the corresponding token, seg-
ment, and position embeddings, and further fed into multiple layers of Transformers. 
Note that the segment embeddings can use different values to distinguish whether the 
input sequence is a single sentence or a sentence pair. We only use the single sentence 
as the model input in the experiments, so the segment embeddings share the same 
value. Afterward, the hidden representations of the L-th layer of the BERT model (the 
number of BERT layers is denoted as L) are used by the softmax function to predict 
token classifications. Finally, the BERT model predicts the BIO tags of the original 
sentence after the De-WordPiece process.

According to different scales, BERT provides two model sizes: BERTBASE and 
BERTLARGE . For each model size, the number of layers L, the hidden size H, and the 
number of self-attention heads A are listed as follows:

•	 BERTBASE : L=12, H=768, A=12, Total Parameters=110M.
•	 BERTLARGE : L=24, H=1024, A=16, Total Parameters=340M.

(1)P =
TP

TP + FP

(2)R =
TP

TP + FN

(3)F1 =
2 · P · R

P + R
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Due to the limitation of computing resources, the BERTBASE model is more widely 
used than the BERTLARGE model. Therefore, we mainly explore the BERTBASE model 
in this research.

Pre‑training procedure

BERT is pre-trained using two unsupervised prediction tasks, masked language model 
[26] and next sentence prediction. The masked language model predicts randomly 
masked words in the input sequence and, therefore, can be used to learn bidirectional 
representations. The next sentence prediction can be employed to learn the relationship 
between sentences. As a general-purpose language representation model, the original 
BERT model was pre-trained on English Wikipedia (2.5B words) and BooksCorpus (0.8B 
words) [27]. However, biomedical texts contain a large number of biomedical entities 
(e.g., ‘3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide’, ‘nitrato de plata’), 
which are generally only understood by specific researchers. Therefore, the performance 
on models designed for general English understanding may not be satisfactory. To solve 
this problem, biomedical researchers use the corpus of their domain to pre-train the 
BERT model. As a result, many different BERT models have appeared in the NLP com-
munity based on diverse pre-training corpus or methods. Figure 3 illustrates the repre-
sentative BERT models, and Table 2 shows the detailed comparison of these models.

Fig. 2  The architecture of the BERT model
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Fig. 3  Overview of the pre-training process of various BERT models. Panels adapted from Lee et al. [22]

Table 2  Comparison of existing BERTs

Model Corpus combination Vocabulary

BERT(Cased) Wiki+Books(Original) BERT

BERT(Uncased) Wiki+Books(Original) BERT

NCBI BERT(+P,Uncased) Original+PubMed BERT

NCBI BERT(+P+M,Uncased) Original+PubMed+MIMIC-III BERT

Spanish BERT(Cased) Original+Spanish Wikipedia+OPUS Spanish BERT

Spanish BERT(Uncased) Original+Spanish Wikipedia+OPUS Spanish BERT

MultiBERT(Cased) Multilingual Wikipedia MultiBERT

MultiBERT(Uncased) Multilingual Wikipedia MultiBERT

SciBERT(BertVoc,Cased) Original+Biomedical+Scientific BERT

SciBERT(BertVoc,Uncased) Original+Biomedical+Scientific BERT

SciBERT(SciVob,Cased) Original+Biomedical+Scientific SciBERT

SciBERT(SciVob,Uncased) Original+Biomedical+Scientific SciBERT

BioBERTv1.0(+P,Cased) Original+PubMed BERT

BioBERTv1.0(+PMC,Cased) Original+PMC BERT

BioBERTv1.0(+P+PMC,Cased) Original+PubMed+PMC BERT

BioBERTv1.1(+P,Cased) Original+PubMed BERT
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NCBI BERT

NCBI BERT [28] is an uncased BERT model pre-trained using biomedical domain 
corpora (PubMed or MIMIC-III). It uses the original BERT model to initialize the 
weights and further exploits its vocabulary, sequence length, and other configurations 
to pre-train the model. There are two versions of NCBI BERT based on BERTBASE , 
namely NCBI BERT(P,Uncased) and NCBI BERT(P+M,Uncased), where ‘P’ denotes 
PubMed and ‘M’ denotes MIMIC-III, respectively. The NCBI BERT(P,Uncased) model 
was pre-trained with 5M steps on PubMed, and the NCBI BERT(P+M,Uncased) 
model was pre-trained with 5M steps on PubMed and 0.2M steps on MIMIC-III.

Spanish BERT

Spanish BERT (also called es-BERT) [29] is a BERT model pre-trained on a large 
Spanish general domain corpus. This BERT model is slightly different from BERTBASE , 
and it has 12 transformer layers with 16 self-attention heads each layer, using 1024 
as the hidden size. For pre-training Spanish BERT, the authors leveraged all the data 
from Spanish Wikipedia and all the sources of the OPUS Project [30] that have text in 
Spanish.

Multilingual BERT

Multilingual BERT [17] is a BERTBASE model pre-trained using the top 104 languages 
in Wikipedia, and its model structure is the same as BERTBASE . Furthermore, Multi-
lingual BERT uses a 110k shared WordPiece vocabulary as its vocabulary. Because the 
size of Wikipedia for a given language varies greatly, low-resource languages may be 
“under-represented” in terms of the neural network model under the assumption that 
languages compete for limited model capacity. To overcome this limitation, Multilin-
gual BERT performed exponentially smoothed weighting of the data during the pre-
training phase to balance the sampling of high-resource languages and low-resource 
languages. As a result, high-resource languages like English will be under-sampled, 
and low-resource languages like Icelandic will be over-sampled.

SciBERT

SciBERT [31] is a pre-trained contextualized language model based on BERTBASE to 
address the lack of high-quality, large-scale labeled scientific data. It exploits unsu-
pervised pre-training on a large computer science domain and biomedical domain 
corpora to improve performance on downstream NLP tasks. The authors of SciBERT 
used the original BERT model to train SciBERT with the same configuration and size 
as BERTBASE . They trained four different versions in total based on cased/uncased 
character and BERT/SciBERT vocabulary. The models using SciBERT vocabulary are 
pre-trained from scratch, while the models using BERT vocabulary are initialized 
from BERT weights.

BioBERT

BioBERT [22] is another BERT model trained on biomedical domain corpora 
(e.g., PubMed and PMC), and its structure is basically the same as BERTBASE . 
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BioBERT uses the original vocabulary of BERTBASE as its vocabulary, and it is 
a cased model. There are four versions of BioBERT based on different corpora 
for pre-training, namely BioBERTv1.0(+P,Cased), BioBERTv1.0(+PMC,Cased), 
BioBERTv1.0(+P+PMC,Cased), and BioBERTv1.1(+P,Cased), where ‘P’ means 
PubMed, and ‘+’ denotes a new corpus in addition to BooksCorpus and English 
Wikipedia. Specifically, BioBERTv1.0(+P+PMC,Cased) is a version pre-trained 
on 470K steps. When using both the PubMed and PMC corpora, the authors of 
BioBERT found that 200K and 270K pre-training steps were optimal for Pub-
Med and PMC, respectively. Therefore, the ablated versions which were pre-
trained on only PubMed for 200K steps (i.e., BioBERTv1.0(+P,Cased)) and PMC 
for 270K steps (BioBERTv1.0(+PMC,Cased)) were provided. Moreover, the authors 
also provided a BioBERT version pre-trained on PubMed for 1M steps, namely 
BioBERTv1.1(+P,Cased).

Fine‑tuning procedure

With minimal architectural modification, various existing BERT models can be used 
for downstream NLP tasks. As shown in Fig. 2, BERT in the figure represents a BERT 
model pre-trained using specific corpora (e.g., BioBERT, SciBERT). In this work, we 
use the PharmaCoNER dataset to fine-tune the BERT model. Specifically, the sen-
tence processed by the WordPiece tokenizer is used as the input to the BERT model 
in the training phase. The BERT model learns the input feature of each token and 
dynamically tune model parameters, and then classify each token through the Soft-
max function. The BIO tag of each input token/word can be obtained after the De-
WordPiece process. The cross-entropy loss function calculates the loss value between 
the predicted token tags and the ground-truth tags at the training time. Finally, as 
shown in Fig. 1, the fine-tuned BERT predicts the final token BIO tags based on the 
input test sentences in the test phase.

Results and discussion
Experimental settings

In the experiments, all BERTs are implemented using the transformer framework 
(https://​github.​com/​huggi​ngface/​trans​forme​rs) based on the PyTorch library (https://​
pytor​ch.​org). For fair comparisons, we repeat the same experiment five times with the 
same hyper-parameters, and report the max and average precision, recall, F1-score, as 
well as the standard deviation. Like most participating teams, we also combined the 
original training set and development set as the training set. Then we randomly sam-
pled 10% of the training set as the validation set to tune the hyper-parameters. Spe-
cifically, the training set and validation set consisted of 9411 and 1046 sentences as 
the input in our experiments, respectively. The test set is only used to test the model, 
with 3403 sentences as the model input. The detailed experimental settings are listed 
in Table 3. Note that the sequence length is expressed as the maximum word/token 
length of each sentence allowed by the model.

https://github.com/huggingface/transformers
https://pytorch.org
https://pytorch.org
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Experimental results

Table 4 shows the experimental results in detail. The first two methods are provided by 
the PharmaCoNER organizers. These two methods are based on the PharmaCoNER 
tagger [32], a neural network (LSTM-CRF) based tool for automatically recognizing 
chemical and protein entities in Spanish medical texts. The Baseline-Glove used word 
embeddings trained by GloVe [14] on the Spanish Billion Word Corpus, and the Base-
line-Med leveraged word embeddings from the Medical Word Embeddings for Spanish 
[33]. Baseline-Glove and Baseline-Med obtain F1-scores of 82.11% and 85.34%, respec-
tively. These experimental results demonstrate that the performance of combining tradi-
tional word embeddings and LSTM-CRF to implement solutions for the PharmaCoNER 
challenge is not satisfactory. In addition to the first two methods, the others are all lan-
guage model-based methods. Sun et al. [21] employed Multilingual BERT and obtain an 
F1-score of 89.24% during the PharmaCoNER challenge. Stoeckel et al. [19] combined 
a BiLSTM-CRF sequence tagger with pooled contextualized embeddings, word embed-
dings and sub-word embeddings using the framework FLAIR. Their method obtains an 
F1-score of 90.52%. Xiong et al. [18] combined Multilingual BERT, character-level rep-
resentation, POS representation and word-shape representation to achieve results on 
the PharmaCoNER challenge. Their method obtains an F1-score of 91.05%. It can be 
seen that language models are of great value to the PharmaCoNER challenge. Whether 
it is through the use of contextualized character embeddings (e.g., Stoeckel’s work) or 
context word representations (e.g., Sun’s work and Xiong’s work), language models can 
greatly increase the ability to recognize biomedical entities in Spanish texts. Further-
more, note that all these works during the challenge were submitted blindly (i.e., the test 

Table 3  Detailed experimental settings

Parameters Tune range Optimal

Sequence length [128, 256, 300] 300

Train batch size [8, 16, 32] 16

Dev batch size 16 16

Test batch size 16 16

Learning rate [1e−05, 2e−05, 3e−05] 2e−05

Epoch number [10, 20, 30, 50] 20

Warmup 0.1 0.1

Dropout 0.1 0.1

Table 4  Performance comparison on the PharmaCoNER dataset

‘P’ denotes PubMed

The highest values are shown in bold

Method P (%) R (%) F1 (%)

Baseline-Glove [32] 83.26 81.00 82.11

Baseline-Med [32] 87.02 83.71 85.34

Sun et al. [21] 90.46 88.06 89.24

Stoeckel et al. [19] 90.79 90.30 90.52

Xiong et al. [18] 91.23 90.88 91.05

Our method (BioBERTv1.1(+P,Cased)) 92.44 91.59 92.01
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set unknown). In this work, we employed BioBERTv1.1(+P,Cased) to generate biomedi-
cal contextualized representations to implement solutions for the PharmaCoNER task. 
Our method achieves the best F1-score of 92.01% from five runs, which is currently the 
best performance on the PharmaCoNER dataset. These experimental results show that 
the domain pre-training of language models is important for the PharmaCoNER task. 
The SOTA performance can be obtained by BioBERT using only biomedical domain 
knowledge and the WordPiece tokenizer.

Performance of different BERTs

In this section, we further explore the impact of pre-training on BERT from four aspects: 
domain corpus, language, vocabulary, and character case. Table  5 shows the perfor-
mance comparison of various BERT models. The BERT model can be regarded as a base-
line model. It can be seen that the BERT model pre-trained using the biomedical domain 
corpus (e.g., SciBERT and BioBERT) or native language (e.g., MultiBERT and Spanish 
BERT) achieves higher performance than the BERT model pre-trained using the English 
general corpus. This experimental result shows that using the biomedical domain corpus 
or native language (i.e., Spanish) to pre-train BERT can improve model performance on 
the PharmaCoNER task. Compared with MultiBERT and Spanish BERT, the best ver-
sion of SciBERT and BioBERT can obtain higher performance. This shows that domain 
knowledge is more helpful to improve model performance compared with the native 
language. Furthermore, we also observe an interesting experimental result, i.e., the per-
formance of NCBI BERT is even lower than the original BERT. It may be caused by the 

Table 5  Performance comparison of various BERTs

‘P’ and ‘M’ denote PubMed and MIMIC-III, respectively. The table is sorted according to the average F1-score, and the highest 
values are shown in bold

*Significant difference between the means of two models according to the T-TEST statistical test. Specifically, it indicates 
the model has a significant difference compared with BioBERTv1.1(+P,Cased), with more than 95% confidence interval ( p < 
0.05)

Method Mean ± SD Max

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

BERT(Cased) 89.31 ± 0.26 88.00 ± 0.16 88.65 ± 0.12 89.51 88.06 88.78∗

BERT(Uncased) 89.60 ± 0.81 88.13 ± 0.40 88.86 ± 0.57 90.32 88.65 89.48∗

NCBI BERT(P+M,Uncased) 89.29 ± 0.67 87.11 ± 0.60 88.18 ± 0.35 89.58 87.30 88.42∗

NCBI BERT(P,Uncased) 90.20 ± 0.38 88.88 ± 0.52 89.53 ± 0.37 90.76 89.58 90.16∗

Spanish BERT(Uncased) 89.69 ± 0.74 90.56 ± 0.58 90.12 ± 0.37 90.47 90.72 90.59∗

Spanish BERT(Cased) 90.42 ± 0.77 90.51 ± 0.69 90.47 ± 0.69 91.76 91.31 91.54

MultiBERT(Cased) 89.53 ± 0.27 89.99 ± 0.43 89.76 ± 0.19 89.75 90.34 90.04∗

MultiBERT(Uncased) 90.74 ± 0.35 90.39 ± 0.37 90.56 ± 0.25 91.02 90.77 90.89

SciBERT(Bertvoc,Cased) 90.36 ± 0.75 89.55 ± 0.30 89.96 ± 0.40 91.66 89.52 90.58∗

SciBERT(Bertvoc,Uncased) 91.07 ± 0.71 89.00 ± 0.45 90.02 ± 0.55 91.85 89.36 90.59∗

SciBERT(Scivoc,Uncased) 90.75 ± 0.86 90.27 ± 0.32 90.51 ± 0.40 92.03 90.28 91.15

SciBERT(Scivoc,Cased) 91.25 ± 0.69 90.30 ± 0.58 90.77 ± 0.40 92.40 89.74 91.05

BioBERTv1.0(+PMC,Cased) 90.54 ± 0.71 89.59 ± 0.31 90.06 ± 0.45 91.09 89.90 90.49∗

BioBERTv1.0(+P,Cased) 90.44 ± 0.34 89.98 ± 0.64 90.21 ± 0.36 90.75 90.55 90.65∗

BioBERTv1.0(+P+PMC,Cased) 91.08 ± 0.86 89.76 ± 0.52 90.41 ± 0.42 91.13 90.34 90.73

BioBERTv1.1(+P,Cased) 91.40 ± 0.81 90.90 ± 0.47 91.15 ± 0.60 92.44 91.59 92.01
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large difference between the corpora of MIMIC-III and PharmaCoNER. This experi-
mental result indicates that only the domain knowledge related to the PharmaCoNER 
dataset can promote the improvement of model performance. Next, we observe that 
all BERT models obtain competitive performance, demonstrating that BERT can take 
advantage of WordPiece to alleviate the OOV limitation. However, the max F1-scores 
of SciBERT(Scivoc,Cased) (91.05%) and SciBERT(Scivoc,UnCased) (91.15%) are higher 
than those of SciBERT(Bertvoc,Cased) (90.58%) and SciBERT(Bertvoc,Uncased) 
(90.59%). This experimental result indicates that although BERT can use WordPiece 
to alleviate the OOV limitation, using the vocabulary designed for the domain corpus 
can further improve model performance. Finally, we compare the effect of the charac-
ter case on BERT models. As shown in Table  5, among these models, BERT, MultiB-
ERT, SciBERT, and Spanish BERT have Cased and Uncased models, while NCBI BERT 
and BioBERT only have Uncased or Cased models. From the average F1-score, the per-
formance of BERT (Uncased) and MultiBERT (Uncased) is better than that of BERT 
(Cased) and MultiBERT (Cased). However, the performance on the Cased and Uncased 
models is not much different for Spanish BERT and SciBERT. Therefore, as far as exist-
ing BERT models are concerned, it can only be concluded that the character case has 
a certain impact on model performance. The specific impact trend needs more experi-
ments to reveal.

Discussion

Performance of each type for PharmaCoNER

Table  6 lists the highest precision, recall and F1-score of BioBERTv1.1(+P,Cased) on 
the PharmaCoNER challenge. Among the three types of entities evaluated for Phar-
maCoNER, BioBERTv1.1(+P,Cased) performed worst on NO_NORMALIZABLES 
(16.67% in F1-score). As shown in Table 1, there are only 50 NO_NORMALIZABLES 
entities in the PharmaCoNER dataset. Because the quantity is insufficient, it is difficult 
for BioBERTv1.1(+P,Cased) to effectively learn latent features of this type of mention. In 
contrast, BioBERTv1.1(+P,Cased) performed well on the recognition for NORMALIZA-
BLES and PROTEINAS entities, achieving F1-scores of 94.83% and 89.87%, respectively. 
The reason may be that these two types of entities are in sufficient quantity and their 
structure has been standardized.

Softmax versus CRF

Because CRF can optimize the path of sequence labeling problems, most previous neural 
models (e.g., LSTM-CRF) used CRF to learn label constraints. In this study, we com-
pared the performance of BERT-softmax and BERT-CRF. As illustrated in Table 7, the 

Table 6  Performance of each type for PharmaCoNER

Method P (%) R (%) F1 (%)

NORMALIZABLES 95.33 94.35 94.83

NO_NORMALIZABLES 14.29 20.00 16.67

PROTEINAS 90.45 89.29 89.87

Overall 92.44 91.59 92.01
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performance of BERT-softmax is superior to that of BERT-CRF. The reason may be that 
the token representation already contains context information, and using these repre-
sentations can obtain promising performance.

Error analysis

We further performed error analysis to explore the entities constituting false negatives 
(FNs) and false positives (FPs). The best run of BioBERTv1.1(+P,Cased) (with the F1-score 
of 92.01%) produced a total of 155 FNs and 138 FPs. We concluded four representative 
types of errors by analyzing these FNs and FPs. Table 8 lists these types of errors. The first 
example represents a type of FNs, which is caused by incorrectly recognizing the ground-
truth ‘PROTEINAS’ type as the ‘O’ type. This type of error accounts for 49% (i.e., 76/155) 
of all FNs. Similarly, the second example represents a type of FPs, which is caused by incor-
rectly recognizing the ground-truth ‘O’ type as the ‘PROTEINAS’ type. This type of error 
accounts for 42% (i.e., 58/138) of all FPs. Furthermore, boundary recognition errors are a 
typical type of error. As for the third example, the BioBERTv1.1(+P,Cased) model incor-
rectly recognizes some modifying words (i.e., ‘de bajo pesomolecular’) as the chemical 

Table 7  Performance comparison of BERT-CRF and BERT-Softmax

‘BERT’ refers to BioBERTv1.1(+P,Cased)

The highest values are shown in bold

Method Mean ± SD Max

P (%) R (%) F1 (%) P (%) R (%) F1 (%)

BERT-CRF 90.42 ± 1.16 89.59 ± 0.36 90.00 ± 0.68 91.69 89.90 90.79

BERT-Softmax 91.40 ± 0.81 90.90 ± 0.47 91.15 ± 0.60 92.44 91.59 92.01

Table 8  Examples of errors in recognizing biomedical entities by BioBERTv1.1(+P,Cased)

‘Gold’ denotes the gold standard, and ‘Pred’ denotes the prediction results. Bold represents the gold standard entities and 
bolditalic denotes the predicted entities. If not specified, it defaults to the ‘O’ type, which means it is not a chemical/protein 
entity

Error examples Number 
of 
errors in 
this type

Gold: Se solicita serología de [Anticuerpos Echinococcus](PROTEINAS)/Hemag que es POSITIVO a 
cifras superiores 1/2,621,440

76

Pred: Se solicita serología de [Anticuerpos Echinococcus](O)/Hemag que es POSITIVO a cifras supe-
riores 1/2,621,440

Gold: A esto se añadía alteración de [enzimas hepáticas](O) 58

Pred: A esto se añadía alteración de [enzimas hepáticas](PROTEINAS)
Gold: ... a dosis plenas (1 mg/kg/día) y [heparina](NORMALIZABLES) de bajo peso molecular, con nor-

malización progresiva de las deposiciones .
39

Pred: ... a dosis plenas (1 mg/kg/día) y [heparina de bajo peso molecular](NORMALIZABLES) , con nor-
malización progresiva de las deposiciones

Gold: La ecografía mostró derrame pleural loculado, administrándose en consecuencia 200,000 UI 
de [urokinasa](PROTEINAS) durante dos días consecutivos por el tubo de toracocentesis

9

Pred: La ecografía mostró derrame pleural loculado, administrándose en consecuencia 200,000 UI 
de [urokinasa](NORMALIZABLES) durante dos días consecutivos por el tubo de toracocentesis
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entity (i.e., ‘heparina’). The fourth example also represents a type of error, i.e., the chemical 
and protein cross-recognition errors. In the gold standard, ‘urokinasa’ is annotated as a pro-
tein entity, but the BioBERTv1.1(+P,Cased) model incorrectly recognizes it as a chemical 
type (i.e., the ‘NORMALIZABLES’ type).

Conclusion
In this article, we have compared and explored various representative BERTs on the Phar-
maCoNER dataset in detail. Our method achieves SOTA performance, with an F1-score 
of 92.01%. The experimental results show that the introduction of language models such 
as BERT can effectively improve model performance on the PharmaCoNER task. For the 
BERT model, the performance of the model pre-trained using the biomedical domain cor-
pus is superior to the model pre-trained using the native language. Although BERT can use 
WordPiece to alleviate the OOV limitation, the use of a vocabulary designed for specific 
domain corpora can further improve model performance. Furthermore, the character case 
also has a certain effect on model performance. In future work, we would like to explore 
the performance of BERT pre-trained using the Spanish PubMed corpus on the Pharma-
CoNER dataset.
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