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Background
Cervical cancer is the main cause of women deaths worldwide which accounts for more 
than 520,000 new cases and 260,000 deaths each year [1, 2]. Although vaccines against 
the prime carcinogenic human papilloma virus (HPV) types are available commercially, 
the proportion of women receiving the vaccine is still low, especially in developing coun-
tries [3, 4]. Furthermore, despite effective treatment of early cervical cancer with surgery 
and radiation therapy, late cervical cancer is usually uncontrollable [5, 6].

Abstract 

Background:  Accurately forecasting the prognosis could improve cervical cancer 
management, however, the currently used clinical features are difficult to provide 
enough information. The aim of this study is to improve forecasting capability by devel-
oping a miRNAs-based machine learning survival prediction model.

Results:  The expression characteristics of miRNAs were chosen as features for model 
development. The cervical cancer miRNA expression data was obtained from The 
Cancer Genome Atlas database. Preprocessing, including unquantified data removal, 
missing value imputation, samples normalization, log transformation, and feature scal-
ing, was performed. In total, 42 survival-related miRNAs were identified by Cox Propor-
tional-Hazards analysis. The patients were optimally clustered into four groups with 
three different 5-years survival outcome (≥ 90%, ≈ 65%, ≤ 40%) by K-means clustering 
algorithm base on top 10 survival-related miRNAs. According to the K-means cluster-
ing result, a prediction model with high performance was established. The pathways 
analysis indicated that the miRNAs used play roles involved in the regulation of cancer 
stem cells.

Conclusion:  A miRNAs-based machine learning cervical cancer survival prediction 
model was developed that robustly stratifies cervical cancer patients into high survival 
rate (5-years survival rate ≥ 90%), moderate survival rate (5-years survival rate ≈ 65%), 
and low survival rate (5-years survival rate ≤ 40%).
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Survival prediction after first diagnosis is important for both disease special-
ist and patients or their family members. First, as the survival ability of the cancer 
patients largely depends on the malignancy of the cancer cells, accurately forecast-
ing the prognosis would be helpful for estimating the degree of malignancy and the 
time point of disease progression [7, 8]. On the other hand, patients and the families 
can set appropriate goals base on the accurate survival prediction. As the result, the 
timely prevention and treatment would be made and the worse treatment decision, 
such as over-treatment or late palliative care, would be effectively avoided.

However, accurate prediction of survival of cervical cancer patients is still chal-
lenging due to the heterogeneity of the cancer cells. In general, the cervical cancer 
patients were stratified into different groups base on cancer staging systems, TNM 
classification [9–11], for example. However, the molecular features have been rarely 
considered in such staging systems that numbers of subtypes of patients with dif-
ferent survival outcomes would be existed in one specific TNM stage. Furthermore, 
clinical features, such as TNM stage, could not provide enough information for 
survival prediction. For example, we investigated the correlation between several 
clinical features (including age at initial pathologic diagnosis, age began smoking, 
neoplasm pathologic margin involved text, neoplasm pathologic margin involved 
type, height, histological type, race, clinical stage, HPV infection) and the survival of 
cervical cancer patients included in The Cancer Genome Atlas (TCGA) dataset and 
found that only clinical stage is relevant, however, its discrimination ability is still 
not enough for accurate prediction (Log-rank p = 0.012) (Fig. 1a and b). Thus, novel 
prediction strategies were urgently needed to be developed.

Molecular features (such as gene or noncoding RNA expression levels, gene muta-
tion, copy number variation, etc.) imply substantial information about cancer cells, 
including malignant level, metastasis ability and therapeutic sensitivity, etc. [12]. 
Several cancers (colorectal, breast, and cervical cancers, for example) have been 
stratified into subtypes base on the molecular profiles provided by rapidly devel-
oping database of cancer molecular information, such as TCGA [13–15]. Thus, 
development of molecular features-based prediction model keeps the promise for 
improving the accuracy of cancer survival prediction model. Furthermore, as a part 
of artificial intelligence, machine learning (ML) provides a solution for accuracy 
improvement of cancer survival prediction model. Machine learning is a process for 
analysis of big data, that was characterized as learning form mistakes and experi-
ences [16, 17]. Several machine learning models, such as support vector machines 
(SVM), have been widely used for development of prediction model base on elec-
tronic medical record, images as well as molecular features of cancer cells [18–22].

Thus, the objective of this study is to develop a novel molecular features-based 
machine learning cervical cancer survival prediction model (CCSPM) with high per-
formance. MiRNAs were chosen as features and Cox-PH, K-means clustering and 
SVM algorithms were used for survival-related features identification, features-
based objectives stratification, and prediction model development, respectively. The 
results of this study would improve the forecasting capacity of CCSPM and be help-
ful for cervical cancer management.
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Results
Insufficient discriminative ability of clinical features for development of cervical cancer 

survival prediction model

Numbers of features with high discriminative ability is essential for development of 
a prediction model [23]. To develop the survival prediction model for cervical can-
cer, we investigated whether clinical features possess high discriminative ability for 
stratifying cervical cancer patients with different survival outcome. The information 
of clinical features and the survival of cervical cancer patients was downloaded from 
TCGA database [15]. The summary of the clinical information was given in Table 1. 
The cervical cancer patients were stratified base on 3-years survival outcome and the 

Fig. 1  The relationship between clinical features and survival of cervical cancer. a Chi-square analysis of the 
association between clinical features and 3-years survival of cervical cancer patients. b Kaplan–meier analysis 
of the association between clinical stage and the survival of cervical cancer. Chi-square was performed using 
chisq.test() function in “stats” (version 3.6.2) package. Kaplan–meier analysis was performed using Surv() 
and survfit() function in “survival” (version 3.2–10) package. The Kaplan–meier plot was performed using 
ggsurvplot() function in “survminer” (version 0.4.9). RStudio (version 3.6.1, RStudio, Inc.) is used
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Table 1  Summary of the clinical information of cervical cancer patients included in TCGA database

Characteristics Cohort (n=307)

No. %

Age at initial pathologic diagnosis

Age <= 35 56 18.24

35 < Age <= 60 192 62.54

Age > 60 59 19.22

NA 0 0.00

Age began smoking

Age <= 30 75 24.43

Age > 30 10 3.26

NA 222 72.31

Neoplasm pathologic margin involved text

Margins free of tumor 23 7.49

Others 17 5.54

NA 267 86.97

Neoplasm pathologic margin involved type

Macroscopic and microscopic parametrial involvement 10 3.26

Other location, specify 40 13.03

Positive bladder and vaginal margin 13 4.23

NA 244 79.48

Survival (years)

<= 3 55 17.92

> 3 92 29.97

Loss to follow up < 3 160 52.12

Height (cm)

< 150 15 4.89

150 - 160 119 38.76

160 - 170 111 36.16

>= 170 19 6.19

NA 43 14.01

Histological type

Adenosquamous 6 1.95

Cervical squamous cell carcinoma 254 82.74

Endocervical adenocarcinoma of the usual type 6 1.95

Endocervical type of adenocarcinoma 21 6.84

Endometrioid adenocarcinoma of endocervix 3 0.98

Mucinous adenocarcinoma of endocervical type 17 5.54

NA 0 0.00

Race

American indian or alaska native 8 2.61

Asian 20 6.51

Black or african american 30 9.77

Native hawaiian or other pacific islander 2 0.65

White 211 68.73

NA 36 11.73

Clinical stage

Stage I - IIa 189 61.56

Stage IIb - IVb 111 36.16

NA 7 2.28

HPV infection
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clinical features were grouped as shown in Fig. 1a. Chi-square analysis was performed 
to determine whether clinical features were correlated with 3-years survival outcome. 
Unfortunately, no clinical features were found to be correlated with 3-years survival of 
cervical cancer base on Chi-square analysis (Fig. 1a), while, clinical stage has shown 
its potential (p = 0.07). We next performed Kaplan–meier analysis to confirm the link 
of clinical stage with cervical cancer survival. As shown in Fig. 1b, although the two 
groups of patients stratified by clinical stage exhibited statistically different survival 
outcome, its discriminative ability is still not enough for development of a survival 
prediction model (Log-rank p value = 0.012). These results suggested that clinical fea-
tures, including clinical stage, could not provide enough information for development 
of CCSPM.

Data preprocessing of TCGA miRNAs expression data

We next investigate whether the expression of microRNAs (miRNAs) could be served as 
features for development of CCSPM. The miRNA expression data from TCGA database 
was used in this study [15]. The data preprocessing was first performed; data preproc-
essing plays important roles for statistical analysis of big data, including elimination of 
the impact from unquantified samples and features, missing values and outliers, reduc-
tion of batch-effects and experimental deviation, and normalization of the range of inde-
pendent features, etc. [24].

The TCGA cervical cancer miRNA expression data (RPKM) was downloaded, in 
which 542 miRNAs in 312 cervical cancer samples were included. The reduced number 
of miRNAs is the result of the fact that only a certain number of miRNAs express in a 
specific cell [25]. The workflow of data preprocessing was given in Fig. 2a. The 2 metas-
tasis and 3 normal control samples were first removed from analysis. For missing values 
imputation, two independent steps were performed as both batch effects and subtypes 
of cancer samples derived from heterogeneity of individuals should be considered. KNN 
missing value imputation was performed in this study; KNN is a non-parametric clas-
sification method in which K nearest neighbors of the subject were determined by physi-
cal units [26]. If the sample size is not big enough to contain K certain subtype samples 
in on batch, this study for example, when the batch-effects were existed in the data, K 
nearest neighbors are K samples in one specific batch and when the batch-effects were 
eliminated, K nearest neighbors are K samples in one specific molecular subtype. Thus, 
we performed two independent steps for missing values imputation. We first imputed 
the missing values with average of K nearest neighbors in one batch by KNN imputation 

Table 1  (continued)

NA: Not available, HPV: human paplillomavirus

Characteristics Cohort (n=307)

No. %

Hpv16 172 56.03

Hpv18 39 12.70

Others 73 23.78

NA 23 7.49
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method for subsequent sample normalization. After sample normalization by quantile 
normalization algorithm (the batch-effects were removed) [27], we removed the miss-
ing values and replaced them by KNN again with average of K nearest neighbors in one 
subtype. The data was finally processed by log2 transformation [28] and feature scaling 
(Z-score algorithm) [29, 30]. The miRNAs expression profiles derived from data after 
preprocessing was given in Additional file 1: Fig. 1.

Survival‑related miRNAs identification

As shown in workflow of whole study (Fig.  2b), To develop the survival prediction 
model for cervical cancer, the features with high discriminative ability for cervical 
cancer survival are needed to be identified. MiRNA features were chosen as their 
important roles in cellular regulation and relative cost-effective for laboratory test. 
Cox-PH hazards model was used in this study. In total, 42 survival-related miRNAs 
were identified with log-rank p value less than 0.05; 23 and 19 miRNAs were positively 
and negatively correlated with survival ability of cervical cancer patients, respectively 
(Additional file  2: Table  1). The heatmap was given for exhibit the expression pro-
files of the survival-related miRNAs in tumor samples of patients (Additional file 1: 

Fig. 2  The workflow of data preprocessing and prediction model development. a The workflow of data 
preprocessing. b The workflow of miRNAs-based machine learning cervial cancer survival prediction model 
development
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Fig. 2), and the result show that the patients were clustered base on regular Euclidean 
distances derived from the expression profiles of the miRNAs. The Kaplan–meier sur-
vival curves were subsequentially plotted for visualization of the discriminative ability 
of these miRNAs (Additional file 1: Fig. 3). Finally, the average expression of survival-
related miRNAs in tumor samples of patients with different 3-years survival outcome 
was presented in (Fig. 3). However, although the survival-related miRNAs were iden-
tified, as the different discriminative ability of the features, the combination of these 
features should be optimized for prediction model development through K-means 
clustering analysis.

K‑means clustering of cervical cancer patients with survival‑related miRNAs

Next, the patients were stratified by K-means clustering algorithm with survival-related 
miRNAs; the grouped patients will be subsequentially used for training prediction 
model. K-means clustering is a widely used machine learning program to partition n 
non-prelabeled observations into K clusters base on the characteristics of the features of 
the observations [31, 32]. In this study, we preformed the program when K = 2 to 4, and 
the number of the features were optimized. As shown in Fig.  4, Kaplan–meier curves 
showed that the patients with different survival outcome were successfully separated by 

Fig. 3  The heatmap of average expression of survival-related miRNAs in cervical cancer patients with 
different 3-years survival outcome. a The average expression level of each survival-related miRNAs identified 
by Cox-PH regression analysis in cervical cancer samples of patients with different 3-years survival outcome. 
b The prognosis-related miRNAs were clustered base on the expression profiles in cervical cancer samples. 
Cox-PH analysis was performed using coxph() function in “survival” (version 3.2–10) package and the heatmap 
was performed by Heml software. RStudio (version 3.6.1, RStudio, Inc.) is used



Page 8 of 17Ding et al. BMC Bioinformatics          (2021) 22:331 

top 3, 5, 10, 20, 30 and all 42 miRNAs when K = 2. Notably, when K = 4, the program suc-
cessfully separated the patients into four groups with three obviously different survival 
outcome base on top 10 survival-related miRNAs features. This result indicates that, 
theoretically, a prediction model with the ability to stratify patients into four groups with 
three different survival outcome (5-years survival rate ≥ 90% (group 2), ≈ 65% (group 1 

Fig. 4  Kaplan–meier analysis of the survival of cervical cancer patients stratified by K-means clustering. The 
cervical cancer patients were clustered by K-means clustering algorithm (K = 2–4) with top 3, 5, 10, 20, 30, 
42 survivla-related miRNAs, followed by Kaplan–meier analysis of the survival of corresponding patients. 
K-means clustering was performed using kmeans() in “stats” (version 3.6.2) package. Kaplan–meier analysis 
was performed using Surv() and survfit() function in “survival” (version 3.2–10) package. The Kaplan–meier 
plot was performed using ggsurvplot() function in “survminer” (version 0.4.9). RStudio (version 3.6.1, RStudio, 
Inc.) is used
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and 4) and ≤ 40% (group 3)) could be developed. Consideration of the biggest usefulness, 
this parameter (Top 10 miRNAs, K = 4) was used for prediction model development.

Fig. 5  Development and evaluation of miRNAs-based machine learning cervical cancer survival prediction 
model. a Workflow of model development and evaluation. b The performance of classification for the 
prediction model was evaluated by ROC (Receiver operating characteristics) curve and AUC (Area under 
curve) value. c The accuracy of survival subtype prediction was assessed by Kaplan–meier analysis and 
Log-rank p value. SVM algorithm implementation was performed using svm() function in “e1071” (version 
1.7–6) package and predict() function in “car” (version 3.0–10). ROC curve analysis was performed using roc() 
function in “pROC” (version 1.17.0.1) package and plot() function in “graphics” (version 3.6.1). Kaplan–meier 
analysis was performed using Surv() and survfit() function in “survival” (version 3.2–10) package. The Kaplan–
meier plot was performed using ggsurvplot() function in “survminer” (version 0.4.9). RStudio (version 3.6.1, 
RStudio, Inc.) is used
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SVM prediction model development

Next, the K-means clustering-derived of grouped patients and the related expression 
data of top 10 survival-related miRNAs were subjected into SVM program for prediction 
model training and development. SVM is one of the most powerful prediction methods 
for classification- or regression-aimed data analysis base on statistical learning frame-
works and Vapnik–Chervonenkis (VC) theory [33]. In this study, a 7/3 split was used for 
generation of training and test data and tenfold cross-validation (CV) [34] was chosen. 
The workflow of SVM model development and evaluation was given in Fig. 5a.

After model development, the area under the operating characteristic curve (ROC) 
(AUC) was used to evaluate the discriminative ability of the model. As shown in Fig. 5b, 
the model exhibited high performance: AUC value = 0.956 (group 1), 0.914 (group 2), 
0.968 (group 3), 0.968 (group 4) for test set; 0.987 (group 1), 0.986 (group 2), 1.000 
(group 3), 0.996 (group 4) for training set; 0.978 (group 1), 0.964 (group 2), 0.990 (group 
3), 0.988 (group 4) for whole set, and the misdiagnosis rate was 6.52% (test set), 0.93% 
(training set), 2.61% (whole set), respectively. Furthermore, the groups of patients pre-
dicted by the SVM model exhibited the similar survival outcome as the patients clustered 
by K-means algorithm (Fig. 5c), which confirmed the accuracy of the SVM prediction 
model. Collectively, a miRNAs-based ML CCSPM that stratifies cervical cancer patients 
into high survival rate (5-years survival rate ≥ 90%), moderate survival rate (5-years sur-
vival rate ≈ 65%) and low survival rate (5-years survival rate ≤ 40%) was developed.

Pathway analysis of the targets of miRNAs used in the model development

To understand the mechanisms underlying the miRNAs that served as the features for 
ML CCSPM, a pathway analysis was performed with the targets of these miRNAs. As 
shown in Fig. 6, the targets impacted the pathways involved in cancer stem cells (CSCs). 
It had been recognized that CSCs are the root of cancer initiation, progression, drug 

Fig. 6  Pathway analysis of the targets of miRNAs used in model development. The mature miRNAs of 
survival-related stem-loop miRNAs used in model development were checked by miRbase online database 
(http://​www.​mirba​se.​org/). The predicted targets of mature miRNAs were analyzed by miRDB online tool 
(http://​mirdb.​org/​index.​html). Only top 10 targets were included for bioinformatic analysis. Pathway analysis 
was performed by reactome online software (https://​react​ome.​org/)

http://www.mirbase.org/
http://mirdb.org/index.html
https://reactome.org/
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resistance, that leads to treatment failure [35]. This result indicated that the mechanism 
underlying the miRNAs selected as the features for ML CCSPM model is their roles in 
CSCs regulation.

Discussion
In this study, we developed a CCSPM base on TCGA database and machine learning 
technology which successfully stratified the cervical cancer patients into three groups 
(high survival ability, moderate survival ability, and low survival ability with 5-years sur-
vival rate ≥ 90%, ≈ 65% and ≤ 40%).

Preprocessing is important for statistical analysis of biological data; several chal-
lenges are existed in biological samples-derived big data, including missing values, 
batch-effects and different ranges of independent features, etc. [24]. Sample normali-
zation and feature scaling are normally necessary for data preprocessing, which were 
performed for elimination of batch-effects and normalizing the range of independent 
feature, respectively; quantile and Z-score algorithms were well-known and wildly-
used methods for these two steps [27, 29, 30]. KNN methods are most popular strat-
egy for missing values imputation [26], while, for cancer research, both batch-effects 
and subtypes of cancer samples are needed to be considered; the later one is usually 
ignored in studies. Cancer heterogenicity refers to the existence of subpopulations of 
tumor cells with different genotypes and phenotypes; this heterogenicity may exist 
in the same tumor or tumors from different patients [36]. Thus, ideally, the miss-
ing values should be replaced by the average values derived from same subtypes of 
tumor samples in certain batch. However, as the high cost of omics-data extraction, 
the number of patients included in the database is usually not enough. Therefore, two 
steps missing values imputation were adopted in this study; the missing values first 
were imputed by KNN method with average of values in certain batch for subsequent 
normalization, and after normalization, the missing values were imputed by KNN 
method again with average of values in certain subtype of samples (Fig. 2a). The strat-
egy employed in this study maximumly attenuate the disturbance of missing values.

Accurately forecasting the survival cancer patients are important for therapeutic 
decision. Currently, most molecular-based survival prediction model stratified the 
patients into two groups with different survival outcome [37, 38]. For example, Zhao 
and colleagues developed a five-genes prognostic model that stratifies the cervical 
cancer patients into two groups with 5-years survival rate ≈ 80% and 50%, respectively 
[37], while, this result is not accurate enough for therapeutic decision making. In this 
study, the 10 miRNAs-based prediction model developed by SVM program could 
robustly stratify the cervical patients into three groups (5-years survival rate ≥ 90%, ≈ 
65% and ≤ 40%), which significantly improves the usefulness of the model (Table 2).

Table 2  Comparation of SVM model developed in this study and Zhao model

Models Groups 
stratified

5-years survival rate of each group Log-rank p value References

This study 3 ≥90%, ≈ 65% and ≤ 40% 0.1×10-6

Zhao et al. 2 ≈80% and 50% <0.001 37
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In this study, we used K-means algorithm to stratify patients automatically base 
on miRNA expression characteristics, however, medical experience of researchers is 
helpful for the interpretation of the meaning of the clustering result. As shown in 
Fig. 4, it is difficult to decide that K = 4 is the optimal clustering strategy according 
to the log-rank p value, while, although group 1 and group 4 possess distinct miRNA 
expression profiles, the patients show the similar 5-year survival outcome. Mean-
while, by this clustering strategy, the patients with high survival rate (group 2) and 
low survival rate (group 3) were stratified more accurately.

CSCs are the prime cause of cancer treatment as their congenital self-renewal 
capacity and enhanced metastasis, tumor-initiation and drug resistance abilities [35]. 
There are several pathways that play essential roles for CSCs maintenance; these path-
ways, such as Wnt, Hedgehog, Hippo and NOTCH etc. are also essential for normal 
stem cell regulation and development [39, 40]. The alteration of signaling involved 
in cancer microenvironment, including VEGF, FGFR, EGFR, GPCR, NTRKs and 
TGFB, etc. have also been found in CSCs [41–43]. Pathway analysis showed that the 
targets of the miRNAs used for CCSPM development significantly impacted these 
pathways (Fig. 6), indicating that the miRNAs associated with CSCs largely correlate 
with survival of cervical cancer patients and could be served as features for CCSPM 
development.

Conclusion
In summary, a miRNAs-based ML CCSPM was developed that robustly stratifies cervi-
cal cancer patients into high survival rate (5-years survival rate ≥ 90%), moderate survival 
rate (5-years survival rate ≈ 65%) and low survival rate (5-years survival rate ≤ 40%).

Methods
Datasets and data analysis

The miRNA expression reads per million of mapped reads per kilobase of transcript 
length (RPKM) data, which includes 542 miRNAs and 312 samples, and the related clini-
cal information were downloaded by firehose online tools (file package name: gdac.broa-
dinstitute.org_CESC.miRseq_Preprocess.Level_3.2016012800.0.0, miRNA file name: 
CESC.miRseq_RPKM.txt, clinical information file name: gdac.broadinstitute.org_CESC.
Merge_Clinical.Level_1.2016012800.0.0) [15]. RPKM is a method for normalization of 
raw counts. As a specific cell expresses a certain number of miRNAs, not all 1046 miR-
NAs were included in the data. All data analysis with the exception of heatmap was per-
formed in R [44] using RStudio (version 3.6.1, RStudio, Inc.).

Determination of the correlation between clinical features and survival of cervical cancer

The samples of metastasis tumor and normal tissues were first removed. The selected 
clinical features were grouped as shown in Fig. 2a and the patients in each group were 
divided based on 3-years survival (Fig. 2a). Chi-square test was used to determine the 
correlation between clinical features and 3-years survival of the patients. P values less 
than 0.05 were regarded as statistically significant. The potential features (P less than 0.1 
by Chi-square analysis) were further confirmed by Kaplan–meier analysis. Chi-square 
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was performed using chisq.test() function in “stats” (version 3.6.2) package [44]. Kaplan–
meier analysis was performed using Surv() and survfit() function in “survival” (version 
3.2–10) package [45]. The Kaplan–meier plot was performed using ggsurvplot() function 
in “survminer” (version 0.4.9) [46].

Data preprocessing

The workflow of data preprocessing was presented in Fig. 3a. Unqualified samples and 
features removing, missing values imputation, samples normalization and features 
scaling were performed for miRNA expression data preprocessing. First, 2 metastasis 
and 3 normal samples were removed. Then, the miRNAs and samples with missing 
values ≥ 20 were removed. To perform sample normalization to eliminate the batch-
effects, the missing values were preliminarily imputed by K-nearest neighbors (KNN) 
method, which impute the missing values by the average of K nearest neighbors, 
which were determined by Euclidean distances, in this study. KNN analysis was per-
formed using knnImputation() function in “DMwR2” (version 0.0.2) [48].

Sample normalization was performed by quantile normalization method as 
described by Zhao’s publication [27]. The batch-effects were removed by this step. As 
not only batch-effects but also subtypes of heterogeneous tumor cells were consid-
ered for missing values imputation, the missing values were removed and replaced 
again by KNN method with normalized data. After log2 transformation, the feature 
scaling was performed by Z-score method. The preprocessed data was provided in 
Additional file  3: Table  2. The source code of data preprocessing was provided in 
GitHub (https://​github.​com/​dingd​ongyan/​New-​CESC-​2021). Quantile normalization 
was performed using normalize.quantiles() function in “preprocessCore” (version 
1.48.0) package [48]. Calculation of average and standard deviation for Z-score analy-
sis were performed using mean() function in “base” (version 3.6.2) package [44] and 
sd() function in “stats” (version 3.6.2) package [44].

Survival‑related miRNAs identification

Cox proportional hazard (Cox-PH) model was used to identification of survival-
related miRNAs. Cox-PH analysis was performed using coxph() function in “survival” 
(version 3.2–10) package [45]. All parameters were default. P values less than 0.05 
were regarded as statistically significant. The expression profiles of survival-related 
miRNAs in patients were presented as heatmap. The heatmap was performed by 
Heml software [49]. The source code was provided in GitHub (https://​github.​com/​
dingd​ongyan/​New-​CESC-​2021).

K‑means clustering

R command, kmeans() was used to stratify the patients base on survival-related miR-
NAs. The expression data of top 3, 5, 10, 20, 30 and all miRNAs were input into 
K-means program. The parameters: centers = 2 to 4, inter.max = 10, nstart = 1, algo-
rithm = Hartigan-Wong, trace = TURE. The source code was provided in GitHub 
(https://​github.​com/​dingd​ongyan/​New-​CESC-​2021). K-means clustering was per-
formed using kmeans() in “stats” (version 3.6.2) package [44].

https://github.com/dingdongyan/New-CESC-2021
https://github.com/dingdongyan/New-CESC-2021
https://github.com/dingdongyan/New-CESC-2021
https://github.com/dingdongyan/New-CESC-2021


Page 14 of 17Ding et al. BMC Bioinformatics          (2021) 22:331 

Kaplan–meier analysis

Kaplan–meier analysis was used to calculate the survival rate of stratified patients and 
plot the survival curve. The analysis was performed by Surv() and survfit() function 
in “survival” (version 3.2–10) package [45] and the plot was performed by ggsurv-
plot() function in “survminer” (version 0.4.9) [4]. Log-rank p value for each analysis 
was given. The source code was provided in GitHub (https://​github.​com/​dingd​ong-
yan/​New-​CESC-​2021).

Supervised classification model development

The supervised classification model was developed by SVM algorithm with labeled sam-
ples and the expression data of survival-related miRNAs. The SVM model was devel-
oped by splitting the samples 70%/30% to training and held-out testing data. SVM 
algorithm implementation was performed using svm() function in “e1071” (version 
1.7–6) package [50] and predict() function in “car” (version 3.0–10) [51]. The prime 
parameters: type = C-classification, kernel = radial, gamma = 0.05, cross = 10, cost = 5, 
scale = FALSE. The source code was provided in GitHub (https://​github.​com/​dingd​ong-
yan/​New-​CESC-​2021).

ROC curve analysis

ROC curve analysis was performed using roc() function in “pROC” (version 1.17.0.1) 
package [52] and plot() function in “graphics” (version 3.6.1) [44]. The source code was 
provided in GitHub (https://​github.​com/​dingd​ongyan/​New-​CESC-​2021).

Bioinformatic analysis

The mature miRNAs of survival-related stem-loop miRNAs were checked by miRbase 
online database [53]. The predicted targets of mature miRNAs derived from survival-
related miRNAs used for SVM model development were analyzed by miRDB online tool 
[54]. The top 10 targets were included for bioinformatic analysis. Pathway analysis was 
performed by reactome online software [55].
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