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Background
Eukaryotic genes are mostly composed of a series of exons intercalated by sequences 
with no coding potential called introns. These sequences are generally removed from 
primary transcripts by a post-transcriptional process called splicing to form mature 
RNA molecules. This highly regulated process consists basically of a series of hydroly-
sis and ligation reactions led by the spliceosome [1]. The exon–intron boundaries, i.e., 
the splice junctions, together with the branch point, a short sequence located 18–40 
nucleotides upstream of the intron’s 3’ splice junction [2] and the polypyrimidine tract 
[3], are recognized by the spliceosome. These events promote the correct folding neces-
sary for the intron’s excision and are followed by the correct pairing of the exon-exon 
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boundaries. In metazoans, further sequences are required for recruiting different trans-
acting regulatory factors. These will act as spliceosome regulators as well as splice site 
choice modulators and are particularly important for efficient transcript processing [4].

Splicing is dynamic and occurs mostly during or immediately after the transcription 
of a complete intron. Co-transcriptional splicing was first suggested in D. melanogaster 
chorion genes using electron microscopy to observe the assembly of spliceosomes at the 
splice junctions in nascent transcripts [5]. More recently, genome-wide studies in dif-
ferent cell lines and organisms using nascent RNA showed introns being spliced shortly 
after their transcription is finished: in S. cerevisiae, data revealed polymerase pausing 
within the terminal exon, permitting enough time for splicing to happen before release 
of the mature RNA [6]; and nascent RNA also indicated that most introns in D. mela-
nogaster are co-transcriptionally spliced [7], as well as in mouse [8] and many human 
cells and tissues [9–11].

Splicing is an essential step in gene expression and its misregulation is related to 
numerous human diseases [12–15]. Up to 15% of mutations that cause genetic disease 
have been suggested to affect pre-mRNA splicing [16]. Thus, to better understand the 
dynamics of splicing and the perturbations that might be caused by aberrant transcript 
processing, it is important to quantify splicing efficiency. The efficiency of splicing 
is commonly quantified by means of RT-qPCR with primers that span exon-exon and 
exon–intron boundaries [17]. Yet, this methodology can only investigate a limited num-
ber of genes. By contrast, transcriptomics technologies, such as RNA-Seq, allow these 
analyses from a genome-wide point of view. One interesting approach to globally deter-
mine splicing efficiencies is to assess nascent transcripts within short intervals after the 
transcription has started. Experimentally, this can be achieved through metabolic labe-
ling or purification of chromatin-associated nascent RNAs.

For intron-containing transcripts, splicing efficiency can be determined with different 
frameworks that use read counts on intronic and exonic regions. Short-read RNA-Seq 
is currently the main approach using either nascent or total RNA. Conceptually, splic-
ing efficiency can be observed either from an intron-centric point of view—to investi-
gate whether an intron has been spliced out—or from an exon-centric point of view—to 
investigate whether an exon has been correctly spliced within the context of its tran-
script, or to what degree an exon is included in the transcript molecules generated from 
a gene.

Khodor et al. [7] used an intron-centric method to estimate the unspliced fraction of 
introns in D. melanogaster by taking the ratio of the read coverage of the last 25 bp of an 
intron and the first 25 bp of the following exon. In this way, introns where the RNA poly-
merase has not yet reached the acceptor splice site are not included but the metric is not 
guaranteed to take values between 0 and 1 and does hence not constitute an efficiency 
metric in the strict sense. Tilgner et al. [10] used deep-sequencing of human subcellular 
fractions and developed an exon-centric “completed splicing index” (coSI) which takes 
reads spanning the 5’ and the 3’ splice junctions of an exon and computes the fraction of 
reads indicating completed splicing, i.e., which span from exon to exon, to study co-tran-
scriptional splicing. By explicitly considering also reads which span from the upstream 
exon directly to the downstream exon, this approach includes exon skipping events, 
but coSI values for the first and last exon of a transcript cannot be determined. More 
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recently, Převorovský et al. [18] presented a workflow for genome-wide determination 
of intron-centric splicing efficiency in yeast. The efficiencies are quantified for the 5’ and 
3’ splice junctions separately as the number of “transreads” (split reads spanning from 
exon to exon) divided by the number of reads covering the first or last base of the intron, 
respectively. Although the authors call their metric “splicing efficiency”, it is not limited 
to a range from 0 to 1 and it is not clear how cases without intronic reads (divisions by 
zero) are handled. Other drawbacks of this workflow are that it consists of numerous 
open-source tools and custom shell and R scripts and that it was explicitly developed for 
yeast.

In contrast to these approaches, IRFinder [19] was designed to detect intron retention 
from mRNA-seq data by measuring a so-called intron retention ratio (IR ratio) based 
on the average read coverage in a given intron and the number of split reads at the cor-
responding intron–exon junctions. While the approach is similar to the one we present 
here, it has the opposite goal: to determine the degree to which introns are retained 
rather than spliced out. Lastly, iREAD [20] has the same goal as IRFinder, but instead of 
providing a quantitative measure for intron retention levels, it makes binary judgments 
(considering introns as either retained or not retained) based on a set of features, includ-
ing intron expression levels.

Although the above-mentioned frameworks for calculating splicing efficiency from 
RNA-seq data exist, there is more to add to their respective limitations. The bioinfor-
matics steps involved might be challenging—including difficulties in running workflows 
that require long running times and the installation of numerous tools—especially for 
experimental biologists. Thus, here we introduce SPLICE-q, a user-friendly open-source 
Python tool for genome-wide SPLICing Efficiency quantification from RNA-seq data. 
SPLICE-q quantifies splicing efficiency for each intron individually and allows the user 
to select different levels of restrictiveness concerning an intron’s overlap with other 
genomic elements. We show the usefulness of SPLICE-q by applying it to time-series 
nascent and steady-state RNA-seq data from human and yeast.

Implementation
SPLICE‑q workflow and parameters

SPLICE-q is a tool, implemented in Python 3, for quantification of individual intron 
splicing efficiencies from strand-specific RNA-seq data. SPLICE-q’s main quantification 
method uses splicing reads—both split and unsplit—spanning the splice junctions of a 
given intron (Fig. 1). Split reads are junction reads spanning from one exon to another, 
thus indicating processed transcripts from which the individual intron has already been 
excised. Intuitively, unsplit reads are those spanning the intron–exon boundaries (cover-
ing both sides of the splice junction), hence, indicating transcripts from which the intron 
has not yet been spliced out. As an alternative measure for splicing efficiency, SPLICE-
q computes an inverse intron expression ratio, which compares the introns’ expression 
levels with those of their flanking exons.

SPLICE-q is also sensitive to the overlap of genomic elements. In other words, 
SPLICE-q takes into consideration when a genome shows overlapping features that 
can cause issues with a correct assignment of reads to specific introns or exons. For 
example, for intron–exon boundaries overlapping exons of other genes, seemingly 
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unsplit reads might instead stem from exonic regions of the overlapping genes. This 
is problematic due to the RNA-seq methodology’s limitation that makes it difficult to 
confidently determine without ambiguity to which genomic element, exon or intron, 
these reads should be attributed [21].

Therefore, SPLICE-q allows the user to select different levels of restrictiveness for 
strand-specific filtering, including (1) Level 1: keep all introns in the genome regard-
less of overlaps with other genomic elements; (2) Level 2: select only introns whose 
splice junctions do not overlap any exon of a different gene; (3) Level 3: select only 
introns that do not overlap with any exon of the same or a different gene (Fig.  2). 
These levels to not affect computed splicing efficiency measures, but instead deter-
mine for which set of introns the splicing efficiencies are to be quantified. Other 
filters, including the minimum read coverage at splice junctions, can also be set up 
according to users’ necessities (Additional file 1: Table S1).

The two necessary input files are:

1.	 A Binary Alignment Map (BAM) file with RNA-seq reads aligned to the reference 
genome.

Fig. 1  Read assignment scheme for splicing efficiency (SE) and inverse intron expression ratio (IER). 
Illustration of the reads used by SPLICE-q to quantify SE and IER. In yellow, split reads at the 5’ splice junction; 
in orange, split reads at the 3’ splice junction; in green, unsplit reads at the 5’ splice junction; in dark blue, 
unsplit reads at the 3’ splice junction. In gray and blue, the areas covering the exons and introns, respectively. 
In white, reads not overlapping splice junctions

Fig. 2  SPLICE-q’s levels of restrictiveness. (Level 1) keep all introns in the genome regardless of overlaps with 
other genomic elements; (Level 2) select only introns whose splice junctions do not overlap any exon of a 
different gene; (Level 3) select only introns that do not overlap with any exon of the same or a different gene. 
A and A.1 are isoforms of the same gene (A) and B represents a different gene



Page 5 of 14de Melo Costa et al. BMC Bioinformatics          (2021) 22:368 	

2.	 A genome annotation file provided by sources like GENCODE [22] or Ensembl [23] 
in Gene Transfer Format (GTF) containing information on exons and the genes and 
transcripts they are associated with.

SPLICE-q’s internal default workflow comprises of the following major steps (Fig. 3):

1.	 Parsing of genomic features from the GTF file;
2.	 Locating and annotating introns and splice junctions from the GTF file’s exon coor-

dinates;
3.	 Filtering of introns according to the level of restrictiveness based on the overlap of 

genomic elements;
4.	 Selection of split and unsplit reads at the splice junctions according to the reads’ con-

cise idiosyncratic gapped alignment report (CIGAR), and subsequent coverage cal-
culation for each splice junction.

5.	 Computation of splicing efficiencies.

SPLICE-q parses the exon-centric GTF file and infers the corresponding intron coor-
dinates, partially adapting related functions of GTFtools [24]. For Level 3 filtering, when 
the user chooses to include the inverse intron expression ratio, the workflow includes 
two additional steps (Additional file 1: Fig. S1):

6.	 Computation of median per-base coverages of introns and their flanking exons
7.	 Computation of the inverse intron expression ratios.

Quantifying splicing efficiency and inverse intron expression ratio

Splicing efficiency (SE): SPLICE-q uses split and unsplit junction reads to quantify SE for 
each intron individually. It determines the RNA-seq reads mapping to both splice junc-
tions of each given intron i, distinguishes split (S) and unsplit (N) reads for the 5’ and 3’ 
splice junctions and estimates a splicing efficiency score (SEi) as a function of the corre-
sponding read counts as follows:

Since the purpose of SEi is to measure the fraction of spliced transcripts with respect 
to a given intron i, the 5’- and 3’-split reads ( S5′i  and S3′i  ) explicitly include all reads which 
span from the respective exon junction to any other exon, thus including alternatively 
spliced reads, not only those reads which span directly from the flanking upstream to 
the flanking downstream exon. In other words, spliced reads are also counted if they 
indicate that more than intron i was spliced out. An SE of 0 indicates that the intron has 
not been spliced out in any of the transcripts from which the junction reads originate, 
which may be due to late splicing in case of nascent RNA-seq or intron retention in case 
of steady-state RNA-seq. An SE of 1 means completed splicing on all transcripts. There-
fore, SE values ranging between 0 and 1 approximate the fraction of molecules which 

(1)SEi =

∑

j∈{5′,3′} S
j
i

∑
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(

S
j
i + N

j
i

) 0 ≤ SEi ≤ 1
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Fig. 3  SPLICE-q’s default workflow. Dashed lines indicate steps which depend on parameter settings. Solid 
lines represent the mandatory steps of the workflow. Boxes illustrate data types: input (red), intermediate data 
items (white) and output (green). SJ = splice junction; TSV = tab-separated values. Levels of restrictiveness: L2 
(Level 2) and L3 (Level 3)
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have already been spliced. This quantification method makes it possible to compare 
spliced and unspliced intron rates directly.

Inverse intron expression ratio (IER) as an alternative measure for splicing efficiency 
when using Level 3 filtering, SPLICE-q also provides the inverse of the ratio of intron 
expression to exon expression, where Ix is the median per-base read coverage of the x-th 
intron of a given transcript and Ex and Ex+1 represent the corresponding median cover-
ages of the flanking exons:

Here, the focus lies specifically on the per-base median coverage of all reads mapping 
to the involved genomic elements (exonic and intronic reads) rather than just the splice 
junctions (Fig. 1). As explained above, a high SE indicates that an intron was spliced out 
of a large fraction of transcripts. This scenario should display high read coverage in the 
exons and low coverage or none in the intron. In other words, peaks of mapped reads are 
observed in the surrounding exons when compared to the intron itself. On the contrary, 
introns with a low SE should have read coverage profiles more similar to the surrounding 
exons.

Results and discussion
Fast and user‑friendly quantification of splicing efficiency

Due to its simplicity and efficient data structure for working with genomic intervals, 
SPLICE-q’s run time with default parameters for approximately 100 million input reads 
mapped to the human genome is 18 min using a MacBook Pro with a dual-core Intel 
Core i5 processor and 8 GB of RAM. By increasing the number of processes to 4 or 8 (see 
the command line parameter NProcesses described in Additional file 1: Table S1), which 
is not an issue considering nowadays’ number of processor cores of most laptops and 
desktops, the running time on an AMD Opteron 6282 SE with 516 GB of memory is less 
than 2 min (Additional file 1: Fig. S2a). Memory usage is low, being approximately that 
of the GTF file size (1.4 GB for the human genome; Additional file 1: Fig. S2b). SPLICE-
q’s approach provides major advantages over previous workflows which may require the 
installation of numerous tools and suffer from long running times (see Additional file 2).

Splicing kinetics in human and yeast

We applied SPLICE-q to globally assess the kinetics of intron excision. The goal here 
is to show the tool’s applicability using different data. For this purpose, we performed 
three different analyses using data from two species and different methodologies (Addi-
tional file 1: Materials and Methods). The first time-series sequencing dataset consists of 
BrU-labeled HEK293 cells with 15 min pulse labeling of nascent RNA and subsequent 
sequencing of labeled RNA after 0, 15, 30, and 60 min (pulse-chase) [25]. On average 
we obtained ~ 200 million reads per sample, ~ 85% of which were uniquely mapped. The 
nascent RNA samples were compared to an unlabeled steady-state control of the same 
cell line [26]. SPLICE-q was applied with default parameters: filtering level 3, a mini-
mum coverage of 10 uniquely mapped reads at each splice junction, and a minimum 
intron length of 30 nucleotides [27]. Only introns passing the filters in all samples after 

(2)IER = 1−min

(

1,
Ix

0.5 · (Ex + Ex+1)

)

0 ≤ IER ≤ 1
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running SPLICE-q were kept, totalizing 13,178 introns. As expected, SPLICE-q detects 
a progressive increase of SE throughout the time course (Fig. 4a). Interestingly, at 0 and 
15 min, SE scores are already high with a median of 0.71 and 0.75, respectively.

The increase of splicing efficiency over the time course can also be observed when IER 
values are computed for the same data (Additional file 1: Fig. S3). For all time points, 
the median IER scores are higher than the median SE scores (0.82, 0.84, 0.86, 0.92 and 1 
for 0, 15, 30, 60 min and steady-state control, respectively). While there are notable dif-
ferences between SE and IER scores for individual introns, overall, the two measures of 
splicing efficiency are strongly correlated (Additional file 1: Fig. S4-5).

The results for both SE and IER agree with previous studies showing that splicing is 
predominantly co-transcriptional in humans and for the most part happens immediately 
after the transcription of an intron is completed, when the RNA polymerase has pro-
ceeded only a few bases into the downstream exon [5, 6, 9–11]. However, the results also 
illustrate that even 60 min after the pulse-labeling of newly synthesized RNA, there is 
a significantly larger fraction of introns which have not yet been excised from the tran-
scripts than in the steady-state control.

We chose a second dataset [28] which would allow us to quantify splicing efficiency 
of nascent RNA within a finer time scale. These sequencing experiments were per-
formed with 4-thiouracil labeled RNA (4tU-seq) from  Saccharomyces cerevisiae. 
Nascent RNA was labeled for an extremely short time (1.5, 2.5 and 5 min) and then 
sequenced (Fig. 4b). Unlabeled control samples were also generated. After alignment 
of the raw data, we obtained an average of over 50 million uniquely mapped reads 
per sample and 246 introns shared between all samples after running SPLICE-q with 
the above-mentioned default parameters and filtering level 2. The SE at 1.5 min has 
a median of 0.29 while, strikingly, there is an increase of 131% in just 1 min, with a 
median SE of 0.67 at 2.5 min. This value does not alter in the next time point and the 
unlabeled control sample shows a median SE of 0.93. While, due to the differences in 

Fig. 4  Splicing kinetics using different datasets. a Time-series nascent and steady-state (total) RNA-seq of 
labeled HEK293 cells; b Time-series nascent and steady-state RNA-seq of S. cerevisiae 
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experimental protocols, the results obtained for the second dataset are not directly 
comparable to those observed for HEK293 cells, this brief analysis suggests how 
essential it is to perform short labeling in S. cerevisiae in order to assess its splicing 
kinetics since some transcripts approximate steady-state levels in a time as short as 
2.5 min (Fig. 4b).

Lastly, we show how SPLICE-q can also be applied to quantify intron retention in 
steady-state RNA-seq data. For this purpose, we used data coming from a prostate 
cancer sample along with its matched normal tissue (patient 15 of ref. [29]). Since for 
each of the tissues two replicates were available, we computed splicing efficiencies 
for each replicate and then averaged the results for the tumor tissue and the normal 
tissue.

Prostate cancer is one of the most common cancer types in men [30]. SPLICE-q 
detected relatively high splicing efficiencies—median SE of 0.96 in both the tumor and 
the normal sample—in the 66,389 introns shared across the sample pair after running 
the tool with default parameters. This is expected when the tool is applied to steady-
state RNA-seq data. The SE and IER scores for individual introns are strongly corre-
lated, both among each other (Additional file 1: Fig. S6-7, Table S2) and across sample 
replicates (Additional file  1: Fig. S9). Although this overview suggests that there is 
no alteration in average splicing efficiency levels between normal and tumor tissue, a 
closer look showed interesting changes for individual introns. One intriguing exam-
ple is Prostate cancer associated 3 (PCA3), a long noncoding RNA highly expressed 
in prostate cancer and widely known as a prostate cancer-specific biomarker of high 
specificity [31]. It has been found to be involved in the proliferation and survival of 
prostate cancer cells by multiple mechanisms, including the modulation of andro-
gen receptor signaling, the inhibition of the tumor suppressor PRUNE2, and possibly 
by acting as a competing endogenous RNA (ceRNA) for High mobility group box  1 
(HMGB1) via sponging of miR-218-5p [31–33]. Interestingly, PCA3’s second intron 
located at chr9:76,782,833–76,783,704 has an SE of 0.57 in normal tissue and a much 
higher SE of 0.90 in the tumor (Fig. 5a), suggesting that PCA3 might not only be over-
expressed but also more efficiently spliced.

Variation in splicing efficiency can be also observed among protein coding genes. 
The retinoic acid-related orphan receptor β (RORβ, encoded by the gene RORB) was 
recently reported to inhibit tumorigenesis in colorectal cancer in vivo. When RORβ 
was overexpressed, tumorigenic capacity of the cells was significantly reduced, sug-
gesting that this protein acts as a tumor suppressor in colorectal cancer [34]. Intrigu-
ingly, we found two of the RORB introns—located at chr9:74,630,368–74,634,630 and 
chr9:74,634,773–74,642,413—to have reduced splicing efficiencies in the prostate 
cancer sample (SEs of 0.99 and 0.98 in the normal control and 0.63 and 0.60 in the 
tumor, respectively) (Fig. 5b). Contrasting, Sushi repeat-containing protein X‐linked 2, 
or simply SRPX2, shows the opposite splicing efficiency profile with an intron at the 
coordinates chrX:100,662,368–100,664,773 being less efficiently spliced in the control 
sample (SE of 0.59) than in the tumor (SE of 0.90, Fig. 5c). Previous studies showed 
SRPX2 to play an important role in cancer development and progression. In colorec-
tal cancer, the overexpression of SRPX2 may promote invasiveness of tumor cells [35], 
and in prostate cancer, a knockdown of SRPX2 affected the proliferation, migration 
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and invasion of cancer cells by partially suppressing the PI3K/Akt/mTOR signaling 
pathway [36]. PI3K/Akt/mTOR regulates cell proliferation and survival in different 
cancer types and is usually activated in advanced prostate cancer [37, 38]. Further-
more, the suppression of this signaling pathway was reported to reduce cell motility 
and invasion in prostate cancer [39].

While these examples obtained from a single prostate tumor provide no biologi-
cal insight into prostate cancer in general, they illustrate that gene regulation may go 
beyond the mere expression levels, with a gain or loss of splicing efficiency potentially 
acting as a superposed mechanism that may be beneficial to tumor development.

Comparison with existing methods
We compared SPLICE-q to other methods for the analysis of splicing efficiency or 
intron retention, namely iREAD [20], IRFinder [19], and a workflow implemented by 
Převorovský et al. [18]. As outlined above, and described in more detail in Additional 
file  2, the purpose of iREAD is to determine whether an intron can be considered as 
retained or not. Also, IRFinder detects intron retention but provides a quantitative 
measure, called IR ratio, which describes the degree of intron retention. This is similar to 
the intention of our SE and IER scores, but follows the inverse logic. To our best knowl-
edge, apart from SPLICE-q only Převorovský et al.’s workflow was designed to calculate 
“splicing efficiencies”. We compared SPLICE-q to these methods both with respect to the 
computational performance and the obtained measurements.

For performance comparison, we used either the HEK293 nascent RNA dataset or the 
prostate cancer sample and its matched control. Both SPLICE-q’s run time and memory 
footprint were superior to those of the other tested methods, especially when compared 
to iREAD and Převorovský et al.’s workflow (see Additional file 2).

Fig. 5  Read coverage of selected introns in the prostate cancer and the normal control sample. IGV views 
of representative cases of introns from different genes comparing prostate cancer versus normal samples. a 
Intron located at chr9:76,782,833–76,783,704 of PCA3; b Introns located at chr9:74,630,368–74,634,630 and 
chr9:74,634,773–74,642,413 of RORB; and c Intron located at chrX:100,662,368–100,664,773 of SRPX2. Tumor 
and normal samples are represented in red and blue, respectively. The figure shows only one of the two 
sample replicates. For both replicates, see Additional file 1: Fig. S8
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To compare the obtained intron retention and splicing efficiency scores, we first exam-
ined whether the other approaches provide results which are correlated to SPLICE-q’s 
SE and IER. While the results obtained from IRFinder are conceptually different from 
(or even opposite to) the notion of splicing efficiency, as expected they prove to be corre-
lated when considering the inverse of the IR ratio (1-IRratio), as shown in Figures S2 and 
S3 in Additional file 2. Although iREAD provides only binary decisions regarding intron 
retention—it provides no quantitative degree that would be directly comparable to SE or 
IER scores—the fraction of detected intron retention events decreases with increasing 
SE or IER, as anticipated. However, the overall fraction of introns identified by iREAD 
remains rather low (Fig. S4 in Additional file 2) due to its restrictive default thresholds 
for detection of intron retention. Neither IRFinder nor iREAD were able to detect the 
events we described for the prostate tumor in Fig. 5 (see Additional file 2: Section 6).

Also the scores computed by Převorovský et al.’s workflow are correlated with splicing 
efficiencies (at least on a logarithmic scale, see Fig. S1 in Additional file 2) but they are 
not limited to a range from 0 to 1 and do hence not directly measure the degree to which 
an intron is spliced out, which makes them less interpretable. Moreover, depending on 
the use case (e.g., the species of interest), running the workflow will likely require manual 
modification of the source code (see Additional file 2 for some necessary modifications).

Lastly, we compared the three tools with respect to their capability to identify simu-
lated events of increasing intron retention levels, that is, decreasing splicing efficiency. 
While iREAD turned out to be too restrictive when using default parameters, SPLICE-q 
and IRFinder provide comparable results, although SPLICE-q is slightly better when it 
comes to recognizing borderline cases at lower coverage. For further details regarding 
these comparisons and justification for our conclusions, please see Additional file 2.

Altogether, SPLICE-q clearly outperforms iREAD and Převorovský et  al.’s workflow 
and shows slight improvements over IRFinder. Moreover, SPLICE-q is easier to install 
and use than the other tools and provides two alternative measurements for evaluating 
splicing efficiency as well as a larger set of filtering options.

Conclusions
Here we introduced SPLICE-q, an efficient and user-friendly tool for splicing efficiency 
quantification. SPLICE-q enables the quantification of splicing through two different 
methods (SE and IER) and is sensitive to the overlap of genomic elements. We demon-
strated SPLICE-q’s usefulness showing three use cases, including two different species 
and experimental methodologies. Our analyses illustrate that SPLICE-q is suitable to 
detect a progressive increase of splicing efficiency throughout a time course of strand-
specific nascent RNA-seq data. Likewise, SPLICE-q can be applied to strand-specific 
steady-state RNA-seq data and might be useful when it comes to understanding cancer 
progression beyond mere gene expression levels, for example, by identifying differential 
splicing efficiency between tumor samples and their respective normal controls.
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