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Background
With the explosion of single cell RNA sequencing (scRNAseq) technology in recent 
years, the unprecedented opportunity for single cell transcription analysis has emerged. 
The traditional bulk RNA sequencing methods sequence a mix of millions of cells. This 
results in gene expression of a gene that reflects an average value of the gene expres-
sion across all the cells, overlooking the heterogeneity between cells. Different from bulk 
RNAseq, scRNAseq isolates cells in the first step and performs sequencing on thousands 
of genes for each cell in the second step. According to different sequencing protocols, 
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hundreds to millions of expression values are gathered for each gene, which allows to 
identify new cell types [1–3], identify gene regulatory mechanisms, and solve the cellular 
dynamics of developmental processes.

Data analysis for scRNAseq data has attracted much research efforts, such as differ-
ential expression analysis, cell clustering, and missing value imputation. In early stud-
ies, most researchers have exploited the clustering analysis to categorize cell types [4, 
5]. Since most cell sub-types have been identified and features of transcriptomics have 
become available, the focus on identifying cell subtypes has shifted from detecting new 
cell types based on clustering-based methods to discovering cell-specific expression 
signatures based on classification-based methods. Classification is a supervised learn-
ing method that requires plenty of data to perform the training process. Compared to 
clustering, a well-trained classifier based on public annotated datasets can efficiently and 
accurately identify the unlabeled cells, even the unlabeled data are from different plat-
forms and samples [6].

Few cell classification methods have been proposed for scRNAseq data that can be 
grouped into two categories. One group of cell classification methods, including scPred 
[7], scID [8] and CasTLe [9] are based on traditional supervised machine learning meth-
ods, such as random forest (RF), support vector machine (SVM) and k nearest neighbors 
(KNN) [7, 10]. scPred [7] combines a feature selection and SVM with radial kernel to 
classify cell types. scID [8] applies the fisher linear discriminant analysis for cell clas-
sification. CasTLe [9] combines the data preprocessing and classifies cells based on the 
XGBoost [11] classifier. The other group of methods are based on cluster level similarity 
measurements, for example SingleR [12] and scmap [13]. SingleR [12] employs Spear-
man correlation to calculate the similarity between cells. There are two methods in the 
scmap [13] package, scmapcluster and scmapcell. scmapcluster, first, constructs a virtual 
cell for each cell type based on the median expression values of the genes across that 
specific cell type. Then, it computes the cell similarity between the cells that need to be 
labeled and the virtual cells. The labels are assigned by the highest similarity. Scmapcell 
computes the cell similarity directly and employs the KNN method to classify the cells. 
Also, some studies have used marker genes as prior knowledge for cell classification [14, 
15]. However, the marker genes are not always available. These classification methods 
are not scalable and they work well only when dealing with small datasets with the pre-
requisite of reasonable feature selection.

With the huge progress of deep learning in computer vision and image classification, a 
variety of deep learning models have been explored and designed. A deep learning net-
work learns high-level features from data and thus does not need the domain knowledge 
to select the features, which is beneficial for the classification of a huge number of sam-
ples. A recent cell classification method, ACTINN [16], employs a fully connected neu-
ral network for cell type classification.

Even though gene expression values are regulated by gene networks, classification 
based on gene expression values ignores this prior gene interaction knowledge. To com-
bine the prior knowledge of biological networks and gene expression, we introduce the 
use of graph convolutional network (GCN) [17, 18]. The gene network and gene expres-
sion can be considered as different views of the data. To learn useful features to repre-
sent complex data, multiple views of data need to be considered. This has motivated us 
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to develop a multimodal deep learning model based on GCN and neural network (NN) 
methodologies. A GCN is an extension of convolution on the graph domain. The GCN 
approaches have been applied to address biological problems such as predicting protein 
functions [19, 20].

For single cell classification, this paper proposes a new GCN-based end-to-end multi-
modal deep learning model. The proposed model learns the feature map based on both 
the gene expression values and the gene–gene interaction structure. The proposed mul-
timodal GCN model employs a GCN paralleled with an NN model. Due to the localiza-
tion property of learning filters in the GCN, it can extract local features based on the 
prior knowledge—the gene–gene interaction network. Hence, employing only a GCN 
model fails to capture global features. The quality of the extracted features depends on 
not only the GCN filters but also the completeness of the underlying gene–gene interac-
tion network. The features extracted by a fully connected NN can represent the global 
connections but neglect the inner interactions. As a result, to have a more precise feature 
embedding, we utilize a parallel structure that consists of a GCN and an NN. In other 
words, combining localized features extracted from a GCN and global features extracted 
from an NN for classification conquers the limitations of GCN and NN models. We 
evaluate the performance of the proposed method using seven single cell datasets. We 
compare the performance of the proposed method with those of seven scRNAseq data 
classification tools and four conventional classification methods.

Methods
Network structure

The overall structure of the proposed model is shown in Fig. 1. The proposed classifica-
tion model consists of two parallel networks: a GCN and an NN. Gene expression values 
and the gene adjacency network are the inputs of the GCN; while the gene expression 
values are the inputs of the NN. The features learned by the GCN and the NN are con-
catenated and then connected with a fully connected layer. The output layer outputs the 
predicted cell type of an input cell.

Gene adjacency matrix

We utilized the STRING database [21] to build the weighted gene adjacency matrix. The 
size of the adjacency matrix is N × N  , where N  is the number of the genes. The ele-
ments in the matrix represent the confident score between pairs of genes extracted from 
the gene–gene interaction database. Then, we normalized the weights in the adjacency 
matrix by row sums. Using the normalized adjacency matrix, we built a weighted graph 
that the nodes are genes (proteins), the edges represent the connection between genes 
and the normalized confidence scores are weights of edges. We regarded the genes that 
have no neighbors in the matrix as the singletons in the network. We need to mention 
that since we chose top N  genes with highest variances in expression values for training 
(explained in the Data preprocessing section), there are singletons in the graph. We dis-
cussed the model performance including the singletons and excluding the singletons in 
the results section.

To explore the benefit of using the gene network, we also constructed the gene adja-
cency matrix using the gene co-expression similarity, where the elements in the gene 
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adjacency matrix are the gene cosine similarities. To compute the cosine similarity 
between two genes, we considered the gene expressions across all the cells as vectors. 
Then the cosine similarity of a pair of genes were computed by 

(

x · y
)

/
(

xy
)

 , where x and 
y are the expression vectors of the two genes. We filtered out edges for pairs of genes 
whose cosine similarities are less than 0.6. We compared the model performance when 
using the gene interaction network with that of when using the gene co-expressions to 
construct the gene graph.

Graph convolutional network

In this work, to extract the features of expression values incorporating the gene interac-
tion network, we developed a GCN-based autoencoder model. For the GCN analysis, 
gene expression values are assigned as the features of the nodes. The encoder part of the 
GCN model consists of a GCN layer followed by a maxpooling layer, a flatten layer and 
a fully connected (FC) layer. While the decoder part consists of a FC layer to reconstruct 
the gene expression values.

The GCN layer consists of graph convolution and pooling operations. The gene expres-
sion matrix can be represented as X ∈ RN×M , where N  is the number of genes and M 
is the number of cells. Considering graph G = (V , E) , where V  represent the vertices 
(genes) and E represents the edges between the vertices, the gene expression values can 
be regarded as the vertex features. The adjacency matrix A ∈ RN×N is used to repre-
sent the edges, i.e. the connections between the genes, constructed from the gene–gene 
interaction network. The Laplacian matrix is defined as L = D− A, where D ∈ RN×N 
is a diagonal matrix. In the diagonal matrix D , the values on the diagonal represent the 
number of edges that connect to a vertex. The Laplacian matrix is further normalized 
to L = I+D−1/2AD1/2 , where I ∈ RN×N is the identity matrix. Because the normalized 
Laplacian matrix is a real symmetric positive semidefinite matrix, it can be factorized to:

where U = (u1, . . .ul , . . .un) contains a set of orthonormal eigenvectors, UUT = I , 
and � is the eigenvalue matrix � = diag(�1, ..�l , . . . �n).

The graph convolutional theory comes from the spectral convolution theory. Like the 
convolution of two one-dimensional signals, given the Fourier transformation of a graph 
as x̂ = U

T
x [22] and the inverse Fourier transformation x = U x̂ , the convolution on the 

graph is defined as [18]:

where ⊙ is the Hadamard (element-wise) product, and x represents the N− dimen-
sional vector on the graph, i.e. the gene expression values of a cell in this work. h(�) is a 
diagonal matrix that is denoted as the convolution kernel of the transformation. In gen-
eral, the designation of the convolution kernel decides the computation cost of the graph 
convolution. The convolution kernel can be designed as h(�) =

∑K−1
k=0 βk�

k [18], where 
K  is the receptive field of the convolution kernel (i.e. the order of the neighbors that are 
computed) and βk s are the polynomial coefficients. The kernel is approximated by the 
Chebyshev polynomial as following to further decrease the computation cost:

(1)L = U�UT ,

(2)x ∗ h = U
(

UTh⊙UTx
)

= Uh(�)UTx,
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where Tk

(

�̃

)

 is the kth order of the Chebyshev polynomial which is recursively defined 

as Tk

(

�̃

)

= 2�̃Tk−1

(

�̃

)

− Tk−2

(

�̃

)

, T0

(

�̃

)

= I , T1

(

�̃

)

= �̃ [23]. The �̃ is the 

rescaled diagonal eigenvalue matrix of the Laplacian matrix, which is defined as 
�̃ = 2�/�max − I . The parameters, βk s, are learned during the training process. Therefore, 
when substituting Eq. (3) into Eq. (2), the convolution on the graph is computed by:

where L̃ = 2L/�max − I , Tk

(

L̃

)

= 2L̃Tk−1

(

L̃

)

− Tk−2

(

L̃

)

 , T0

(

L̃

)

= I , T1

(

L̃

)

= L̃ . 

With this substitution, the multiplication of the matrices is no longer needed, and the con-
volution computation depends on the K  th order neighbors of the vertices. In this way, the 
convolution is transformed to the weighted summation of the K-hop neighbors which can 
keep the spatial localization. Then, the output of the graph convolution layer can be written 
as:

where σ(·) is the activation function, and x is the input of the graph, i.e. the gene 
expression values of a cell. The receptive field of the kernel, K , can be considered as a 
hyper-parameter which is chosen as 5 in this study. In this work, we employed multiple 
convolution kernels (F = 5), then the dimension of the graph convolutional layer output fea-
ture map is N × F . We also used a maxpooling layer with size p = 8 after the graph con-
volutional layer, which means we clustered p nodes (genes) in the graph into one big node. 
Therefore, the feature map (Z) generated from the proposed GCN has the dimension of the 
number of nodes after pooling ( N/p ) by the number of features ( F = 5 ), Z ∈ RN/p×F.

Since the main goal is classification on the graph level (cell level) but not on the node level 
(genes), this feature map is flattened and then connected with a dense layer with the size of 
32 neurons to reduce the dimension. Therefore, the final feature, θ1(shown in Fig. 1), out-
putted by the GCN is a vector with the size of 32.

Reconstruction of gene expression

In the GCN-based autoencoder, the decoder part is utilized to reconstruct the node attrib-
utes (gene expressions). The features learned by the GCN (encoder part), i.e. the hidden 
layer shown in Fig. 1, is fully connected to an output layer to build the decoder network. 
The output of the decoder has the same dimension as the input, which is the number of 
input genes, N  . We utilized the mean squared error (MSE) as the loss function for this task:

where xi is the vector of gene expression values of cell i and x̂i is the vector of recon-
structed gene expression values.

(3)h(�) =
K−1
∑

k=0

βkTk

(

�̃

)

,

(4)x ∗ h = U

K−1
∑

k=1

βkTk

(

�̃

)

U
T
x =

K−1
∑

k=0

βkTk

(

L̃

)

x,

(5)Z
′ = σ

(

K−1
∑

k=0

βkTk

(

L̃

)

x

)

,

(6)Lrec =
∑

i

(

xi − x̂i

)2
,
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Neural network

The inputs of the NN (Fig. 1) are the gene expression values of the top N  (default is 
1000) variant genes. Since the number of cells varies in different datasets and not all 
datasets have a large number of cells, we designed a shallow NN to avoid the overfit-
ting problem. The network has two fully connected layers with the size of 256 and 
32 neurons, respectively. The output of each layer is activated by the ReLU function. 
Therefore, the final feature from the NN, θ2(shown in Fig. 1), is of size 32.

Fully connected integrative layer for classification

The features learned by the NN are concatenated with the features learned by the 
GCN in the integration layer θ3(shown in Fig. 1). The concatenated features are the 
input to the final output classification layer with the size of the number of the classes. 
Assume that there are n classes of cell types, the output layer is of size n and the cor-
responding probability array, p = [p1 . . . pn] , is calculated over the n output neurons 
using the softmax activation function. The predicted label of cell i is the class that has 
the highest probability in array p , which is ŷi = argmax (p) , shown in Fig.  1. For its 
corresponding true class yi , the loss is computed by the negative log-likelihood func-
tion defined as:

where pyi is the output probability of class (cell type) yi.

Loss functions and model training

We also used the regularization loss Lreg to regularize the parameters and prevent over-
fitting. Assume W consists of all the parameters in the model—including the parameters 
in the GCN, the NN, the decoder, and the integration layer—and  wj represents each of 
the parameters in the model, the regularization loss is defined as:

The total loss is a combination of the loss of classification, the loss of the reconstruc-
tion, and the loss of regularization:

where �1 , �2 and �3 are the weights for each loss function. In this study, �1 and �2 are 
set to 1, and �3 is set to 0.0001. The loss is computed and backpropagated to update the 
parameters. We used the SGD optimizer [24] to train the end-to-end model. The mini-
batch size and epoch were chosen as 64 and 50, respectively. To train the model, we split 
the datasets into 80% as the training dataset, 10% as the validation dataset, and 10% as 
the testing dataset. We first used training dataset to train the model, and then tested the 
model on the validation dataset. We tuned the hyperparameters based on the perfor-
mance of the model on the validation dataset. After tuning, we fixed the hyperparam-
eters and evaluated the performance of the model on the testing dataset.

(7)Lcla = − log
(

pyi
)

,

(8)Lreg =
∑

j

w2
j .

(9)L = �1Lcla + �2Lrec + �3Lreg ,
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Datasets

In this section, we describe the datasets and also the data preprocessing used in this 
work.

Single cell datasets

To evaluate the performance of the proposed classification method, we used seven 
datasets which are from different sequencing protocols, across different species: 
human and mouse. All the datasets can be downloaded from https:// doi. org/ 10. 5281/ 
zenodo. 33571 67 [25]. The datasets are across different cell populations and have a dif-
ferent number of cells and genes. Two of them are large scale datasets (Zheng68K and 
Zhengsorted) containing several ten-thousands of cells, and only one of the dataset 
(Zhengsorted) has validated ground truth while others use labels obtained by employ-
ing a clustering method on some marker genes.

Pancreatic datasets

We used five scRNAseq datasets from the human pancreas and mouse pancreas. The 
datasets are from different individual samples using different sequencing protocols. 
The BaronMouse [26] and the BaronHuman [26] datasets are from the mouse and 
human pancreas, respectively. The cells are sequenced using the inDrop protocol. 
The filtered BaronMouse dataset has expression data of 1886 cells and 14,861 genes 
from 13 cell populations. In the BaronHuman dataset, there are expression data of 
8569 cells and 17,499 genes from 14 cell populations after filtering. The Muraro [27], 
Segerstolpe [3], and Xin [28] datasets are all from the human pancreas. The Muraro 
dataset is available on GEO with access number GSE85241 and sequenced by the 
CEL-Seq2 protocol. After filtering the dataset, there are expression data of 2122 cells 
and 18,915 genes, where the cells are annotated to 9 classes. The Segerstolpe dataset 
includes expression data of 2133 cells and 22,757 genes, sequenced by the SMART-
Seq2 protocol, from 13 cell populations. The last human pancreas dataset is the Xin 
dataset which is sequenced by the SMARTer protocol. There are 4 types of 1449 
cells in the dataset. For these datasets, we used the cell labels given by the authors 
as ground truth. Note that the marker genes and computational methods are used to 
assign these labels.

Peripheral blood mononuclear cell

Human peripheral blood mononuclear cells contain heterogeneous cell populations and 
play an important role in investigating immunology and infectious disease. We used two 
datasets [29], Zhengsorted and Zheng68K, which were sequenced by the 10 × Chro-
mium protocol [30]. In the Zhengsorted dataset, the authors extracted 10 cell popula-
tions using antibody based bead enrichment and validated the ten cell types using the 
FACS sorting. The purified 10 populations were used to generate a large set of single 
cells individually. Similar to the work in [25], each cell population has 2000 cells and 
were mixed together to have an even combined dataset, therefore, there are 20,000 cells 
of 10 cell classes. The Zheng68K dataset is a large-scale scRNAseq dataset that includes 

https://doi.org/10.5281/zenodo.3357167
https://doi.org/10.5281/zenodo.3357167
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expression of 65,943 cells and 20,387 genes. The cells were labeled by [29] as 11 cell pop-
ulations. We used the given annotations as ground truth.

Data preprocessing

All the datasets were filtered by cells and genes. First, we removed the unlabeled cells, 
and the cells that were labelled as debris and doublets. Also, we removed the genes that 
have zero expression values across all the cells. Then, we transformed the gene expres-
sion values into the log scale and normalized each dataset by min–max scaling. After 
calculating the variances of the genes across all the cells, we sorted the variances in 
descending order and chose the top 1000 genes as the input of the classifiers. For the 
graph-based method, we constructed the gene adjacency network from the selected 
genes.

Complexity of the datasets

We used the density plot to describe the complexity of the datasets. We calculated the 
mean expression value of each gene across the cells from the same cell population, as the 
centroid. Then, we generated a matrix with the dimension of the number of genes by the 
number of the cell populations for each dataset. The distances between the cell popula-
tions were computed using this matrix. Figure 2 shows the density of distance between 
the centroids of the cell populations. The high peaks of the datasets show that the cell 
populations are similar to each other and are not easy to separate. We can observe that 
the Zhengsorted and Zheng68K datasets are the most complex datasets.

Results and discussion
For performance comparison, we used seven tools developed for scRNAseq data classi-
fication: scPred [7], scID [8], CaSTLe [9], singleR [12], scmapcluster [13], scmapcell [13], 
and ACTINN [16]. We also used a fully connected network (FC) with the same structure 
as the NN part in the proposed model, and conventional supervised classifiers including 
RF, linear SVM (SVM-linear), radial basis function kernel-based SVM (SVM-rbf), and 
KNN. We used the built-in function in scikit-learn package [31] in Python to implement 
the traditional classifiers.

Fig. 2 Density plot of the distance between the centroids of cell populations to show the complexity of the 
datasets
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To investigate the generalizability of the methods, we used the within-dataset classi-
fication and cross-dataset classification to evaluate the performance of the methods. In 
our within-dataset classification, we randomly split each dataset for training and testing 
the models. We used the same training and testing datasets for all the methods. In our 
cross-dataset classification study, first, we combined the four human pancreas datasets 
(Xin, BaronHuman, Muraro, and Segerstolpe) and then, used three of them as the train-
ing dataset and the remaining one as the testing dataset.

Metrics to evaluate the performance of classification

We used accuracy, F1 score, precision, and recall metrics to evaluate the performance 
of the classifiers. They are defined as: precision = TP/(TP + FP), recall = TP/(TP + FN), 
accuracy = (TP + TN)/(TP + TN + FP + FN), F1 =

(

2× precision× recall
)

/
(

precision+ recall
)

, 
where TP, FP, TN and FN denote true positive, false positive, true negative, and false 
negative, respectively. We used the accuracy and the median of F1 scores across all the 
classes to evaluate the overall performance of a classifier. We also showed the median 
precisions and the median recalls in the results section.

Performance of within‑dataset classification

We evaluated the performance of the classification within each dataset individually. Fig-
ure 3 shows the performance of the scRNAseq data classifier tools and the conventional 
classifiers on the Zhengsorted dataset in comparison to our proposed classifier, sigGCN, 
in terms of accuracy, F1, precision, and recall. Note that the Zhengsorted dataset is the 
only dataset with validated ground truth cell types. For other datasets, the labels are 
obtained by employing a clustering method on the marker genes. The accuracy (0.922), 
median F1 (0.965), precision (0.970), and recall (0.972) of our model are improved 
compared to not only the traditional machine learning methods but also the methods 
that are developed specifically for cell classification. Our model performs better than 
the fully connected neural network based method, i.e. ACTINN (accuracy = 0.845, 
F1 score = 0.892, precision = 0.913, recall = 0.886), and FC (accuracy = 0.893, F1 
score = 0.952, precision = 0.957, recall = 0.948).

The performances of all the methods on the Zheng68K dataset with 11 classes are 
shown in Additional file 1: Figure S1. As can be seen, sigGCN performs better than the 
other methods with an accuracy of 0.752, median F1 of 0.776, precision of 0.735, and 
recall of 0.780. Notice that all the methods do not perform well using the Zheng68K 
dataset because it is the most complex dataset as shown in Fig. 2.

The results show that our deep learning based method performs better than the 
conventional machine learning classification methods (RF, SVM, and KNN) using the 
Zhengsorted and Zheng68K dataset. One reason is that the conventional methods are 
not scalable for large datasets. The Zhengsorted dataset with 20,000 cells is a large scale 
scRNAseq dataset which benefits the deep learning based methods.

The performances of all the methods using the other five datasets in terms of accu-
racy, F1, precision, and recall are shown in the Additional file 1: Figures S2-S6. Tables 1 
and 2 show the accuracy and median F1 score of all the methods using the seven data-
sets, respectively. The bold values in the tables represent the best performance in each 
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dataset. The results show that our model (sigGCN) outperforms the scRNAseq classifier 
tools and the conventional classifier methods using most of the datasets.

Almost all the methods perform well on the Xin, Segerstolpe, and Muraro datasets 
and there are not significant differences between the performance of the methods. It can 
be due to well-separated cell population in these datasets. As can be seen in Fig. 2 the 
distances between clusters are higher in these datasets compared to the rest. Interest-
ingly, for more complex datasets, Zhengsorted, Zheng68K, in which the Euclidian dis-
tances between clusters are lower, our proposed method performs better as can be seen 
in Table 1.

Using the BaronHuman dataset, our model shows the best performance against other 
methods with an accuracy of 0.979 and median F1 of 0.977. The RF and KNN have good 
accuracy but could not hold the high median precision and median recall values. This is 
because the accuracy is calculated based on the global TPs and TNs, but the medians of 

Table 1 Accuracy of the eight scRNAseq data classifier tools and the four conventional classifiers on 
the seven datasets (N = 1000)

Methods Zhengsorted Zheng68K BaronHuman Muraro Segerstolpe BaronMouse Xin

sigGCN 0.922 0.752 0.979 0.991 0.977 0.974 0.993

FC 0.893 0.668 0.967 0.986 0.967 0.958 0.993

scID 0.721 0.484 0.46 0.577 0.285 0.286 0.986

scPred 0.515 0.140 0.86 0.915 0.827 0.862 0.91

CasTLe 0.836 0.736 0.971 0.972 0.953 0.91 0.993

SingleR 0.723 0.388 0.951 0.977 0.953 0.868 1
scmapcluster 0.395 0.409 0.946 0.962 0.949 0.905 0.931

scmapcell 0.727 0.246 0.895 0.972 0.949 0.778 0.952

ACTINN 0.845 0.737 0.977 0.991 0.958 0.984 1
RF 0.835 0.69 0.968 0.981 0.967 0.968 0.993

SVM-linear 0.859 0.652 0.824 0.981 0.383 0.704 1
SVM-rbf 0.884 0.677 0.93 0.981 0.841 0.794 1
KNN 0.824 0.594 0.953 0.991 0.935 0.926 1

Table 2 Median F1 of the eight scRNAseq data classifier tools and the four conventional classifiers 
on the seven datasets (N = 1000)

Methods Zhengsorted Zheng68K BaronHuman Muraro Segerstolpe BaronMouse Xin

sigGCN 0.965 0.776 0.977 1 1 0.969 0.995

FC 0.952 0.681 0.938 1 0.968 0.902 0.997

scID 0.66 0.535 0.22 0.578 0 0 1
scPred 0.568 0.105 0.833 0.932 0.8 0.97 0.784

CasTLe 0.834 0.667 0.956 0.967 0.965 0.848 0.997

SingleR 0.678 0.335 0.946 0.984 1 0.898 1
scmapcluster 0.729 0.357 0.9 0.997 0.965 0.88 0.991

scmapcell 0.305 0.198 0.95 0.993 0.977 0.942 0.708

ACTINN 0.892 0.753 1 0.97 1 1 0.997

RF 0.853 0.646 0.956 0.987 0.993 0.984 0.997

SVM-linear 0.868 0.663 0.362 1 0.059 0.238 1
SVM-rbf 0.9 0.671 0.906 1 0.772 0.695 1
KNN 0.795 0.613 0.928 1 0.961 0.889 1
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all the paired scores indicate that some classes with a small number of members were 
not classified well using the conventional methods. Our model reduces FN predictions 
and increases TP predictions, which notably improves the median recall. In addition, 
the FPs of our model are also reduced that substantially enhances the precision. There-
fore, the median F1, median precision and recall are higher compared to those of the 
other methods using the BaronHuman dataset. The performance of our model using the 
BaronMouse dataset is comparable to that of the ACTINN and better than those of the 
other methods.

Overall, our proposed model shows the best or near the best performance using all 
the datasets, especially for complex datasets that have large cell numbers and more 
classes. The performance of sigGCN is improved in comparison to the FC network and 
ACTINN which indicates that integrating the prior knowledge of gene interactions can 
learn a better representation of data. The feature representation learned by convolution 
through the gene interaction structure is not redundant with that learned through the 
expression values. The parallel structure enriches extracting effective features during the 
training.

We also evaluated the performance of the proposed method when constructing the 
gene graph using i) the gene cosine similarity, and ii) the gene interaction network with-
out singleton genes. Results show that employing the gene interaction network (includ-
ing singleton genes) provides the best performance (as can be seen from Additional 
file 1: Tables S1–S4). To evaluate the performance of the proposed parallel network com-
pared to employing only a GCN, we compared the performance of sigGCN with that of a 
pure  GCN. Results in Additional file 1: Table S5 show that the parallel network outper-
forms the pure GCN model, which indicates that the parallel network (NN and GCN) 
can capture global and local features.

We need to mention that scPred, scID, scmapcluster, and scmapcell provide the func-
tion of rejection which means they predict a cell class as “unassigned”. We computed the 
accuracy and F1 scores based on the results of including these unassigned cells in our 
comparison (Tables 1, 2). Since our method outputs the probability of cell class assign-
ments, we also provide an additional function to predict a cell class as “unassigned” by 
setting a threshold of prediction. We set the threshold as 0.65 which means if a cell does 
not have a probability of prediction larger than 0.65, then the cell will be predicted as 
“unassigned”. We computed accuracy and F1 scores when not including the unassigned 
cells for these four methods and our method with the “unassigned” function (shown in 
Additional file 2: Table). Results show that our method has the smallest unassigned rate 
and the best or near the best accuracy and F1.

Confusion matrix and ROC analysis

Since the Zhengsorted dataset is the one that has the ground truth, we provided more 
details on the performance of the methods using this dataset in this section. The confu-
sion matrix of the ten classes using our proposed method, sigGCN, is shown in Fig. 4. 
The confusion matrices of the other scRNAseq classifiers are shown in Additional file 1: 
Figures  S7–S8, and those of the conventional methods are shown in Additional file 1: 
Figure S9. As can be seen in Fig. 4, using our model the TP rate of class 0, to class 9 
are 99.5%, 100%, 99.5%, 69.3%, 80.9%, 84.6%, 97.1%, 99.0%, 97.4%, 92.0%, respectively. 
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Class 3, class 4, and class 5 have confusion with each other because CD4 + cells have 
high heterogeneity.

To further investigate the performance of the methods, we executed the ROC anal-
ysis for each class using the Zhengsorted dataset. Figure 5a shows the ROCs for each 
class using our proposed method. We also compared our model with the other meth-
ods in terms of AUC and the ROC analysis of each class. The ROC analysis for class 4 
(CD4+ /CD25 T Reg) using all the methods is shown in Fig. 5b. We only showed the 
performance of six methods (two scRNAseq classifiers and four conventional classifiers) 
which provides the output classification probability. Our model shows the best AUC of 
0.9872 in the ROC analysis of class 4. To test the significance of the difference between 
the AUCs under the curves, we used the McNeil & Hanley’s test [32] and online service 
on http:// vassa rstats. net/ roc_ comp. html. The p-values of the tests between our method 
sigGCN and each method are shown in Fig. 5b. The ROC analysis of class 3 and class 5 
are also shown in Additional file 1: Figure S10.

Performance of cross‑dataset classification

In order to examine the generalization of the proposed model, we evaluated the per-
formance of cross-dataset classification, which is a more realistic scenario. Since the 
Xin, BaronHuman, Muraro, and Segerstolpe datasets are all from the human pan-
creas, we used these four datasets for the validation. The common cell types among 
these four datasets are alpha, beta, delta, and gamma, so we extracted the four cell 
types from each dataset for combination. Before combining the datasets, we preproc-
essed the data using the log-transformation and normalized each dataset by min–max 
scaling to make the four datasets in the same level. We run four experiments, and 
in each experiment, we used three of the four datasets as the training dataset and 

Fig. 4 Confusion matrix of the class predictions on the Zhengsorted dataset using sigGCN

http://vassarstats.net/roc_comp.html


Page 15 of 23Wang et al. BMC Bioinformatics          (2021) 22:364  

Fi
g.

 5
 a

 A
ve

ra
ge

 A
U

C
 a

nd
 R

O
C

 c
ur

ve
s 

of
 s

ig
G

C
N

 u
si

ng
 th

e 
te

n 
Zh

en
gs

or
te

d 
ce

ll 
ty

pe
s. 

b 
RO

C
 c

ur
ve

s 
of

 c
la

ss
 4

 (C
D

4 
+

 /C
D

25
 T

 R
eg

) a
nd

 th
e 

p-
va

lu
es

 c
al

cu
la

te
d 

by
 th

e 
M

cN
ei

l &
 H

an
le

y’
s 

te
st

 th
at

 
sh

ow
 th

e 
si

gn
ifi

ca
nc

e 
of

 d
iff

er
en

ce
 b

et
w

ee
n 

th
e 

ar
ea

s 
un

de
r t

he
 R

O
C

 c
ur

ve
 o

f s
ig

G
C

N
 a

nd
 th

at
 o

f e
ac

h 
m

et
ho

d



Page 16 of 23Wang et al. BMC Bioinformatics          (2021) 22:364 

Ta
bl

e 
3 

A
cc

ur
ac

y 
of

 th
e 

ei
gh

t s
cR

N
A

se
q 

da
ta

 c
la

ss
ifi

er
 a

nd
 th

e 
fo

ur
 c

on
ve

nt
io

na
l c

la
ss

ifi
er

s 
to

ol
s 

on
 th

e 
fo

ur
 e

xp
er

im
en

ts
 (N

 =
 1

00
0)

Tr
ai

ni
ng

 d
at

as
et

Ba
ro

nH
um

an
 +

 M
ur

ar
o 
+

 S
eg

er
st

ol
pe

Xi
n 
+

 M
ur

ar
o 
+

 S
eg

er
st

ol
pe

Xi
n 
+

 B
ar

on
H

um
an

 +
 S

eg
er

st
ol

pe
Xi

n 
+

 B
ar

on
H

um
an

 +
 M

ur
ar

o

Te
st

in
g 

da
ta

se
t

Xi
n

Ba
ro

nH
um

an
M

ur
ar

o
Se

ge
rs

to
lp

e

si
gG

C
N

0.
99

7
0.

98
7

0.
97

4
0.

99
3

FC
0.

99
2

0.
97

7
0.

96
8

0.
99

3

sc
ID

0.
98

9
0.

74
7

0.
97

0.
97

9

sc
Pr

ed
0.

94
5

0.
46

7
0.

92
0.

81
4

Ca
sT

Le
0.

99
0.

94
4

0.
97

7
0.

99
2

Si
ng

le
R

0.
99

5
0.

98
4

0.
97

7
0.

99
6

sc
m

ap
cl

us
te

r
0.

19
6

0.
00

3
0.

05
1

0.
56

8

sc
m

ap
ce

ll
0.

75
6

0.
42

1
0.

64
0.

36
7

A
C

TI
N

N
0.

99
3

0.
98

4
0.

97
4

0.
99

2

RF
0.

98
2

0.
94

1
0.

94
7

0.
93

8

SV
M

-li
ne

ar
0.

99
4

0.
97

9
0.

97
2

0.
99

2

SV
M

-r
bf

0.
98

6
0.

98
3

0.
97

3
0.

97

KN
N

0.
93

4
0.

86
4

0.
78

8
0.

81
7



Page 17 of 23Wang et al. BMC Bioinformatics          (2021) 22:364  

Ta
bl

e 
4 

M
ed

ia
n 

F1
 o

f t
he

 e
ig

ht
 s

cR
N

A
se

q 
da

ta
 c

la
ss

ifi
er

 a
nd

 th
e 

fo
ur

 c
on

ve
nt

io
na

l c
la

ss
ifi

er
s 

to
ol

s 
on

 th
e 

fo
ur

 e
xp

er
im

en
ts

 (N
 =

 1
00

0)

Tr
ai

ni
ng

 d
at

as
et

Ba
ro

nH
um

an
 +

 M
ur

ar
o 
+

 S
eg

er
st

ol
pe

Xi
n 
+

 M
ur

ar
o 
+

 S
eg

er
st

ol
pe

Xi
n 
+

 B
ar

on
H

um
an

 +
 S

eg
er

st
ol

pe
Xi

n 
+

 B
ar

on
H

um
an

 +
 M

ur
ar

o

Te
st

in
g 

da
ta

se
t

Xi
n

Ba
ro

nH
um

an
M

ur
ar

o
Se

ge
rs

to
lp

e

si
gG

C
N

0.
99

3
0.

97
6

0.
95

7
0.

98
9

FC
0.

97
6

0.
96

5
0.

94
5

0.
99

0

sc
ID

0.
99

1
0.

98
0.

97
6

0.
99

4

sc
Pr

ed
0.

92
3

0.
23

1
0.

91
2

0.
72

5

Ca
sT

Le
0.

97
4

0.
91

6
0.

96
6

0.
98

8

Si
ng

le
R

0.
98

8
0.

97
4

0.
96

9
0.

99
4

sc
m

ap
cl

us
te

r
0.

13
3

0.
00

1
0.

00
1

0

sc
m

ap
ce

ll
0.

41
5

0.
23

2
0.

35
3

0.
24

1

A
C

TI
N

N
0.

98
2

0.
97

7
0.

95
7

0.
98

9

RF
0.

94
6

0.
91

4
0.

95
7

0.
90

3

SV
M

-li
ne

ar
0.

98
6

0.
97

2
0.

95
2

0.
98

6

SV
M

-r
bf

0.
96

3
0.

97
0.

95
8

0.
95

2

KN
N

0.
76

6
0.

74
0.

50
4

0.
60

2



Page 18 of 23Wang et al. BMC Bioinformatics          (2021) 22:364 

the remaining one as the testing dataset. Additional file 1: Figures S11–S14 show the 
performance of the methods in terms of accuracy, median F1, median precision, and 
median recall score. The results of the accuracy are shown in Table 3 and the median 
F1 scores are shown in Table 4, respectively. We included the unassigned cells when 
computing the accuracy and F1 scores for the scPred, scID, scmapcluster, and scmap-
cell. We also provided the results of not including the unassigned cells in Additional 
file 3.

All the methods except the scmapcluster, scmapcell, and KNN perform nearly per-
fect in terms of accuracy when training on the BaronHuman, Muraro, and Segerstolpe 
and testing on the Xin dataset. Providing a near 100% accuracy, F1, precision, and 
recall, our model shows the best performance compared to the other methods. Our 
model ranks the third and the second in terms of accuracy when testing on the 
Muraro and Segerstolpe datasets, respectively, with a slight difference of 0.003. Over-
all, our model achieves the best or near the best performance in terms of accuracy 
and median F1 in the cross-dataset classification evaluation.

Performance of runtimes

We compared the runtimes of our method and the other scRNAseq classifiers. The 
runtimes were computed by using an iMac with a 4.2 GHz Intel Core i7 CPU and up 
to 32 gigabytes of memory. The average runtime of each method using the Zheng-
sorted dataset is shown in Fig. 6. The runtimes of all the methods using the other six 
datasets are shown in Additional file 1: Figure S15. The average runtimes of sigGCN are 
404.3  s, 1237.8  s, 164.0  s, 41.9  s, 31.3  s, 35.5  s, 19.7  s using Zhengsorted, Zheng68K, 
Baron Human, Muraro, Segerstolpe, Baron Mouse, and Xin datasets, respectively. For 
the five pancreas dataset that have a small number of cells, all the methods run less than 
10 min. For the large scale datasets, Zhengsorted with 20,000 cells and Zheng68K with 
more than 60,000 cells, the average runtimes of our method are less than or compara-
ble to those of scID, CasTLe, singleR, and ACTINN. The runtimes of scmapcluster and 
scmapcell are always low, even on the Zheng68K dataset, because scmapcluster assigns 
the labels only by computing the distance between the testing cells and a small group of 
virtual cells.

Evaluation of sensitivity to the number of genes

We evaluated the sensitivity of the methods to the number of input genes in this sec-
tion. We used the same subset of genes which was selected based on the gene expres-
sion variance across the Zhengsorted dataset as the input of all the scRNAseq classifiers 

Fig. 6 Average runtimes of the methods using Zhengsorted dataset
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including sigGCN. We selected top 300, 500, 750, 1000, 1250, 1500, and 5000 highest 
variant genes. The accuracy and median F1 of using a different number of genes using 
the Zhengsorted dataset are shown in Fig. 7. As can be seen, our method, sigGCN, has 
a consistent performance in terms of accuracy and median F1 when using different sizes 
of the input features (high variant genes). The model performance for using a large size 
of genes (> 5000) does not show a significant improvement compared with that of using 
a small size of genes (≤ 1000). Considering the time complexity, we selected the top 1000 
variable genes as the default input in our method.

Evaluation of scalability to the number of cells

To investigate the model scalability to different size of the dataset, we down-sampled 
the Zhengsorted dataset into five subsets with the sampling rate of 0.05, 0.1, 0.15, 0.25, 
0.5. The ten cell classes of the Zhengsorted dataset were down-sampled in a stratified 
way to guarantee that each cell class has the same percentage. Therefore, the five sub-
sets of Zhengsorted dataset have 1000 cells, 2000 cells, 3000 cells, 5000 cells, and 10,000 
cells. We divided each down-sampled subset to 80% as the training dataset, 10% as the 
validation dataset, and 10% as the testing dataset. The performance in terms of accuracy 
and median F1 of the scRNAseq classifiers is shown in Fig. 8. In general, the accuracy 
and median F1 scores of all the methods increase as the number of cells increases. Our 
method can hold consistent median F1 on all the down-sampled subsets.

Discussion and conclusion
In this study, we propose a novel method based on the deep learning methodologies for 
cell classification in single cell studies when a large number of cells are used and data 
are heterogeneous with many classes. We integrated the prior knowledge, in the form 
of gene–gene interaction network, into the classification procedure. We developed an 
end-to-end trained multimodal deep learning model which includes a GCN and an NN. 
The GCN model exploits the gene network and gene expression values to extract the 
integrated features regarding the interconnection between genes, while the NN model is 
utilized to enrich the features extracted by the GCN model.

We compared the performance of our proposed method with those of seven other 
classification methods and four traditional machine learning classification methods 
using seven real single cell RNAseq datasets. The standard classification metrics, includ-
ing accuracy, median F1, median precision, and median recall scores were utilized to 
evaluate the performance of the methods on all the 7 datasets. We further evaluated the 
classification performance on a large and highly heterogeneous dataset, the Zhengsorted 
dataset, by comparing the confusion matrix and the ROC plot. Results show that our 
proposed method, sigGCN, outperforms both the current scRNAseq classification tools 
and the conventional machine learning methods.

The main contribution of this work is integrating the prior knowledge in the form of 
the interaction between genes into the classification of cell types. By aggregating the fea-
tures from neighboring nodes in the graph, the new features are learned in a nonlinear 
manner. The feature representation of the data using a GCN is not redundant with that 
learned by using only an NN due to convolution through the gene interaction structure. 
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Therefore, we proposed to utilize a parallel structure of a GCN and an NN to integrate 
the gene interaction structure and gene expression values.

In conclusion, the proposed multimodal deep learning model which integrates gene 
expression data with the biological network to classifying cells shows a powerful perfor-
mance. In the future work, we will introduce the attention mechanism to enhance the 
weights of important genes.
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