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Background
Microbes occupy a vast range of ecological niches  [1]. Understanding how particular 
species have come to occupy their niches requires us to reconstruct how their genomes 
have evolved over time.

In a clade of closely related microbes with a known gene and species tree, inferring the 
genetic history can be done through a process called reconciliation. This process maps 
the gene tree to the species tree, and in doing so implies genetic events that explain the 
discordance between the two trees. The DTL model considers duplication, horizontal 
gene transfer, and loss events whereas some models consider a subset of these events 
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(e.g., only duplication and loss) or different types of events (e.g,. incomplete lineage 
sorting).

While the DTL model is applicable to evolution in microbes, it only allows horizontal 
transfer between species that are part of the species tree. In the analysis of the evolution 
of microbes in particular, it is quite common that the species tree is not fully sampled. 
Thus, from the perspective of performing a reconciliation analysis, a gene family may 
effectively enter the given species tree via transfer from the outside [2, 3].

In this paper we describe the DTLOR model that addresses this issue by extending 
the DTL model to allow some or all of the evolution of a gene family to occur outside 
of the given species tree and for transfers events to occur from the outside. To facilitate 
the recognition of such entry events, the model also keeps track of the syntenic region 
of each gene as it evolves in the species tree. Two genes are said to be in the same syn-
tenic region if they share a substantial fraction of core genes in a relatively large window 
around them and, second, they share a certain amount of similarity among all genes in 
a smaller window around them [2]. Thus, in addition to duplication, transfer, and loss 
events, the DTLOR model adds origin events to indicate that a gene is transferred from 
outside of the species tree and rearrangement events that account for changes in the syn-
tenic regions of genes on the genome.

In the DTL model, reconciliation is generally performed using a maximum parsimony 
formulation. A positive cost is associated with each type of event and the objective is 
to find a reconciliation that minimizes the total cost of the incurred events. Efficient 
algorithms have been developed for maximum parsimony reconciliations (MPRs) in the 
DTL model [4–6], and several software tools implement these algorithms [7–10].

In earlier related work, Delabre et al. studied a related problem of reconciliation with 
synteny information in the Duplication-Loss model; horizontal transfer events were not 
considered in that work [11]. Szöllősi et al. [3] proposed an event called “transfer from 
the dead” to account for gene evolution that occurs outside of the species tree and Jacox 
et al.  [10] described an extension of an existing DTL maximum parsimony reconcilia-
tion algorithm to compute most parsimonious reconciliations with this additional event. 
Our work differs in two significant ways from that prior work. First, while “transfer 
from the dead” allows gene lineages to transfer out of and back into the sampled species 
trees multiple times, the DTLOR model only permits transfer from the outside under 
the assumption that the species tree comprises closely-related species and, thus, trans-
fers out of the species tree and back in are considered to be relatively rare. Second, the 
DTLOR model captures rearrangement events, which are not considered in conjunction 
with DTL events in previous models. Reconstructing rearrangement events is particu-
larly important in identifying genomic islands in bacteria [2].

In summary, in this paper we extend the DTL model to allow origin (O) and rearrange-
ment (R) events. We give an exact polynomial-time algorithm for maximum parsimony 
reconciliation in the DTLOR model. Since gene trees are often non-binary due to lack of 
signal in their sequence data, we show how maximum parsimony reconciliations can be 
found in fixed-parameter polynomial time for non-binary gene trees where the param-
eter is the maximum branching factor of a node. Finally, we describe preliminary results 
from the integration of the DTLOR MPR algorithm into the xenoGI tool [2] which may 
provide new insights into microbial evolution.
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Definitions

An instance of the DTLOR reconciliation problem comprises undated rooted spe-
cies and gene trees, S and G, respectively; a positive integer syntenic region number 
associated with each leaf vertex (extant gene) in G; and a mapping of the leaves of G 
to the leaves of S. We assume that both trees are binary, but consider the case that 
gene trees may be non-binary in Sect. 4. Some leaves of the gene tree may be in the 
same syntenic region while others may be in unique syntenic regions. The DTLOR 
model comprises the standard DTL events (duplication, transfer, and loss; described 
in detail below) [4] and two additional events called origin and rearrangement. Each 
of those five event types has an associated positive cost.

A syntenic region number is a positive integer from the set of syntenic region num-
bers of the leaves of the gene tree (called an actual syntenic region) or the special 
unknown syntenic region symbol ∗ . When a gene vertex is labeled with ∗ , that vertex 
is assumed to be evolving outside the species tree. When a gene vertex is assigned an 
actual syntenic region but its parent has unknown syntenic region, this means that 
the gene entered the species tree through transfer from outside, inducing an origin 
event. Rearrangement indicates a change in syntenic region that happens during the 
course of evolution within the species tree.

The rules for syntenic region numbering are as follows: 

1.	 If a vertex u is labeled ∗ and v is a child of u, then v may be labeled with either ∗ or an 
actual syntenic region number.

2.	 If a vertex u is labeled with an actual syntenic region number, then its children must 
be labeled with actual syntenic region numbers. Note that this implies that any ver-
tex labeled with an actual syntenic region number has the property that all of its 
descendants are also labeled with actual syntenic region numbers.

Constraint 1 ensures that genes can originate outside the species tree while constraint 
2 ensures that once a gene is found in the species tree it continues evolving within the 
tree.

The DTL events in this model are analogous to those in the DTL model. O and R 
events are induced as follows: 

1.	 If a vertex u is labeled ∗ and a child v is labeled with an actual syntenic region num-
ber, then vertex v induces an O event.

2.	 If a vertex u and its child v have actual syntenic region numbers and those two syn-
tenic region numbers are different, then an R event is induced on the edge between u 
and v.

The objective of the DTLOR maximum parsimony reconciliation (DTLOR MPR) 
problem is to map the vertices and edges of the gene tree onto the species tree and 
to identify a syntenic region number with each internal vertex in the gene tree, mini-
mizing the total cost of the induced events. Note that this model implicitly assumes 
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that duplications are tandem or proximal duplications, and thus a duplication event 
by itself does not imply a change of syntenic region. A duplication that gives rise to a 
copy at a different syntenic region is modeled implicitly by a duplication and a rear-
rangement event. The model can be extended to permit other types of duplication 
events.

Notation

Let S and G denote a pair of undated species and gene trees, respectively. Throughout 
this and the next section, we assume that S and G are binary. In Sect. 4 we extend results 
to non-binary trees.

For a tree T, let root(T) be the root and Le(T ) be the set of leaves or tips. For a non-
root vertex v in the tree, p(v) is the parent of v. For a non-leaf vertex v, v1 and v2 denote 
its two children. We assume that each tree T has an additional handle edge, namely an 
edge (u, root(T )) . The handle of S is denoted eS and the handle of G is denoted eG . For a 
vertex v of T, we let T(v) be the subtree of T rooted at v, including its own handle edge 
ev from p(v) to v. An edge of a tree T is said to be a leaf edge if its terminus is a leaf and is 
said to be an internal edge otherwise.

The DTLOR MPR problem

An instance of the DTLOR-MPR problem is a 10-tuple (S,G, L,φ, γ ,D,T,L,O,R) where:

•	 S = (VS ,ES) and G = (VG ,EG) are binary species and gene trees, respectively;
•	 L is a finite set of syntenic regions which are represented by counting numbers;
•	 φ : Le(G) → Le(S) is a mapping that associates each leaf of G with a leaf of S;
•	 γ : Le(G) → L is a surjective mapping that associates each leaf of G with a syntenic 

region;
•	 Parameters D, T, L, O, R are positive costs for duplication, transfer, loss, origin, and 

rearrangement events, described in detail below.

A reconciliation in the DTLOR model comprises a pair of mappings (�,Ŵ) that extend 
the mappings φ and γ . Specifically, � : V (G) → V (S) ∪ {N } maps the vertices of G to 
the vertices of S or the special N location representing a species that is not in the species 
tree S. The constraints on � are as follows: 

1.	 �(g) = φ(g) for each leaf g of G;
2.	 If g is an internal vertex of G and �(g)  = N  then the children of g, denoted g1 and g2 , 

have the properties that

(a)	 �(g1)  = N  and �(g2)  = N ;
(b)	 Neither �(g1) nor �(g2) is an ancestor of �(g) ; and
(c)	 At least one of �(g1) or �(g2) is equal to or a descendant of �(g).
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Constraint 1 ensures that the mapping � is consistent with the leaf mapping φ while con-
straint 2 ensures that for any gene vertex mapped to a species vertex, (a) the children of 
g are also mapped to species vertices, (b) the children are not mapped to species vertices 
that are ancestral to their parent, and (c) at most one child can transfer to a different 
clade.

Note that we assume that the trees are undated and it is therefore possible that a map-
ping that satisfies these constraints is, nonetheless, time-inconsistent in the sense that 
there is no ordering of the internal nodes of the species tree that is consistent with the 
set of duplication, transfer, and loss events. But time-inconsistencies in an MPR can be 
detected in polynomial-time [12, 13]. Moreover, the problem of finding MPRs that are 
guaranteed to be time-consistent is NP-hard [14].

Note also that unlike the DTL model, which requires every gene vertex to be mapped 
to a vertex in the species tree, the DTLOR model allows gene vertices to be mapped to 
the N location which is outside the sampled species tree.

The mapping � induces four types of events. For an internal gene tree vertex g, with 
children g1 and g2 , and �(g)  = N  , the events induced by � are as follows: 

Speciation event:	 Vertex g induces a speciation event if one of �(g1) and �(g2) is 
in the left subtree and the other is in the right subtree of �(g).

Duplication event:	 Vertex g induces a duplication event if each of �(g1) and �(g2) 
is either equal to or a descendant of �(g) but does not satisfy the requirements for a 
speciation event.

Transfer event:	Vertex g induces a transfer event if exactly one of �(g1) and �(g2) is 
either equal to or a descendant of �(g) and the other is neither an ancestor nor a 
descendant of �(g).

Loss events:	 Each non-root vertex g (including leaf vertices) may induce zero or 
more loss events as follows: If �(p(g))  = N  is ancestral to �(g) , then each species 
vertex s on the path from �(p(g)) to �(g) induces a loss event, except for �(g) and 
also not �(p(g)) if p(g) induces a speciation event. For each loss induced by a ver-
tex s on the path from �(p(g)) to �(g) , we say that g passes through s.

If �(g) = N  then g induces none of these four types of events.
The mapping Ŵ : V (G) → L ∪ {∗} maps each vertex g in G to an element of L or the 

special syntenic region represented by ∗ indicating that it is in an unknown syntenic 
region because it occurs outside of the species tree. The constraints on Ŵ and its relation-
ship to � are as follows: 

1.	 Ŵ(g) = γ (g) for each leaf g of G;
2.	 �(g) = N  if and only if Ŵ(g) = ∗;
3.	 If Ŵ(g)  = ∗ and g has children g1 and g2 then Ŵ(g1)  = ∗ and Ŵ(g2)  = ∗.

Constraint 1 ensures that the mapping Ŵ is consistent with the leaf mapping γ , constraint 
2 ensures that if a gene vertex is mapped outside of the species tree then its syntenic 
region is not yet established, and constraint 3 ensures that once the syntenic region for 
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a gene node is established, the syntenic regions of its children are also established. The 
mapping Ŵ induces events as follows: 

Origin event:	 A non-root vertex g induces an origin event if Ŵ(p(g)) = ∗ and 
Ŵ(g)  = ∗ . The root vertex root(G) induces an origin event if Ŵ(root(G))  = ∗.

Rearrangement event:	 A non-root vertex g induces a rearrangement event if Ŵ(g)  = ∗ , 
Ŵ(p(g))  = ∗ , and Ŵ(p(g))  = Ŵ(g).

The cost of a reconciliation is defined to be the sum of the number of duplication, trans-
fer, loss, origin, and rearrangement events scaled by the event costs D, T, L, O, and R, 
respectively. Speciation events are assigned an implicit cost of zero because a gene is 
expected to diverge when the species that carries it diverges.

Methods
When a gene vertex g induces an origin event, all of the genes in the subtree G(g) rooted 
at g must have actual syntenic regions (by rule 3 in the definition of Ŵ ), and the genes 
in that subtree are mapped to species in S (by rule 2 in the definition of Ŵ ), that is, 
�(g ′) ∈ VS and Ŵ(g ′) ∈ L for all g ′ ∈ G(g) . The mappings � and Ŵ are only related by the 
constraint that �(g) = N  iff Ŵ(g) = ∗ . Thus, if g induces an origin event, then the pair 
of mappings � and Ŵ restricted to the domain G(g) are independent. Therefore, for an 
origin subtree, a subtree of G whose root induces an origin event, the process of finding 
an optimal species mapping � can be decoupled from the process of finding an opti-
mal syntenic region mapping Ŵ . Further, by definition, vertices that induce origin events 
cannot be ancestrally related. Thus, in a reconciliation (�,Ŵ) where g ′, g ′′ induce origin 
events, the species and syntenic region mappings restricted to the origin subtree G(g ′) 
are independent of the mappings restricted to the origin subtree G(g ′′).

For binary gene trees, we use a dynamic programming algorithm to compute the opti-
mal cost of a species mapping of each subtree of the gene tree. Then, we use a second 
dynamic programming algorithm to compute the optimal cost for the syntenic region 
mapping for each subtree. Finally, a third algorithm combines these results to find an 
optimal solution to the DTLOR MPR problem. For non-binary gene trees, this decou-
pling is no longer possible and a different (and less efficient) algorithm is presented in 
Sect. 9.

Computing the species map

Next, we give an efficient algorithm for computing an optimal species mapping for each 
origin subtree G(g). The algorithm is similar to other DTL reconciliation algorithms [4], 
but the variant used here is useful in the extensions and generalizations in later sections.

For a species mapping � , or its restriction to an origin subtree of the gene tree, we say 
that a gene tree edge eg is placed on species tree edge es if either �(g) = s or if the path 
from �(p(g)) to �(g) includes vertex s, unless p(g) is involved in a speciation event at 
s. As a special case, if g is the root of an origin subtree, then �(p(g)) = N  . In this case, 
there is no path from �(p(g)) to �(g) , so eg is placed on es if and only if �(g) = s . If 
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�(g) = s we say that eg terminates on edge es and if �(g) is a descendant of s then a loss 
event is induced and we say that eg continues on the corresponding child edge of es.

Let C(g) denote the optimal cost for a species mapping restricted to the domain of 
G(g) and let C(eg , es) denote the optimal cost for a species mapping of G(g) such that eg is 
placed on es . Then C(g) = mines∈ES C(eg , es).

We now describe an algorithm for computing C(eg , es) . The algorithm computes the 
C table by considering edges in the gene tree bottom-up (postorder): An edge eg is con-
sidered if either g is a leaf or the children edges eg1 and eg2 have already been considered. 
For each edge eg under consideration, we now consider each edge es in the species tree in 
postorder.

To compute C(eg , es) , we enumerate the four possible cases:

•	 In the base case, if g and s are leaves, then: 

•	 If neither g nor s is a leaf, then either g is mapped to s or not. If g is not mapped to s, then 
it induces a loss at s by being mapped to one of its children. Otherwise, g is mapped to 
s, which induces either a speciation, duplication, or transfer event, which incurs a cor-
responding cost. Thus, 

 where the computation of Spec , Loss , Dup , and Transfer are described below.
•	 If g is not a leaf but s is a leaf, then speciation and loss at g are not possible, so: 

•	 If g is a leaf but s is not a leaf, then speciation, duplication and transfer at g are not pos-
sible, so: 

The functions Spec(eg , es) , Loss(eg , es) , Dup(eg , es) , and Transfer(eg , es) are computed as 
follows:

(1)C(eg , es) =

{

0 if φ(g) = s
∞ otherwise

(2)
C(eg , es) =min{Spec(eg , es), Loss(eg , es)

Dup(eg , es), Transfer(eg , es)}

(3)C(eg , es) = min{Dup(eg , es), Transfer(eg , es)}

(4)C(eg , es) = Loss(eg , es)

(5)
Spec(eg , es) =min{C(eg1 , es1)+ C(eg2 , es2),

C(eg1 , es2)+ C(eg2 , es1)}

(6)Loss(eg , es) =L+min{C(eg , es1),C(eg , es2)}

(7)Dup(eg , es) =D+ C(eg1 , es)+ C(eg2 , es)
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Transfer(eg , es) = T+

The speciation term (5) considers both ways in which the children edges of eg can be 
placed onto the children edges of es in a speciation event. The loss term (6) considers 
both ways in which edge eg can continue, either on one child of es or the other. The dupli-
cation term (7) places both children edges of eg on es . In the transfer term (8), we con-
sider both ways of selecting the transferred child edge. The non-transferred child edge of 
eg remains on es , but the transferred child edge is placed on a species edge determined 
by Best-Transfer ; Best-Transfer(ej , es) denotes the minimum cost of a mapping of the 
subtree G(gj) assuming that ej is placed on a species edge that is neither ancestral nor 
descendant to es . In order to compute these values, the algorithm maintains another 
table called Best-Entry(eg , es) which stores the minimum of C(eg , ei) over all ei in the sub-
tree rooted at es . The algorithm is given in Algorithm 1.

Computing the synteny map

We use another dynamic programming algorithm to find the optimal cost for a syntenic 
region mapping for each subtree G(g). Let syn(g) denote the optimal cost for a syntenic 

(8)min

{

C(eg1 , es)+ Best-Transfer(eg2 , es),
C(eg2 , es)+ Best-Transfer(eg1 , es)
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region mapping of G(g). Let syn(g , ℓ) denote the optimal cost for a syntenic region mapping 
of G(g) such that g has the syntenic region ℓ . Then syn(g) = minℓ∈L syn(g , ℓ).

If g is a leaf, then Ŵ(g) = γ (g) (by rule 1 in the definition of Ŵ ). Thus,

If g is not a leaf, then (recalling that g1 and g2 denote the children of g):

This accounts for each child g1 and g2 either remaining in the same syntenic region as 
g or potentially changing to a new region and incurring a cost of R . The algorithm for 
computing syn(g , ℓ) is summarized in Algorithm 2.

Solving the DTLOR MPR problem

Let Origin(g) denote the cost of reconciling an origin subtree G(g) which, as noted ear-
lier, can be computed as Origin(g) = O+ C(g)+ syn(g) . To find a maximum parsimony 
reconciliation, we must therefore determine the optimal locations for origin events.

Let Null(g) be the optimal cost of reconciling G(g) such that g has the unknown syn-
tenic region ∗ . Since the given mapping γ of leaves to syntenic regions must be respected, 
g may not be assigned syntenic region ∗ if g is a leaf. Thus, Null(g) is calculated as:

The optimal cost for reconciling the entire gene tree G is given by:

The algorithm for computing Null(g) is summarized in Algorithm 3.

(9)syn(g , ℓ) =

{

0 if γ (g) = ℓ

∞ otherwise

(10)
syn(g , ℓ) =min{syn(g1, ℓ),R + syn(g1)}+

min{syn(g2, ℓ),R + syn(g2)}

(11)Null(g) =







∞ if g is a leaf
min{Null(g1), Origin(g1)} +
min{Null(g2), Origin(g2)} otherwise

(12)Opt = min{Null(root(G)), Origin(root(G))}



Page 10 of 22Liu et al. BMC Bioinformatics          (2021) 22:394 

Note that if we wish to reconstruct an optimal solution, the DP tables C , syn,Null can 
be annotated in the standard way, allowing the solutions to be reconstructed by trac-
ing through the table. We first trace through the Null table to find a set of origin events 
that produce an optimal solution. For any gene vertex not in any of the origin subtrees 
induced by these origin events, they are labeled with the unknown syntenic region ∗ . 
For each origin subtree, we trace through the syn table to get an optimal syntenic region 
mapping, and then we trace through the C table to get an optimal species mapping. 
Because of loss events, there can be multiple C(eg , es) entries that involve the same gene 
vertex in an optimal solution. The mapping of that gene vertex corresponds to the lowest 
such es.

The proofs of the following are given in the Appendix:

Lemma 1  Algorithm 1 correctly computes C(g) for every gene vertex g ∈ V (G).

Lemma 2  Algorithm 2 correctly computes syn(g) for every gene vertex g ∈ V (G).

Theorem  1  Algorithm  3 correctly computes the optimal solution to the DTLOR-MPR 
problem.

Time complexity

Computing each entry of the C table takes constant time, so the running time for com-
puting the C table is O(|G||S|). Computing the syn table takes O(|G||L|) time, and com-
puting the Origin and Null entries takes O(|G|) time. In total, the asymptotic running 
time of this algorithm is O(|G||S| + |G||L|).

Non‑binary gene trees

While it is generally possible to construct accurate species trees using a variety of 
methods, gene trees are susceptible to ambiguity due to the relatively little information 
available in their sequence data. Consequently, phylogenetic trees for genes often have 
non-binary vertices, also known as multifurcations or soft polytomies, which correspond 
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to an unknown ordering of the underlying sequence of divergences [15]. In this case, we 
wish to expand each multifurcation into a sequence of binary divergences, leading to a 
binary gene tree. Such an expansion is called a resolution or binarization of the non-
binary tree. The DTLOR MPR problem for non-binary trees seeks to find the optimal 
reconciliation of G and S over all possible resolutions of G.

Unfortunately, the number of resolutions of a non-binary tree can be exponential 
in the number of vertices in the tree. It is, therefore, impractical to explicitly consider 
every resolution. However, Kordi and Bansal [15] and Jacox et al. [16] demonstrated 
the existence of fixed-parameter polynomial-time algorithms for finding maximum 
parsimony reconciliations for non-binary trees in the DTL model. These algorithms 
operate in polynomial time assuming the maximum number of children of any non-
binary vertex is bounded by some constant k. More precisely, a fixed-parameter algo-
rithm in this context runs in time O(f(k)p(m, n)) where m and n denote the sizes of 
the gene and species trees, k is the maximum branching factor of any gene vertex, 
p(m,  n) is a polynomial in m and n, and f(k) is some function of k which may even 
be exponential in k. In particular, f(k) in this context is the number of distinct binary 
resolutions of a tree comprising a root and k children times the size of such a binary 
resolution, which can be shown to be f (k) = O(2k(k − 1)!) . For any fixed k, this value 
is a fixed constant. Jacox et al.  [16] offer an approach that results in an f(k) which is 
smaller but still potentially exponential in k. Importantly, a fixed-parameter polyno-
mial-time algorithm is much more efficient and practical than an exponential time 
algorithm such as the naive approach of enumerating all possible resolutions of a 
non-binary tree which would have running time O((2k(k − 1)!)n).

In this section, we describe a fixed-parameter polynomial time algorithm for the 
DTLOR MPR problem. Following the approach of Kordi and Bansal  [15], our algo-
rithm expands each individual non-binary vertex into every possible binary resolu-
tion but avoids enumerating all possible binary resolutions of the entire tree, thus 
resulting in a fixed-parameter polynomial-time algorithm rather than an exponential-
time algorithm. While our algorithm leverages the important ideas for resolving non-
binary vertices first proposed by Kordi and Bansal  [15], it requires a new algorithm 
due to the advent of O and R events.

Each binary resolution of a non-binary gene tree implies a different topology for 
the gene tree, which induces potentially different costs for both the species mapping 
and the syntenic region mapping. Note that one resolution may be most favorable for 
minimizing the cost of the species mapping while a different one may admit the least 
expensive syntenic region mapping (Fig. 1). Thus, while in binary gene trees the spe-
cies mapping and syntenic region mappings could be efficiently solved independently 
and then merged into an optimal solution for the DTLOR MPR problem, the situ-
ation is more complicated in the presence of non-binary gene trees. The algorithm 
presented here considers the species mapping and syntenic region mapping simulta-
neously as non-binary vertices are resolved one-by-one. Importantly, once the best 
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resolution is found for the subtree rooted at a given gene vertex, that value can be 
saved and used as the dynamic program processes the ancestors of g. For this reason, 
it is not necessary to consider complete resolutions of the gene tree but, instead, the 
non-binary vertices can be resolved one-at-a-time. This results in an algorithm that is 
additive, rather than multiplicative, in the number of resolutions of individual non-
binary vertices.

The following definitions and equations assume that the terminus vertex g of edge eg 
is either a leaf or has exactly two children. Later, we show how to apply these to non-
binary trees. Let C(eg , es, ℓ) denote the optimal cost of reconciling the subtree G(g) 
with S such that eg is placed on es and g has the syntenic region ℓ . Note that in contrast 
to C(eg , es) used in the previous section, C(eg , es, ℓ) also encodes the constraint that g 
has syntenic region ℓ and the total cost includes the cost of rearrangement events in 
the subtree G(g). We define Best-Entry(eg , es, ℓ) and Best-Transfer(eg , es, ℓ) analogously 
to Best-Entry(eg , es) and
Best-Transfer(eg , es) , respectively, in the previous section. We define 

C(eg , es, L) = minℓ∈L C(eg , es, ℓ) and

Fig. 1  An example showing that one resolution of a multifurcation can be optimal for species mapping 
while another may be optimal for syntenic region mapping. a A gene tree with six leaves labeled with their 
syntenic regions. b A species tree. The tip association is φ(gi) = si , 1 ≤ i ≤ 6 . c A binary resolution of the 
gene tree in which the optimal species mapping cost is necessarily greater than the origin cost O since this 
tree is not isomorphic to the species tree; the optimal number of rearrangements in this case is 1. d Another 
binary resolution of the gene tree in which the optimal species mapping cost is just the origin cost O since 
this tree is isomorphic to the species tree; the optimal number of rearrangements in this case is 2
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We compute C(eg , es, ℓ) in postorder. There are four cases:

•	 In the base case, if g and s are leaves, then: 

•	 If neither g nor s is a leaf, then: 

 where the computation of Spec , Loss , Dup , and Transfer are given below.
•	 If g is not a leaf but s is a leaf, then: 

•	 If g is a leaf but s is not a leaf, then: 

The functions Spec(eg , es, ℓ) , Loss(eg , es, ℓ) , Dup(eg , es, ℓ) , and Transfer(eg , es, ℓ) are 
computed as follows:
Spec(eg , es, ℓ) = min{

Dup(eg , es, ℓ) =

Transfer(eg , es, ℓ) = T+min{

Best-Transfer(eg , es, L) = min
ℓ∈L

Best-Transfer(eg , es, ℓ)

(13)C(eg , es, ℓ) =

{

0 if φ(g) = s and γ (g) = ℓ

∞ otherwise

(14)
C(eg , es, ℓ) =min{Spec(eg , es, ℓ), Loss(eg , es, ℓ),

Dup(eg , es, ℓ), Transfer(eg , es, ℓ)}

(15)C(eg , es, ℓ) = min{Dup(eg , es, ℓ), Transfer(eg , es, ℓ)}

(16)C(eg , es, ℓ) = Loss(eg , es, ℓ)

(17)

min{C(eg1 , es1 , ℓ),R + C(eg1 , es1 , L)}+

min{C(eg2 , es2 , ℓ),R + C(eg2 , es2 , L)},

min{C(eg1 , es2 , ℓ),R + C(eg1 , es2 , L)}+

min{C(eg2 , es1 , ℓ),R + C(eg2 , es1 , L)}}

(18)Loss(eg , es, ℓ) =L+min{C(eg , es1 , ℓ),C(eg , es2 , ℓ)}

(19)
D+min{C(eg1 , es, ℓ),R + C(eg1 , es, L)}

+min{C(eg2 , es, ℓ),R + C(eg2 , es, L)}

(20)

min{C(eg1 , es, ℓ),R + C(eg1 , es, L)}+

min{Best-Transfer(eg2 , es, ℓ),

R + Best-Transfer(eg2 , es, L)},

min{C(eg2 , es, ℓ),R + C(eg2 , es, L)}+

min{Best-Transfer(eg1 , es, ℓ),

R + Best-Transfer(eg1 , es, L)}}
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In order to compute Best-Transfer , we compute Best-Entry(eg , es, ℓ) as follows. If s is a 
leaf, then

Otherwise,

Best-Transfer(eg , es, ℓ) is then computed in preorder: First, for the handle edge eS

For all other edges, es with child edges es1 and es2
Best-Transfer(eg , es1 , ℓ) = min{

Best-Transfer(eg , es2 , ℓ) = min{

Now, we consider the case that each internal vertex g has an arbitrary number of chil-
dren denoted g1, . . . gk , k ≥ 2 . A binary resolution for g is defined to be a binary tree 
whose root is g and whose leaves are g1, g2, . . . , gk . Let BR(g) denote the set of all binary 
resolutions for g. Note that if g has two children, then it has just one binary resolution. 
Note also that a binary resolution for a vertex g is different from a binary resolution for 
the entire gene tree; the former only resolves g into a binary subtree whereas the latter 
resolves all non-binary vertices in G.

Let Null(g) be the optimal cost of reconciling G(g) with S such that g has the unknown 
syntenic region ∗ . Let Origin(g) be the optimal cost of reconciling G(g) with S such that 
g induces an origin event. Let H be a binary resolution for g and let GH (g) denote the 
subtree G(g), along with its handle, such that g and its children have been replaced by 
H. Note that if g has exactly two children, then GH (g) = G(g) . Let CH , Best-EntryH , 
Best-TransferH , OriginH , NullH correspond to C, Best-Entry , Best-Transfer , Origin , and 
Null (from the previous section) for GH (g).

Let eh be an edge in H. If eh is a leaf edge in H (and thus h is one of the children of 
g in G), then CH (eh, es, ℓ) = C(eh, es, ℓ) for all es, ℓ , OriginH (h) = Origin(h) , and 
NullH (h) = Null(h) . Thus, as the algorithm considers each gene edge eg in postorder, 
it then considers each binary resolution H of g and the induced subtree GH (g) . Within 
GH (g) it considers the edges of H in postorder to compute the optimal reconciliation 
for GH (g) . Finally, the optimal reconciliation over all binary resolutions H of g yields the 
optimal reconciliation for G(g). The algorithm is summarized in Algorithm  4. (Recall 
that h1 and h2 denote the two children of vertex h.)

(21)Best-Entry(eg , es, ℓ) = C(eg , es, ℓ).

(22)
Best-Entry(eg , es, ℓ) =min{C(eg , es, ℓ),

Best-Entry(eg , es1 , ℓ), Best-Entry(eg , es2 , ℓ)}

(23)Best-Transfer(eg , e
S , ℓ) = ∞

(24)Best-Transfer(eg , es, ℓ), Best-Entry(eg , es2 , ℓ)}

(25)Best-Transfer(eg , es, ℓ), Best-Entry(eg , es1 , ℓ)}
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Theorem  2  Algorithm  4 correctly computes the optimal solution to the DTLOR-MPR 
problem for non-binary gene trees.

The proof is summarized in the Appendix.

Time complexity

The algorithm first initializes Origin , Null , C entries for all the leaf edges of the gene 
tree, which takes O(|G|) time. Then, for each internal gene edge eg , the algorithm loops 
through all binary resolutions H at the gene vertex and computes CH , Best-EntryH , 
Best-TransferH , OriginH , and NullH , which takes O(|H ||S||L|) = O(k|S||L|) time. (Here 
|H| is the size of any binary resolution at a gene vertex, which is bounded by O(k) where 
k is the maximum degree of any vertex in the gene tree.) For each H, the algorithm 
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updates all entries of C(eg , es, ℓ) and C(eg , es, L) , which takes O(|L||S|) time. In total, the 
running time for computing all the DP entries for all gene edges and binary resolutions 
is O(f(k)k|G||S||L|) time, where f(k) upper bounds the number of binary resolutions at 
any gene vertex.

Results
The implementation of the DTLOR MPR Algorithm (Algorithm 3) was integrated into 
the xenoGI software package [2] which seeks to reconstruct the history of genome evo-
lution in clades of microbes. xenoGI takes as input a set of sequenced genomes, iden-
tifies gene families within this set, and groups those families by common origin. The 
previous version of xenoGI created gene families in a species-tree aware way, but did not 
make use of reconciliations. It was able to map gene families onto the species tree and 
identify their point of origin. However, it was not able reconstruct events in the subse-
quent evolution of the gene family (e.g. losses or rearrangements). The integration of the 
DTLOR MPR algorithm allows xenoGI to reconstruct these subsequent events, provid-
ing potentially important new insights into microbial evolution.

Within the new DTLOR version of xenoGI, we construct a gene tree for every family, 
then reconcile it with the species tree. The resulting reconciliation can be used to refine 
the family (e.g. split it into multiple parts based on the placement of origin events) and 
to provide detailed information about the family’s subsequent evolution.

Table  1 shows the running time for the DTLOR MPR Algorithm within xenoGI on 
all gene trees given inputs ranging from 4 to 15 bacterial genomes (species). Trees were 
constructed using FastTree  [17] and MUSCLE  [18] In each case, DTLOR was run on 
every binary gene tree with more than two leaves, with gene trees being rooted in all 
possible ways. These calculations were performed on a commodity server (50 AMD 
Opteron 6276 2.3 GHz processors, 503 GB RAM). The DTLOR costs were set at 
1, 1, 1, 2, 2, respectively.

In one of our enteric bacterial test data sets (Dataset B in Table  1), we examined 
DTLOR output for a known genomic island, the Acid Fitness Island (AFI) [19]. The cor-
responding species tree is shown in Fig. 2. This island is thought to have originated with 
an insertion of 19 genes on branch s2 (the branch leading to the internal vertex s2) via 
horizontal transfer from outside the clade. It then evolved in the clade and was inherited 
in the four descendant strains, with the notable loss of nine genes along the branch lead-
ing to E. coli K12 [2]. For nearly all the gene families in this island, DTLOR produced 
reconciliations that place the origin of the family on the branch leading to s2, and it cor-
rectly recognized loss events on the K12 branch where those occurred. In a few cases, 

Table 1  Runtimes for four different species trees

Species # Genomes # Gene Median Total
Tree Trees GT size Time (s)

A 4 3288 4 4.3

B 6 4032 6 10.6

C 11 4750 9 128.8

D 15 5510 9 563.8
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there were multiple most parsimonious reconciliations (MPRs), one of which agreed 
with the above scenario and was deemed correct, and the others did not agree. Finally 
there is one family (glutamate decarboxylase) with an evidently complicated post-inser-
tion evolution that is not fully understood. In this case, none of the MPRs using the 
selected event costs appear to be correct. (The evolution of this family likely involved 
gene conversion, but the MPR lacks transfer events using the event costs that we used in 
this experiment.)

Discussion
Several important problems remain to be studied. First, the impact of event costs is not 
well-understood. Just as in the case of the DTL model, different event costs can give rise 
to different reconciliations which, in turn, can lead to different conclusions. We believe 
that the costscape algorithm developed for the DTL model [20] may be extendible to the 
DTLOR model, which would provide insights into the impact of event costs to the solu-
tion space.

Second, it is often the case that there are many distinct MPRs. In fact, even in the DTL 
model, the number of MPRs can be exponential in the size of the two trees [21]. A subset 
of these MPRs may be of particular interest because they contain certain evolutionary 
events that are strongly believed to have occurred (e.g., a horizontal transfer on a par-
ticular branch of the species tree). It is desirable, therefore, to efficiently filter the set of 
MPRs to only include those that contain a specified set of events, count the number of 

E_coli_K12

E_coli_ATCC11775

E_albertii

S_bongori

E_coli_O157H7

C_rodentium

s4

s3

s2

s0

s1

Fig. 2  The species tree for Dataset B
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MPRs in the filtered set, compute support values on the constituent events in that space 
of MPRs, and select representative reconciliations from this set.

Finally, further systematic studies are needed to determine the full impact of the 
DTLOR MPR algorithm on the analyses that can now be performed with the enhanced 
xenoGI tool, including the case of non-binary gene trees.

Conclusions
In this paper, we have described the DTLOR model which extends the well-known DTL 
model to include origin and rearrangement events. This model is particularly applicable 
to the evolution of microbes where the species tree is, in many cases, not fully sampled. 
Therefore, reconciliations must be able to account for transfer events from outside the 
sampled tree. In addition, the DTLOR model allows for syntenic rearrangement, which 
is also prevalent in microbial gene families.

We have described efficient algorithms for maximum parsimony reconciliation in the 
DTLOR model. In binary gene trees, our algorithm solves the DTL reconciliation prob-
lem and the sytnenic region problems independently and then combines the results of 
those two algorithms, resulting in a particularly efficient solution. When the gene tree is 
non-binary, the two subproblems can no longer be decoupled in this way, and our algo-
rithm for this case considers all of the events simultaneously.

Appendix
This appendix contains proofs of results from the main paper.

Proof of Lemma 1

Proof
We prove that the algorithm correctly computes C(eg , ·) and Best-Transfer(eg , ·) by 
structural induction on G. For the base case for C(eg , ·) , consider a leaf edge eg . We 
perform structural induction on S. In the base case where es is a leaf edge, g must map 
to φ(g) , so C(eg , es) is computed correctly by equation  1. In the inductive step, con-
sider a non-leaf edge es . In this case, g must induce a loss event at s since g is a leaf, so 
C(eg , es) = Loss(eg , es) (by Eq. 4). By the inductive hypothesis, for each descendant branch 
es′ of es , C(eg , es′) is computed correctly, so Loss(eg , es) is computed correctly (by Eq.  6). 
This concludes the base case for C(eg , ·).

In the base case for Best-Transfer(eg , ·) , we consider a leaf edge eg . Since its correct-
ness relies on Best-Entry(eg , ·) , we first use structural induction on S to prove that 
Best-Entry(eg , ·) is correctly computed. In the base case, es is a leaf edge, so the only 
choice for eg to enter the subtree rooted at es is at es . Since C(eg , es) is correctly com-
puted, Best-Entry(eg , es) is also correctly computed on line 17. In the inductive step, 
consider a non-leaf edge es . By the inductive hypothesis, Best-Entry(eg , es′) is computed 
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correctly for each descendant edge es′ of es . The ways for eg to enter the subtree rooted at 
es are at es , the left subtree of es , or the right subtree of es , thus Best-Entry(eg , es) is com-
puted correctly on line 19.

Now we prove the base case for Best-Transfer(eg , ·) using structural induction on 
S from the handle edge eS . In the base case where es = eS , all edges in S is a descend-
ent of eS , so there is no valid species edge for the child edge of eg to transfer to. Thus 
Best-Transfer(eg , e

S) is computed correctly on line 22. In the inductive step, we con-
sider a non-root edge es1 , which has a sibling edge es2 . By the inductive hypoth-
esis Best-Transfer(eg , p(es1)) is computed correctly and by the inductive proof on 
Best-Entry(eg , ·) , Best-Entry(eg , es2) is computed correctly. Since the species edges that eg 
are allowed to transfer to from es1 not only include the same edges if eg were to transfer 
from p(es1) , but also edges in the subtree rooted at es2 , and the optimal cost of placing 
eg inside the subtree rooted at es2 is given by Best-Entry(eg , es2) , Best-Transfer(eg , es) is 
computed correctly. This concludes the base case for Best-Transfer(eg , ·).

To conclude the proof of correctness of C(eg , ·) , we consider a non-leaf edge eg . We use 
structural induction on S. In the base case, es is a leaf edge; the only two possibilities 
are eg duplicates on es or transfers on es . The correctness of Dup(eg , es) is guaranteed 
by the correctness of C(eg ′ , ·) , while the correctness of Transfer(eg , es) is guaranteed 
by the correctness of both C(eg ′ , ·) and Best-Transfer(eg ′ , ·) for each descendant edge 
eg ′ of eg . In the inductive step, es is not a leaf edge, then C(eg , es) is, by definition, the 
minimum of Spec(eg , es) , Dup(eg , es) , Transfer(eg , es) , and Loss(eg , es) (see Eq. 2). Again, 
Spec(eg , es), Dup(eg , es) and

Transfer(eg , es) are computed correctly by the correctness of C(eg ′ , ·) and 
Best-Transfer(eg ′ , ·) . The correctness of Loss(eg , es) is guaranteed by the inductive 
hypothesis on the correctness of C(eg , es′) for every descendant edge es′ of es . This con-
cludes the inductive step for C(eg , es) . The inductive step for Best-Transfer(eg , ·) is analo-
gous to the proof for the base case.

Finally, C(g) is the optimal cost for a species mapping of G(g) such that g can be mapped 
to any species in S. By definition, C(g) = mins C(g , s) where C(g , s) denotes the optimal 
cost for a species mapping of G(g) in which g is mapped to s.

Consider mines C(eg , es) . Since C(eg , es) is the optimal cost of a species mapping where 
eg is placed on es , this implies a mapping of g to s or one of its descendants. If g is 
mapped to s, then C(eg , es) = C(g , s) . If C(eg , es) involves a mapping of g to s′ which is 
a descendant of s, then it induces loss events. Because loss events have a non-negative 
cost, C(eg , e′s) ≤ C(eg , es) , and thus mines C(eg , es) only includes those entries of C(eg , es) 
where g is mapped to s. Thus, C(g) = mins C(g , s) = mines C(eg , es).

�
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Proof of Lemma 2

Proof
We prove the correctness of syn(g , ℓ) and syn(g) by induction on g. In the base case, g is a 
leaf, then the syntenic region of g must be γ (g) , so both syn(g , ℓ) and syn(g) are computed 
correctly on line 5. In the inductive step, consider an internal vertex g. By the inductive 
hypothesis, syn(gi, ℓ′) and syn(gi) is computed correctly for gi ∈ {g1, g2} and ℓ′ ∈ L . The 
syntenic regions for the left and the right child are chosen independently, and the total 
cost for syn(g , ℓ) is the sum of the costs for choosing syntenic regions for the left subtree and 
the right subtree of g. If gi is a child of g with syntenic region ℓ , then no R event is induced 
and the cost is syn(gi, ℓ) . If an R event is induced by a change in syntenic region, then it 
is optimal to choose a syntenic region that minimizes the total cost of choosing syntenic 
regions for G(gi) . Thus, the cost for a syntenic region mapping of G(gi) with an R event is 
syn(gi)+ R . The cost for a syntenic region mapping of G(gi) as a whole is the minimum of 
these two possibilities, and this is the same for both children of g. Thus, syn(g , ℓ) is com-
puted correctly on line 7. Then, by definition, syn(g) is also computed correctly by taking 
the minimum of syn(g , ℓ) over all ℓ ∈ L . �

Proof of Theorem 1

Proof
First we prove the correctness of Origin(g) . Since a species mapping for an origin subtree 
G(g) is independent of a syntenic region mapping of the same subtree, the optimal cost of 
a reconciliation of G(g) is the optimal cost C(g) for a species mapping and the optimal cost 
syn(g) for a syntenic region mapping and the cost of the origin event at g. Thus Origin(g) is 
computed correctly on line 2.

Now we prove Null(g) is computed correctly by an induction on g. In the base case, g is 
a leaf, so g must have a known syntenic region γ (g) . Thus Null(g) = ∞ as computed on 
line 4. In the inductive case, consider an internal vertex g. By the inductive hypothesis, 
Null(gi) is computed correctly for any gi ∈ {g1, g2} . There are two cases we need to con-
sider for each child since it can either induce an origin event or remain unassigned to 
any real syntenic region. Since we already know Origin(gi) and Null(gi) are computed 
correctly, taking the minimum over the two cases yield the optimal cost for assigning 
each child and the sum of the costs for both children is the optimal cost for assigning g 
to the unknown syntenic region ∗ . Thus Null(g) is computed correctly on line 6.

Since the root of the gene tree can either be mapped to the unknown syntenic region or 
some actual syntenic region, we minimize over the two cases and get the optimal cost for 
reconciling the entire gene tree. Using standard DP traceback techniques, we can also 
obtain the mappings and events involved in an optimal solution. �
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Proof of Theorem 2

The correctness of Algorithm 4 is a direct extension of the proof of correctness of Algo-
rithm  1, now using triple induction to account for the third argument, the syntenic 
region, in the DP table. The correctness for non-binary vertices then extends analogously 
to the proof in [15] for the DTL model.

Abbreviations
DTLOR: Duplication–transfer–loss–origin–rearrangement; MPR: Maximum parsimony reconciliation.
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