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Abstract 

Background: During the pathogenesisof complex diseases, a sudden health dete-
rioration will occur as results of the cumulative effect of various internal or external 
factors. The prediction of an early warning signal (pre-disease state) before such 
deterioration is very important in clinical practice, especially for a single sample. The 
single-sample landscape entropy (SLE) was proposed to tackle this issue. However, 
the PPI used in SLE was lack of definite biological meanings. Besides, the calculation of 
multiple correlations based on limited reference samples in SLE is time-consuming and 
suspect.

Results: Abnormal signals generally exert their effect through the static definite 
biological functions in signaling pathways across the development of diseases. Thus, 
it is a natural way to study the propagation of the early-warning signals based on the 
signaling pathways in the KEGG database. In this paper, we propose a signaling pertur-
bation method named SSP, to study the early-warning signal in signaling pathways for 
single dynamic time-series data. Results in three real datasets including the influenza 
virus infection, lung adenocarcinoma, and acute lung injury show that the proposed 
SSP outperformed the SLE. Moreover, the early-warning signal can be detected by one 
important signaling pathway PI3K-Akt.

Conclusions: These results all indicate that the static model in pathways could sim-
plify the detection of the early-warning signals.

Keywords: Pre-disease state, Early warning signals, Single sample, Signal perturbation, 
Signaling pathway
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Background
Theoretical considerations and computational studies suggest that many types of com-
plex dynamical systems may have a critical points between an ordered and a disordered 
dynamical regime [1, 2]. This regime provides complex systems to have an optimal 
balance between robustness and adaptability. Specifically, they can execute normal 
functions in a variable environment while being responsive to specific changes in the 
environment. Studies of human brain oscillations [3], computer network traffic and the 
Internet [4, 5], financial markets [6], forest fires [7], ecosystems [8, 9], climate systems 
[10, 11], economics and global finance [12], neuronal networks [13], and biological mac-
roevolution have all revealed such critical dynamics [14].

Mathematically, the dynamic behavior of complex systems can be characterized by 
state space. One state can be represented as the behavior of the composite elements in 
the system. In a relatively long time, some initial states of the system will eventually set-
tle down to one of a limited set of stable states. Bifurcation theory demonstrates that 
complex systems may undergo a sudden state transition under some critical continuous 
perturbations of various internal or externals. Such a change often occurs at a critical 
threshold, or the so-called ‘‘tipping point’’, at which the system shifts abruptly from one 
state to another.

The time evolution of complex diseases may follow the bifurcation theory, that is, a 
sudden health deterioration will occur during these diseases’ gradual progression at a 
tripping point time [15–17]. For example, it takes at least a decade or even decades for 
cancers to develop before getting worse [18, 19]. According to these concepts, the dis-
ease progression can be divided into three states: the normal state, the disease state, and 
the pre-disease state between them [20]. The normal state represents a relatively healthy 
stage during which the disease is under control, in an incubation period or a chronic 
inflammation period. The disease stage represents a continuous health deterioration that 
is hard to reverse. The pre-disease stage is a relatively unstable and reversible state which 
may transition to the normal state if appropriate treatment is applied [17, 21–25]. From 
the perspective of disease prevention and a better understanding of disease progression, 
detecting the early-warning signals for the pre-disease state is an important issue in clin-
ical practice [17].

The execution of various physiological processes in cells is carried out by complex bio-
molecular systems. The massively parallel dynamics of complex molecular networks fur-
nish the cell with the ability to process information from its environment and mount 
appropriate responses [26, 27]. Therefore, one direct way is determining the pre-disease 
state based on the state transition based on a complex network model. However, this is 
limited by the curse of a high dimension of genomic data and the lack of data for a sin-
gle sample. The model-free direction is to identify a group of biomarkers and define a 
measurement based on the single sample expression data. Due to the rapid development 
of high-throughput technologies, innovative biomarkers are identified as the unprece-
dented rich information of genotypes and phenotypes of diseases. Molecular biomark-
ers, for example, genes, RNAs, proteins, and metabolites, are widely adopted traditional 
model-driven method and still play an important role in analyzing data, because of their 
simplicity of measurement and implementation [28–33]. Because the progression pro-
cess of diseases is affected by the complications and variations of genetic, epigenetic, 
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and environmental factors, the molecular biomarkers have a high false-positive rate and 
low coverage. To surmount these shortages, network biomarkers are proposed [34, 35]. 
Network biomarkers are considered to be more robust because a complex disease is 
generally caused not by the malfunction of individual molecules but by a network that 
contains the interplay of a group of correlated molecules [36]. However, molecular bio-
markers and network biomarkers are mainly used to distinguish the disease state from 
the normal state by the great distinction between them [22]. Thus, they are not suitable 
for detecting the early-warning signals. To solve this problem, Chen and Liu et al. pro-
posed a dynamic network biomarker (DNB), which could be applied to different appli-
cation scenarios. The DNBs-based method and its subsequent modifications have been 
used to identify the pre-disease states of several diseases [37–41]. These methods have 
also been applied to detect the tipping points of cell fate decision and differentiation [42, 
43], and the immune checkpoint blockade [44]. A DNB must appear and satisfy three 
statistic conditions which require multiple samples from an individual [17]: i.e. corre-
lations between the variables among this group rapidly increase, correlations between 
this group and other variables rapidly decrease and standard deviations of the variables 
among this group drastically increase. The calculation of correlations and standard devi-
ations limits the application of DNBs-based methods not fit to single case samples in 
clinical practice but appropriate for multiple samples. Recently, Liu et.al. proposed a new 
conception named the single-sample landscape entropy (SLE) based on DNB theory to 
detect the early-warning signals of diseases (detailed information can be seen section 
materials and method) [15]. The limitation of SLE lies in the following two aspects. First, 
the lack of definite biological meanings in PPI makes SLE indirectly depict the deviation 
of an individual at a time point from the health state based on the Pearson correlation 
change. Second, the calculation of various correlations between genes using reference 
samples from an individual is time consuming and suspect.

Signaling pathways in the KEGG database include a series of validated enzymatic reac-
tions from biological experiments. And they can transmit the extracellular molecular 
signals into cells to exert effects through specific biological functions. The development 
of diseases results from the continuous perturbation of the various abnormal signals in 
some of these pathways. Therefore, Tarca et  al. proposed a signaling pathway impact 
analysis (SPIA) method to determine significant disease-related signaling pathways by 
normal and disease samples [45]. From the perspective of system biology, signaling path-
ways are a kind of static biological model of the corresponding functions. In this paper, 
we adapt the signal perturbation to study the propagation of the early-warning signals 
based on the signaling pathways in the KEGG database. We name it as single-sample 
signal perturbation (SSP). We applied SSP to three datasets (an individual-sample data-
set of influenza virus infection, the TCGA dataset of lung adenocarcinoma, and a data-
set of acute lung injury). our results show that SSP outperforms SLE in predicting the 
early-warning signals. Also, SSP is relatively simple to avoid calculating the correlation 
between genes in the large PPI network. Furthermore, SSP can be further simplified by 
using some crucial pathways, i.e., the PI3K-Akt signaling pathway.
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Results
Complex diseases arise is due to the accumulation of differential expressions and sig-
nal perturbations in a subgroup of genes allowing uncontrolled biological functions. The 
accumulation of differential expressions and signal perturbations in signaling pathways 
is an invertible dynamic process before the biological functions become uncontrolled. 
Thus, when the accumulation changes in signaling pathways, it will signal a piece of pre-
disease information. We use three single-sample datasets to illustrate how SSP works, 
including influenza virus infection (GSE30550), lung adenocarcinoma (LUAD) from the 
TCGA database, and acute lung injury (GSE2565). In this paper, we download 178 sign-
aling pathways of human and 174 mmu signaling pathways from the KEGG PATHWAY 
dataset (https:// www. kegg. jp/ kegg/ pathw ay. html). The pathways in KEGG dataset are all 
hand-painted and validated by scientific pieces of literature. In this section, we compare 
the early-warning signals detection of the proposed SSP with SLE using all these signal-
ing pathways.

The PI3K-Akt is an important signaling pathway associated with many complex dis-
eases, such as the later stages of influenza virus infection [46], acute lung injury [47–
49], non-small cell lung cancer [50]. To demonstrate the simplicity of the proposed SSP 
method, we also present the predicted results on the three datasets by only using this 
pathway instead of all the signaling pathways.

Early‑warning signals of individual influenza infection

For each subject in the individual influenza infection dataset (GSE30550), the gene 
expression profiles of the first four time points, i.e., Baseline, 0, 5, and 12 h are regarded 
as reference samples. Figure  1A shows the global SSP scores of the 14 subjects by all 
signaling pathways. First, the SSP scores of the symptomatic subjects are relatively 
higher and more unstable than that of the asymptomatic subjects. Second, there is a 
drastic increase of SSP scores of the symptomatic subjects at some middle time points, 
which provides an early-warning signal for these subjects. Figure 1A shows the predicted 
warning signals for the 14 subjects of SLE, SSP with all signaling pathways, and SSP with 
only PI3K-Akt pathway.

Figure 1B presents the predicted warning signals by the SLE method, SSP with all sign-
aling pathways, and only the PI3K-Akt pathway. For the seven symptomatic subjects, 
three predicted warning signals by SSP with all signaling pathways are earlier than that 
by the SLE method. The other four warning signals are predicted at the same time point 
which including two signals are overlapped with the appearance of the symptom. For 
the SSP with only PI3K-Akt pathway, four predicted warning signals are earlier than that 
by the SLE method, one later and two equals. These observations indicate that the pro-
posed SSP method has a better performance than the SLE method.

Figure 2 shows the curves of the SSP scores and SLE scores of the seven symptomatic 
subjects with times. The two score curves present a similar trend across all time points. 
Figure 3 shows the curves of the SSP scores by only PI3K-Akt pathway with times which 
also has a similar trend with the previous two. Compared with the SLE method, the pro-
posed SSP methods capture the significant change of the development of diseases based 
on the signal perturbation in signaling pathways while the former detect it based on the 

https://www.kegg.jp/kegg/pathway.html
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correlation change between genes. Despite their difference, the results indicate that the 
two kinds of scores could detect the underlying molecular interaction changes in the 
development of diseases. However, the SSP score is easier to understand as it directly 
integrates the underlying molecular interactions models. Therefore, this score is more 
believable and easier to understand than the SLE scores.

As the perturbations of upstream genes usually contribute abnormal signals in a sign-
aling pathway, we present the fold change of the 30 upstream genes in the PI3K-Akt 
signaling pathway in Fig. 4 by Subject 01. We can see that some genes are significantly 
highly expressed at time 29 h, which is consistent with the detected warning signal for 
Subject01 in Fig. 3. Therefore, the pathway-based method may further help to uncover 
the underlying mechanisms for the pre-disease state and to predict a more precise warn-
ing signal in the future.

Early‑warning signals of lung adenocarcinoma (LUAD)

For dataset LUAD, the 58 tumor adjacent (TA) samples are considered as reference 
samples. Because of no individual-based samples across all time points, the expres-
sions of genes are obtained by their average value in each time point. Metastasis is the 

Fig. 1 Detecting the early-warning signals of H1N2 influenza infection. A The curves of SSP scores for 14 
subjects using 178 human signaling pathways. Each blue curve corresponds to an asymptomatic individual, 
while other curves record for the SSP scores based on the individual data of symptomatic subjects.  B The 
summarized prediction results
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culprit behind most cancer-related deaths and the ultimate challenge in our effort to 
fight cancer as a life-threatening disease [51]. Stage II means cancer may have spread 
from the lung to the nearby lymph nodes and stage IV means the tumor cells have 
invaded into distant tissues of other organs [52].

Fig. 2 The individual SSP score curves of 7 symptomatic subjects using 178 human signaling pathways. For 
each symptomatic subject, the blue circle stands for the time point at which the initial flu symptoms arise, 
and the red star mark denotes the identified tipping point by SSP score

Fig. 3 The individual SSP score curves of 7 symptomatic subjects according to the PI3K-Akt signaling 
pathway. For each symptomatic subject, the red circle stands for the time point at which the initial flu 
symptoms arise, and the blue star mark denotes the detection of the early-warning signal by SSP score
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Figure 5A shows the predicted warning signals by the SLE and SPP with all signaling 
pathways. the former only correctly give the warning signals before stage IV, while the 
latter can correctly give the warning signals for both stage II and IV. Figure 5B shows that 
the same results can even be obtained by SSP with only PI3K-Akt pathway. Therefore, 
the proposed SSP method gives better prediction performance than the SLE method. In 
practice, the precise warning signals will help to take chemotherapy and radiotherapy 
timely to prevent serious deterioration or slow down cancer progression [53].

Early‑warning signals of acute lung injury

For the acute lung injury dataset GSE2565, the samples collected from the air- or phos-
gene-exposed mice at 0 h are considered as reference samples. Because of no individ-
ual-based samples across all time points, the expressions of genes are obtained by their 
average value in each time point.

Fig. 4 the absolute fold change value of the expression data of the genes in the upstream of PI3K-Akt 
signaling pathway using the individual sample Subject01

Fig. 5 Detecting the early-warning signal of lung adenocarcinoma. A SSP score and SLE score curves of 
LUAD progression for 178 signaling pathways, which shows the early-warning signal around IA–IB stages 
and IIIA-IIIB stages. B SSP score curve of LUAD progression for PI3K-Akt signaling pathway, which shows the 
early-warning signal around IA–IB stages and IIIA-IIIB stages
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Figure  6A shows that both the SLE and SPP with all signaling pathways predict the 
warning signals at 8 h after exposure which is 4 h before the happening of acute lung 
injury. Figure  6B shows the predicted warning signal just at the observed happening 
time by SSP with only the PI3K-Akt pathway. The original experiment found that the 
most severe phosgene-induced acute lung injury ranged from 4 to 12 h after exposure. 
Especially, the main physiological effects occurred within the first 8  h after exposure, 
resulting in common observations of enhanced bronchi alveolar lavage fluid (BALF) 
protein levels, increased pulmonary edema, and ultimately decreased survival rates [54]. 
Therefore, the predicted signals are consistent with the actual disease development. In 
addition, in Fig. 6A, b, the SSP score from time point 0.5 to 8 h has a down behavior. The 
expressions of genes are obtained by their average value of all samples at the time point 
in each time point. Thus, the noise may be introduced in the SSP score and will result in 
this case. But this case does not influence the predicted signals.

Discussion
In the progression of complex diseases, a sudden health deterioration (pre-disease state) 
usually occurs due to the gradual accumulating effect of various internal or external fac-
tors. An early warning signal before this deterioration is essentially important for clini-
cal practice. Some effective treatments could be applied to prevent the happening of the 
irreversible process of diseases. In recent years, Chen et al. developed a new framework 
to tackle this issue. Especially the SLE method can detect early warning signals based on 
the time point expression data of an individual through the correlation changes between 
genes.

In this paper, we apply the signal perturbation in pathways to this framework to pre-
dict the early warning signals of complex diseases. Results from three datasets demon-
strate that the proposed method SSP outperforms the SLE method in both the influenza 
virus infection dataset and LUAD dataset, and equals in the acute lung injury dataset. 
The consideration of the static model of pathways provides the proposed SSP method 
a relatively concrete biological mechanism to detect the essential changes. In addition, 
it reduces the computation complexity of the proposed SSP compared with the SLE 

Fig. 6 Detecting the early-warning signal of acute lung injury. A SSP score and SLE score curves of acute 
lung injury progression for 174 mmu signaling pathways, which shows the early-warning signal is around 4 
to 8 h. B SSP score curve of acute lung injury progression for PI3K-Akt signaling pathway, which shows the 
early-warning signal is around 8 to 12 h
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method. Finally, based on the result by only the PI3K-Akt signaling pathway, the pro-
posed method SSP can be further simplified by using some crucial pathways if enough 
data is available.

However, the SSP method still has its limitations. SSP mainly relies on the signaling 
pathways from KEGG datasets. The biological information included in these pathways 
is incomplete. Thus, the SSP score may have a fluctuation under some circumstances. 
The noise in initial gene expression data is also the reason for the fluctuation of the SSP 
score. In addition, the strength of the interactions between genes in pathways is not con-
sidered in SSP. This may result in the loss of some real biological information.

Conclusions
In this paper, a method called SSP to identify the pre-disease state of complex diseases 
is presented. SSP adapted a static biological model (signaling pathways with specific bio-
logical functions) to a dynamic system to character the dynamic change of system for an 
individual sample, which has a better performace than previous method SLE. Besides, 
benefiting from the use of static signaling pathways, the calculation of SSP method takes 
less time than previous method SLE. Therefore, SSP can identify the pre-disease state in 
less time that previous methods cannot.

Methods
Datasets

We download three time-course or stage-course datasets including the the microarray 
data of influenza virus infection process (GSE30550) and acute lung injury induced by 
phosgene inhalation(GSE2565) from the NCBI GEO database (www. ncbi. nlm. nih. gov/ 
geo), and data of the lung adenocarcinoma (LUAD) from the TCGA database. For all 
these omics genomic data, we discard the probes without the corresponding NCBI 
Entrez gene symbol. For each gene mapped by multiple probes, the average value is 
employed as the gene expression.

The dataset GSE30550 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE30 
550) records influenza virus infection of 16 human adult subjects inoculated with live 
H3N2/ Wisconsin influenza virus [55]. Each subject includes 16 time point gene expres-
sion samples (Baseline, 0, 5, 12, 21, 29, 36, 45, 53, 60, 69, 77, 84, 93, 101, and 108 h). The 
gene expression profiles are measured on whole peripheral blood at an interval of 8 h 
post-inoculation (hpi) through 108 hpi. We only analyze 14 subjects because the other 
2 subjects lack data at some time points. The 14 subjects include 7 subjects with clinical 
symptoms of influenza infection and 7 subjects without any clinical symptom at all-time 
points.

The lung adenocarcinoma (LUAD) dataset includes 518 tumor samples and 58 tumor-
adjacent samples. The tumor samples are divided into different stages based on clinical 
(stage) information from TCGA. Based on clinical information, the samples are grouped 
into ten stages, i.e., stage I, IA, IB, II, IIA, IIB, IIIA, IIIB, and IV of lung cancer (Table 1).

Table 1 The number of tumor samples within each stage in the LUAD dataset from TCGA 

Stage I IA IB II IIA IIB IIIA IIIB IV TA

Sample 5 134 147 1 50 71 73 11 26 58

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30550
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30550
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The dataset GSE2565 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE25 65) 
comprises expression profiles of the mouse with acute lung injury induced by phosgene 
inhalation. These lung tissues are collected from air- or phosgene-exposed mice at 0, 0.5, 
1, 4, 8, 12, 24, 48, and 72 h after exposure (Table 2) [54]. RNA is extracted from the lung 
and used as starting material for the probing of oligonucleotide microarrays to determine 
changes in gene expression following phosgene exposure.

Algorithm to detect the pre‑disease state based on SSP

Because it is hard to characterize the health degree of an individual using one time point 
expression data, Chen et al. developed a novel framework that indirectly depicts the devia-
tion of an individual at time point t from the health state based on the Pearson correlation 
changes between two groups of samples. Specifically, the first is the reference group com-
posed of n samples with a normal/healthy state, the other is the mixed group composed of 
the n reference samples and one sample at a time point t . Given gene gi and its k th neighbor 
gene gik (total M neighbor genes) in a PPI network, the local entropy of the gene gi at time 
point t is defined as

with

where PCCn(gi(t), gik(t)) represents the Pearson Correlation Coefficient between the 
gene  gi and the k th neighbor gene gik based on n reference samples. gni (t) and gnik(t) 
respectively denote the expressions of genes gi and gik at time point t based on n refer-
ence samples. Then for a single sample at the time point t , SLE mixes it with the n refer-
ence samples. The local entropy Hn+1(gi, t) of the gene gi at the time point t of the mixed 
n+ 1 samples is calculated in a similar way to that in Eq. (1) and Eq. (2), but is based on 
the mixed n+ 1 samples instead of n reference samples.

They also measured the expression perturbation of gene gi at time point t by the differen-
tial standard deviation

where SDn+1(gi, t) and SDn(gi, t) are the standard deviations of the gene gi respectively 
based on the reference samples and the mixed samples.

(1)Hn(gi, t) = −
1

logM

M
∑

k=1

pnk (t) logp
n
k (t)

(2)
pnk (t) =

∣

∣PCCn(gni (t), g
n
ik(t))

∣

∣

M
∑

j=1

∣

∣

∣
PCCn(gni (t), g

n
ij (t))

∣

∣

∣

(3)�SD(gi, t) =
∣

∣

∣
SDn+1(gi, t)− SDn(gi, t)

∣

∣

∣

Table 2 The number of samples within each hour in the dataset GSE2565

Hour 0 0.5 1 12 24 4 48 72 8

Sample 6 12 12 12 12 12 14 12 12

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2565
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Then, the absolute differential entropy of the gene gi at the time point t between the local 
entropies Hn+1(gi, t) and Hn(gi, t) is weighted by �SD(gi, t) as

Finally, the abnormal score of an individual at the time t is the summation of �H(gi, t) for 
all Q genes as

As the development of disease results from the abnormal molecular perturbation through 
some important signaling pathways, Tarca et al. proposed a signaling pathway impact anal-
ysis (SPIA) method to determine the significant disease-related signaling pathways by nor-
mal and disease samples [45]. They defined the signal perturbation PF(gi) of a gene gi in a 
specific signaling pathway as

where gene gk is the direct upstream gene of gene gi in the specific signaling pathway. 
PF(gk) is the signal perturbation of the gene gk . Nk is the number of the direct down-
stream genes of gene gk . βik is the strength of the interaction between gene gk and gi . βik 
is 1 when the interaction between the two genes is activated. βik is −1 when the interac-
tion between the two genes is inhibited. FC(gi) is the fold change of the expression of the 
gene gi by normal and disease samples.

Signaling pathways in the KEGG database can transmit the extracellular molecular sig-
nals into cellcells to exert effects through specific biological functions. Complex diseases 
always associate with the abnormal biological functions that direct impacted by the most 
downstream genes. The accumulation of differential expressions and signal perturbations in 
signaling pathways is an invertible dynamic process before the biological functions become 
uncontrolled. The upstream genes in signaling may be very differential expression in the 
pre-disease state. As demonstrated by SPIA, the amount of signal perturbations in signaling 
pathways are directly impact by the expression value of upstream genes. Therefore, follow-
ing SPIA, we adapt the dynamic time-series expression data to static signaling pathwaysin 
the same wayinstead of the correlations calculated in SLE.

where gene gk is the direct upstream gene of gene gi in the specific signaling pathway. 
PF(gi, t) is the signal perturbation of the gene gk at a time point t. Nk is the number 
of the direct downstream genes of gene gk in the specific signaling pathway. βik is the 
strength of the interaction between gene gi and gk . βik is 1 when the interaction between 
the two genes is activated. βik is −1 when the interaction between the two genes is inhib-
ited. FC(gi, t) is the fold change of the gene gi at a time point t.

(4)�H(gi, t) = �SD(gi, t)
∣

∣

∣
Hn+1(gi, t)−Hn(gi, t)

∣

∣

∣

(5)�H(t) =
1

Q

∑

�H(gi, t)

(6)PF(gi) = FC(gi)+
∑

k

βik
PF(gk)

Nk

(7)PF(gi, t) = FC(gi, t)+
∑

k

βik
PF(gk , t)

Nk
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gi(t) is the expression of the gene gi at the time point t . E is the average expression of all 
n reference samples.

Then, the weighted signal perturbation (SSP score) for all genes in all signaling 
pathways at the time point t is calculated, i.e.

If the SSP score has a sharp increase from the previous time point to a time point 
t , the time point t will be considered as an early-warning signal for the disease. Fig-
ure 7 shows the schematic diagram of the proposed SSP method. The main difference 
between SSP and SLE based method is that SSP directly describes the deviation of 
an individual at a time point from a normal state by adapting the signal perturbation 
transmitted in static signaling pathways instead of the indirect way in SLE.
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