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Abstract 

Background: Cancer genomic studies often include data collected from several 
omics platforms. Each omics data source contributes to the understanding of the 
underlying biological process via source specific (“individual”) patterns of variability. At 
the same time, statistical associations and potential interactions among the different 
data sources can reveal signals from common biological processes that might not be 
identified by single source analyses. These common patterns of variability are referred 
to as “shared” or “joint”. In this work, we show how the use of joint and individual 
components can lead to better predictive models, and to a deeper understanding of 
the biological process at hand. We identify joint and individual contributions of DNA 
methylation, miRNA and mRNA expression collected from blood samples in a lung 
cancer case–control study nested within the Norwegian Women and Cancer (NOWAC) 
cohort study, and we use such components to build prediction models for case–con-
trol and metastatic status. To assess the quality of predictions, we compare models 
based on simultaneous, integrative analysis of multi-source omics data to a standard 
non-integrative analysis of each single omics dataset, and to penalized regression mod-
els. Additionally, we apply the proposed approach to a breast cancer dataset from The 
Cancer Genome Atlas.

Results: Our results show how an integrative analysis that preserves both compo-
nents of variation is more appropriate than standard multi-omics analyses that are 
not based on such a distinction. Both joint and individual components are shown to 
contribute to a better quality of model predictions, and facilitate the interpretation of 
the underlying biological processes in lung cancer development.

Conclusions: In the presence of multiple omics data sources, we recommend the 
use of data integration techniques that preserve the joint and individual components 
across the omics sources. We show how the inclusion of such components increases 
the quality of model predictions of clinical outcomes.
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Background
Cancer studies benefit from the availability of genomic data, also known as omics. The 
dimensionality of omics data is extremely high, suggesting the application of dimen-
sion reduction techniques. Additionally, omics are available across multiple sources (or 
‘blocks’) of data, collected on the same organisms or tissues, and measured on differ-
ent platforms. A comprehensive understanding of the key underlying biological process 
relies on an integrative approach able to combine the information arising from such 
multi-source data. To this end, a large number of statistical methods for the simultane-
ous analysis of multi-omics data have recently been proposed. Multiple reviews of such 
methods are available, for example in [1–3].

Data integration techniques are often used to identify ‘joint’ (also referred to as ‘com-
mon’ or ‘shared’) contributions of the data sources to the observed variation, and their 
simultaneous effect on the biological process under study. Such patterns of variation 
arise from the interaction among different omics sources, and may not be detected by a 
separate analysis of each single source. However, the different data sources do not only 
contain the joint information, but also independent contributions. The separate analy-
sis of each data source has so far been the most common approach used in the omics 
context, and knowledge about the individual contributions of each omics source is rel-
evant to the understanding of the biological processes of interest. As a consequence, 
considering only the joint patterns might also prove insufficient, as it overlooks the het-
erogeneity among single data sources, and their individual signals from the underlying 
relevant biological process. An example of this can be seen in genomic studies collect-
ing DNA methylation and gene expression data. It is known that methylation regulates 
gene expression and that this can cause a non-negligible joint structure across the differ-
ent data sources. For example, they have been shown to contribute together and jointly 
relate to the occurrence and characteristics of lung cancer [4, 5]. On the other hand, 
methylation and gene expression correlate to these clinical outcomes also through sig-
nals that are specific to each omics data source and biologically relevant independently 
from each other [6–9]. Therefore, dimension reduction methods that take both joint and 
individual patterns into account are necessary.

Several methods that have recently been proposed to address this problem are based 
on matrix factorization. In this framework, each data block is decomposed into three 
matrices modeling different types of variation, specifically joint variation across the 
blocks, individual variation for each data block, and residual variation. One such method 
is JIVE. JIVE stands for Joint and Individual Variance Explained, it was formulated by 
[10] and, also thanks to its implementation available in R [11], has been used in vari-
ous medical applications, including clustering of cancer genomic data [12], multi-source 
omics data [13, 14] and imaging and behavioral data [15]. Although JIVE successfully 
maintains joint and individual structures, it uses an iterative algorithm and is computa-
tionally very intensive. In [16], Angle Based JIVE (aJIVE) was formulated to improve this 
aspect. It computes the matrix decomposition by using perturbations of the row spaces 
to identify the joint and individual variation, and results in a much faster implemen-
tation than the original JIVE. Besides resulting in a faster implementation of the algo-
rithm, aJIVE provides a more intuitive interpretation of the decomposition, especially in 
the case of high correlations among individual components [16].
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Other dimension reduction methods have been extended to the case of multi-source 
data, as for example canonical correlation analysis (CCA) [17] or partial least squares 
(PLS) analysis, which has been further generalized to O2PLS [18]. A similar method that 
allows for the presence of multiple data sources is the multiple CCA [19], but it mainly 
focuses on the common variation among the components, and seems to neglect the indi-
vidual contributions of the data sources. An alternative method based on factor analysis 
has been proposed in [20], and provides a low-dimensional representation of multi-
source omics data, although it can fail to detect individual components in the presence 
of heterogeneous dimensionalities of the single data sources. Other similar approaches 
to identify both kinds of variation have been proposed, as for example DISCO [21] and 
OnPLS [22]. An illustration of these methods and a comparison with JIVE was provided 
in [23].

Additionally, Principal Component Analysis (PCA) based techniques have been 
expanded to the case of multi-source data. For example, consensus PCA [24] consists 
of PCA on the normalized concatenated data, and distributed PCA [25] performs local 
PCA on the individual data sources and then uses these principal components to esti-
mate a global covariance structure. Integrated PCA (iPCA) is a model based generaliza-
tion of PCA that decomposes variance into joint and individual variation [26].

In this work, we focus on prediction models for lung cancer development using both 
joint and individual components arising from different sources of omics data. We show 
how the inclusion of both joint and individual components in predictive models leads 
to a better quality of predictions. The combination of joint and individual components 
can also facilitate the biological interpretation of the underlying process, although this 
might still fail as the dimension reduction itself bears the risk of obscuring some relevant 
information.

We use aJIVE to formulate integrative prediction models in a real data set on lung 
cancer, identifying individual and joint components across three sources of omics data. 
We chose to use aJIVE because it inherits a good subspace recovery in comparison to 
other methods [23], as well as the robustness to model misspecification from JIVE, but it 
also solves the issue of correlated individual subspaces [16], and provides a much faster 
implementation. Furthermore, [27] show that aJIVE performs best in terms of consist-
ency and lack of overfitting when compared to other integrative methods. We use the 
aJIVE joint and individual components to build prediction models for lung cancer devel-
opment. We evaluate the performance of the proposed models in terms of prediction 
quality, and we compare them to non-integrative benchmark methods, as well as stand-
ard regularized variable selection techniques. Additionally, we show how disentangling 
joint and individual sources of variation can lead to the identification of biological mech-
anisms, which would not be highlighted by source-specific analyses.

The data we use stem from a lung cancer case–control study nested within the Nor-
wegian Women and Cancer (NOWAC) cohort study [28]. The associations among three 
levels of omics data analyzed in blood samples, specifically DNA methylation, mRNA 
and miRNA expression, are investigated and their joint and individual contributions 
are used to predict future cancer cases, and for the characterization of future cancers 
as metastatic or non-metastatic at diagnosis. We show that both types of components 
contain information that reveal properties about biological processes and that using 
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joint and individual components results in good model predictions for case–control 
and metastatic status. We assess the quality of prediction by comparing models based 
on both joint and individual components to models uniquely based on clinical, patient-
level covariates, and most importantly non-integrative models, i. e. based on independ-
ent analyses of data from each source.

To further evaluate this approach, we provide an application to a publicly available 
dataset on breast cancer from The Cancer Genome Atlas (TCGA).

Methods
Data integration setup

Throughout the manuscript, we will denote each data block with Xk , where k = 1, . . . ,K  
and K is the number of data sources used in the study. Each block is a matrix with n 
columns, where n is the number of study subjects. The kth matrix Xk has pk rows, cor-
responding to the variables in data source k. The overall dimensionality is denoted as 
p = p1 + · · · + pK  . The low-rank decomposition we want to obtain is:

where Ik is the individual component for data block k, ǫk is its residual component and

is the joint structure matrix, where each J k is the submatrix of the joint structure J  asso-
ciated with Xk.

Angle based JIVE

Angle based Joint and Individual Variation Explained (aJIVE) is a variant of the JIVE 
method, based on perturbation of row subspaces. JIVE aims to minimize the squared 
residual components ǫ1,…, ǫK  , using an iterative algorithm that alternatively estimates 
the joint and individual components by singular value decomposition (SVD). AJIVE 
builds on this method but constructs the algorithm in a more efficient and computation-
ally feasible way. The aJIVE algorithm is structured in three phases: First the low-rank 
approximation of each data block Xk is obtained by SVD. Secondly, the joint structure 
between the obtained low-rank approximations is extracted by computing the SVD of 
the stacked row basis matrices. This second phase of the algorithm is based on basic 
principles of Principal Angle Analysis. Finally, the joint components J k are obtained by 
projection of each data block onto the joint basis, while the individual components Ik 
are calculated by orthonormal basis subtraction.

The first step is based on the choice of the initial ranks for each data block, which are 
used as a threshold value in the first SVD decomposition of the data blocks. This choice 
is rather subjective and involves taking into account some bias variance trade-off in the 
joint signals representation. Although [16] provide guidelines on how to determine the 
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initial ranks, the recommended choice is based on the observation of scree plots, which 
remains highly subjective. As an alternative, [29] present a choice of initial ranks based 
on the profile likelihood of the single data blocks.

From the aJIVE decomposition, it is possible to obtain the full matrix representation 
of the original features, as well as the block specific decompositions of each data source 
and the common normalized scores. The aJIVE implementation is available in Matlab 
[30] and R [31].

Application to the NOWAC data

The dataset

The data used in the following analyses stems from blood samples in a lung cancer case–
control study nested within the Norwegian Women and Cancer Study (NOWAC) [28]. 
All participating subjects are women who did not have a cancer diagnosis at time of 
blood sampling (2003–2006). The time from blood sampling to cancer diagnosis ranges 
from 0.3 to 7.9 years, with a median time equal to 4.2 years. The study was designed as 
a nested case–control study, starting from 125 subjects who developed lung cancer in 
the NOWAC cohort. One control was randomly chosen for each case from the risk set 
at the time of cancer diagnosis, following an incidence density sampling scheme. Cases 
and controls were matched on time since blood sampling and birth year. All participants 
gave written informed consent and the study was approved by the Regional Committee 
for Medical and Health Research Ethics and the Norwegian Data Inspectorate. Three 
levels of omics data are available for n = 230 individuals (115 case–control pairs), with 
numbers of variables respectively equal to p1 = 485, 512 CpG methylation, p2 = 11, 610 
mRNA expression and p3 = 198 miRNA expression. Information about individual 
covariates, including age, body mass index (BMI) and smoking habits was also collected 
for all participants. Outcomes of interest are the classification of case versus control, as 
well as the characterization of cancers as metastatic or non-metastatic at diagnosis.

Filtering and preprocessing

Laboratory processing and microarray analyses for DNA methylation and mRNA 
expression are described in [5]. For miRNA, laboratory processing included miRNA iso-
lation and purification from 100 µ l plasma using the Qiagen miRNeasy Serum/Plasma 
Kit. Small RNA sequencing libraries were prepared using the NEXTflex small RNA-seq 
kit v3 (Bioo Scientific, Austin, TX, USA) and sequencing of fragments was performed 
using a Illumina HiSeq4000 flowcell, according to the manufacturer’s instructions (Illu-
mina, Inc., San Diego, CA, USA), at 50 bp SE, resulting in approximately 7–9 M reads 
per sample.

Preprocessing and quality control of methylation data accounted for missing values 
and intensities below detection thresholds, and included background subtraction and 
dye bias correction [32]. For mRNA data, the probe values were background-corrected 
and probes reported to have poor quality from Illumina or detected in less than 95% 
of samples were filtered out [5]. The filtering of miRNA expressions was based on the 
counts per million, that is the total read counts of a miRNA divided by the total read 
counts of the sample and multiplied by 106 , and signals having less than one count per 
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million were excluded. Additionally, signals with null reads on more than 5 patients were 
excluded.

Because of the high computational requirements, we reduced the number of mRNA 
expressions to p2 = 5000 , by selecting the variables with higher variance. We then 
reduced the number of methylation sites by selecting the CpGs located on the same 
genes as the filtered mRNAs, as well as the 10,000 CpGs with highest variance. Among 
these, we excluded CpGs with more than 40% missing data, as well as CpGs with extreme 
M-values ( |M| > 3 , see [33, 34]). This resulted in p1 = 26, 706 . All p3 = 198 available 
miRNAs were analysed. Other possible filtering criteria have been considered and are 
described in the discussion of the paper. We used log2 transformed expressions for both 
mRNA and miRNA, and M-values for methylation [35]. We accounted for missing val-
ues in the data by using SVDmiss, as suggested in [10]. The data was mean-centered. 
Thanks to the insensitivity of aJIVE to scale heterogeneity, scaling was not performed in 
the data normalization stage.

aJIVE

We performed aJIVE on the three levels of omics data. The initial ranks were selected 
by maximizing the profile likelihood [29], but different choices of initial ranks were also 
explored and results did not change substantially.

Joint and individual components were used in prediction models. The outcomes of 
interest were the occurrence of lung cancer (yes/no) and metastasis (yes/no).

We fitted logistic models on each outcome using joint and individual components as 
explanatory variables, in addition to age, BMI and smoking. These models were com-
pared in terms of AUC with the respective models with only age, BMI and smoking as 
covariates. To assess the performance of the models, we measured the average AUC in 
a 10-fold cross-validation. We compared these with a non-integrative analysis, obtained 
by performing PCA separately on each single data source. We fitted a model on the first 
principal components (PCs) of each data source, and on the same clinical covariates. We 
chose to include five PCs for each data source, based on the variance explained by the 
first PCs and on the analysis of screeplots. We included the same numbers of individual 
components in the integrative model described above.

To provide a comparison with a standard supervised prediction method, we ran a lasso 
procedure that selects signals from all three omics layers and used it to predict the two 
outcomes of interest. We used 10-fold cross-validation on 2/3 of the data points to select 
the optimal penalty parameter and we used the fitted lasso model to predict case–con-
trol status and metastasis. We ensured the inclusion of the clinical covariates in the lasso 
models by fixing the corresponding penalty parameters to 0 for age, BMI and smoking 
status. We compared the quality of model prediction in terms of average AUC across 50 
repeats of this procedure.

In addition, we used a random forest of 1000 trees to predict case versus control on 
the basis of joint and individual components, and patient covariates as above (age, BMI, 
smoking). We extracted the AUCs and the out of the bag (OOB) classification errors 
from the random forest, and we ranked all the variables in importance on the basis of 
their mean decrease in gini index [36].
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Application to the TCGA data

To assess the predictive performance also in another dataset, we illustrate an applica-
tion to a subset of data generated by The Cancer Genome Atlas (TCGA Research Net-
work, https:// www. cancer. gov/ tcga), and used in the mixOmics project [37].

Records are included for 379 patients, and consist of 2000 CpGs, 2000 mRNA and 
184  miRNA expression. We used methyaltion, mRNA, and miRNA expression data 
to explore shared and data-specific components of variation via aJIVE. The joint and 
individual contributions were used to predict tumor subtypes, specifically a four level 
classification into Basal, Her2, LumA and LumB breast cancer. The original clas-
sification of these subtypes is based on levels of mRNA expression [38]. We built a 
prediction model based on joint and individual components, and compared it to a 
non-integrative model, i. e. based on independent analyses of data from each source.

Results
Application to the NOWAC data

aJIVE

Using initial ranks obtained with the profile likelihood method resulted in a joint rank 
equal to 5, and individual ranks respectively equal to 67, 10 and 9. Figure 1 reports 
the proportions of variance explained that are due to the joint, individual and residual 
components.

Estimated proportions of variance explained with different choices of initial ranks 
are stable and reported in Additional file 2.

Prediction models

Figure  2 reports the in-sample ROC curves relative to the logistic models fitted on 
the joint and individual components estimated by aJIVE. The model with only patient 
covariates (age, BMI and smoking) as explanatory variables and the full, integrative 
model are reported. The integrative model is fitted using patient covariates, aJIVE 
joint components and first five aJIVE individual components for each data source 
as explanatory variables. These are compared to non-integrative models, using the 
first five individual PCs obtained for each dataset separately, in addition to the same 
covariates. In the prediction of both outcomes, the integrative model shows the high-
est AUCs, showing how the combination of both kinds of components results in bet-
ter model predictions. In particular, the integrative models perform better than a 
non-integrative analysis based on source specific PCs. Additionally, the omics data 
contribute substantially to the predictions, and result in considerably better predic-
tion quality than patient covariates alone.

A 10-fold cross-validation was used to validate the in-sample results for each out-
come, and shows a considerable improvement for the aJIVE integrative model, when 
compared to non-integrative analysis. In the ROC studies from cross-validation, the 
integrative models based on the aJIVE components improve the prediction for both 
case–control and metastasis status. The mean AUCs for the integrative models are 
0.69 and 0.70, for case–control and metastasis status respectively. The mean AUC 
of the non-integrative model, based on the single data source PCAs and the clinical 

https://www.cancer.gov/tcga
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covariates, is respectively 0.65 and 0.63. In the prediction of both outcomes, the aJIVE 
integrative models perform better than the non-integrative analysis.

For comparison, as mentioned above, we also ran lasso models on the two outcomes. 
The mean AUCs obtained by the lasso procedure are 0.69 and 0.61 for case–control sta-
tus and metastastasis, respectively.

Table 1 reports accuracy and OOB classification error for the random forests, as well 
as the mean AUCs. For case–control status, the aJIVE based model improves the qual-
ity of predictions, both in terms of accuracy and AUC, compared to the non-integrative 
model. The difference from the logistic models with cross-validation can be due to the 
instability of the random forest, and to the limited sample size. We do not report the 
random forests results for metastasis because they are highly unstable and the accuracy 
is very low, most likely due to the even more limited sample size, that is only 125 (only 
cases) for the metastasis classification.

Figure 3 shows the first ten variables ranked by variable importance in the integrative 
model for case–control status. One joint component and three individual components 
appear among the first five variables when ranked for variable importance in the random 
forest prediction.

Biological interpretation

To investigate the biological processes indicated in the most influential components, we 
extracted the top genetic features from any omics level that contributed to the first ten 
variables identified by the random forests. We investigated the omics signals with the 
highest contribution in terms of loadings estimated by aJIVE, for each component iden-
tified by the random forests. Among the mRNAs with the highest contribution, 13 have 
earlier been identified in conditional logistic regression analyses of metastatic cases sam-
pled within 3 years of their diagnosis as compared to their controls [39]. Additionally, 11 
genes overlapped with the top genes identified in the analyses of all case–control pairs 
independent of metastatic status. We used the Bioconductor package “clusterProfiler” 
[40] to conduct functional enrichment analyses of GO(BP) categories for these genes, 
and identified the following ontology categories: inflammatory response, peptide secre-
tion, innate immune response, positive regulation of DNA-binding transcription factor 
activity, protein secretion, establishment of protein localization to extracellular region. 
Inflammatory response was identified in [5] in the non-smoking related integrative anal-
ysis of DNA methylation and gene expression. Among the miRNAs with highest contri-
butions, 80 are significantly associated with the classification of cases versus controls, 
respectively 36 from the first individual component and 44 from the third individual 
component. Using the Bioconductor package multiMiR and validated databases therein 

Table 1 Random forest diagnostics for prediction models of case–control status in the NOWAC 
dataset

Model Accuracy OOB classification error 
(%)

Mean AUC 

Joint and individual (with covs) 0.71 45.63 0.70

Patient covariates 0.62 39.32 0.68

Non-integrative analysis (with covs) 0.62 38.83 0.63
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[41], 55,267 miRNA-gene target interactions were identified for the 36 miRNAs with the 
highest contribution to the first individual miRNA component. Among the known gene 
targets for these miRNAs, there were ten (S100A12, MX2, EIF2AK2, TNFSF13B, FFAR2, 
IL1RN, ANXA3, CCR1, TNFAIP6, TLR5) that were among the mRNA with the highest 
contributions to the aJIVE mRNA component (“mRNAInd3”). Correspondingly, 32,707 
miRNA-target interactions were identified for the 44 miRNAs in the third individual 
miRNA component. Among these, three (IL1RN, FFAR2, EIF2AK2) were among the 
mRNA with the highest contribution to the aJIVE mRNA component (“mRNAInd3”).

Application to the TCGA data

aJIVE

Using initial ranks obtained with the profile likelihood method resulted in a joint rank 
equal to 4, and individual ranks equal to 2, 6 and 11, respectively for methylation, 
mRNA and miRNA. Figure 4 reports the proportions of variance explained that are 
due to the joint, individual and residual components. The joint components explain 
about 30% of the variation in the datasets, and the individual contributions are lim-
ited to about 25%, leaving a high contribution to the residual components.

Prediction models

An integrative model for prediction of tumor subtype is fitted using the aJIVE joint 
components and the first five aJIVE individual components for each data source as 
explanatory variables. This is compared to the non-integrative model, using the first 

Fig. 1 Joint and individual proportions of variance explained in the NOWAC dataset. The individual 
component is prevalent for all three datasets, especially for methylation. The joint component is relevant for 
mRNA and miRNA
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five individual PCs obtained for each data source separately. Multinomial logistic 
models were used, with four classes for the response variable.

The results were validated by 10-fold cross-validation. Multiclass AUCs for in-sample 
classification of tumor type, as well as mean AUCs from cross-validation, are reported in 
Table 2 for each model. The integrative model including both individual and joint com-
ponents shows the best quality of prediction.

In addition, we used random forest of 1000 trees to predict tumor subtype on the basis 
of joint and individual components, and again compared them to non-integrative mod-
els. Table  3 reports accuracy and OOB classification error for the random forests, as 
well as the mean AUCs. The integrative model performs better than the non-integrative 

Fig. 2 ROC curves from logistic prediction models. a Reports the ROC curves and their AUCs for the 
prediction models on case versus control, b reports the ROC curves and their AUCs for the prediction models 
on metastasis status. The integrative models are fitted on the joint and individual components extracted from 
aJIVE, while the non-integrative models are fitted on the first principal components obtained separately for 
each omics source
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Fig. 3 Variable importance plot from random forest on case versus control in the NOWAC dataset. 
First ten variables ranked by variable importance (in terms of mean Gini index) in the full integrative model 
for case versus control in the NOWAC dataset. Jointi denotes the i-th joint component estimates by aJIVE, 
while MetIndi , mRNAIndi and miRNAIndi are the i-th individual components estimated by aJIVE for 
methylation, mRNA and miRNA respectively

Fig. 4 Joint and individual proportions of variance explained in the TCGA dataset. Both joint and 
individual components are relevant for the three datasets

Table 2 In-sample and cross validated AUCs for prediction of tumor subtype in the TCGA dataset

Model In-sample AUC mean 
AUC from 
CV

Full integrative aJIVE 0.924 0.883

Non-integrative 0.887 0.867
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model in terms of AUC. In terms of accuracy and classification error, the integrative 
model and the non-integrative model are equivalent. Figure 5 shows the first ten vari-
ables ranked by variable importance in the full integrative model. The three top variables 
are joint components, and their importance measured in mean gini index is substantially 
higher than the importance of the other variables.

Discussion
Prediction results

We use data integration to identify both joint and individual components in a lung 
cancer study, where multiple omics data sources are available. While the individual 
contribution of each data source is known to be relevant and has been widely stud-
ied in this context, different data sources are also expected to jointly associate with 
the clinical outcomes. We show how including both joint and individual components 
in prediction models improves the quality of prediction of the occurrence of lung 
cancer, as well as its classification into metastatic or non-metastatic cancer. Models 
that include both types of components lead to better predictions when compared to 

Fig. 5 Variable importance plot from random forest on cancer subtype in the TCGA dataset. First ten 
variables ranked by variable importance (in terms of mean Gini index) in the full integrative model for cancer 
subtype in the TCGA dataset. Jointi denotes the i-th joint component estimates by aJIVE, while MetIndi , 
mRNAIndi and miRNAIndi are the i-th individual components estimated by aJIVE for methylation, mRNA 
and miRNA respectively

Table 3 Random forest diagnostics for prediction models of cancer subtype in the TCGA dataset

Model Accuracy OOB classification error (%) AUC 

Full integrative aJIVE 0.81 19 0.91

Non-integrative 0.81 19 0.78
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non-integrative models, or to models based on clinical covariates. This approach was 
also used on data from a breast cancer study available from The Cancer Genome Atlas 
(TCGA Research Network) and the results are similar.

Prediction models are validated in a 10-fold cross-validation framework, and such 
results are further confirmed by random forests. From the cross-validation study, we 
see that for case–control status, the integrative analysis provides better prediction 
than non-integrative analysis.

As an additional comparison, we use supervised variable selection and fit a lasso 
model on the three omics layers. Although we would expect that a supervised 
method, by using information from the response variable in fitting the model itself, 
results in better predictions, the aJIVE models used here perform similarly (for case 
vs. control), and substantially better (for metastasis).

A possible explanation of generally low AUCs is that prediction models for the 
NOWAC dataset might also be affected by the time between blood sampling and can-
cer diagnosis, and we expect the quality of predictions to be higher in subjects with 
a shorter time to diagnosis. We stratified cases into two subgroups based on time 
to diagnosis (higher vs. lower than the median time) and obtained higher in-sample 
AUCs for the classification of case versus control in subjects with a closer time to 
diagnosis. For the classification of metastasis, the sample size in the two time to diag-
nosis classes is not enough to draw conclusions. In the application to the NOWAC 
dataset, it is interesting to observe that one genomic component identified from 
aJIVE, specifically one individual component from the methylation data, ranks above 
smoking in importance for case–control classification (Fig. 3), smoking being known 
to be the one, major risk factor for lung cancer.

In the TCGA example, the high prediction quality of the non-integrative model 
is likely to arise from the definition of subtypes, which is based on levels of mRNA 
expression. In the non-integrative models, the mRNA principal components highly 
contribute to the prediction quality (mean AUC from 10-fold CV =  0.875 for non-
integrative models based on mRNA components only versus mean AUC from 10-fold 
CV = 0.867 for the non-integrative models based on all three sources). Although we 
use multiclass ROC curves in this example, a dichotomous classification of the tumor 
classes could provide a deeper understanding of the models and easier comparison 
with the logistic case.

While this work provides preliminary evidence of the importance of an integrative 
analysis of the omics sources, a more thorough investigation of the joint and indi-
vidual components could help identifying relevant biological patterns for future 
research. An example can be given by the underlying biological processes involving 
smoking and lung cancer: the omics signals that are dominating the components 
could be important risk factors for lung cancer, in addition to being informative about 
present or past smoking, and their interaction could shed light on the relevant under-
lying biological processes. Although a functional interpretation of such processes and 
of their link to the clinical outcomes is not straightforward, an investigation of the 
aJIVE components could provide further information that would not be identified by 
a non-integrative analysis of the separate omics sources.
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Variable filtering

The chosen approach for variable filtering is based on variance for mRNA, and on 
genomic location and variance for methylation. Specifically, the top 5000 most variable 
mRNAs are selected and CpGs are then selected based on their location on genes, by 
including CpGs located on the same genes as filtered mRNAs. The top 10,000 most vari-
able CpGs are included in addition to these. We expect that choosing signals that are on 
the same gene locations, and therefore naturally associated, will result in very relevant 
joint contributions and possibly obscure the individual components associated with 
methylation. The inclusion of the most variable CpGs, independently from their gene 
locations, solves this issue. Varying the proportions of CpGs that are selected based on 
their variance and on their gene location can give rise to different joint and individual 
contributions, and this aspect needs to be fully considered in the interpretation of the 
results. In the supplementary material (Additional file 2), we report the aJIVE results for 
two additional filtering set ups, specifically: a) by selecting CpGs uniquely on the basis 
of their gene location, and b) by including only the top most variable CpGs regardless 
of their location. The filtering of mRNA is based on the variance of the log-transformed 
signals. Although this procedure might generally result in selecting signals with the low-
est intensities, this did not seem to have any impact on the results in our example. Dif-
ferent choices of filtering criteria for the mRNAs can be the interquantile range (IQR), or 
the association with the clinical outcome of interest, estimated by an appropriate regres-
sion model, and would yield different results of the aJIVE decomposition. Finally, also 
the filtering of the miRNAs needs to be taken into account, where less restrictive crite-
ria might result in the estimation of different joint and individual components. Other 
choices could be made in this phase, for example applying the variance criterion inde-
pendently on each data source, which could yield different joint and individual compo-
nents. Another choice we made in the preprocessing and filtering of the data is the use of 
M-values for methylation. This choice is motivated by [35].

Methodological considerations

One of the main issues in aJIVE is the selection of initial ranks. The most common 
method for the choice of initial ranks in aJIVE is the visualization of screeplots, which is 
subjective and highly sensitive to noise in the data. The profile likelihood idea suggested 
by [29] partly addresses the problem, but it still lacks some objectivity and automation. 
Nevertheless, the correct choice of ranks is fundamental for aJIVE, and ranks misspecifi-
cation can lead to incorrect results [16].

The high dimensionality of the data motivates the use of sparse methods, which reduce 
the number of variables included in the model and provide an easier interpretation of 
the results. A sparse version of the aJIVE method could be used for this purpose, by 
introducing a penalty term in the decomposition to induce variable sparsity. This has not 
been specifically implemented for aJIVE, but [10] discuss and provide an implementa-
tion of a sparse version of the JIVE method.

Finally, one aspect that is not accounted for in aJIVE is the presence of partially 
shared components. When joint components are only shared by, for example, two out 
of the three data sources, they will not be identified by aJIVE. This is a limitation of 
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most data integration methods, and we expect partially shared components to result 
in even better prediction models. A way to investigate partially shared patterns is pro-
vided in the SLIDE method by [42], and is a potential starting point for further work 
in this direction.

Conclusion
Our study shows how integrative models that include both joint and individual con-
tribution of multiple datasets lead to more accurate model predictions, and facilitate 
the interpretation of the underlying biological processes. We use joint and individual 
contributions of DNA methylation, miRNA and mRNA expression to predict can-
cer development in a lung cancer case–control study, and breast cancer subtype in a 
dataset from The Cancer Genome Atlas. We show that the use of joint and individual 
components leads to better prediction models, and to a deeper understanding of the 
biological process in hand.
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