
HELLO: improved neural network
architectures and methodologies for small
variant calling
Anand Ramachandran1†, Steven S. Lumetta1, Eric W. Klee2 and Deming Chen1*   

Background
Variant calling has wide range of applicability in modern bioinformatics. Discovering the
underlying genetic traits of Mendelian diseases [1], understanding the individual’s sus-
ceptibility to cancer[2, 3] and study of genetic diversity to help strategize crop-breeding
methods [4] are just a few of these applications. Substitutions and small insertions and

Abstract 

Background:  Modern Next Generation- and Third Generation- Sequencing methods
such as Illumina and PacBio Circular Consensus Sequencing platforms provide accurate
sequencing data. Parallel developments in Deep Learning have enabled the applica-
tion of Deep Neural Networks to variant calling, surpassing the accuracy of classical
approaches in many settings. DeepVariant, arguably the most popular among such
methods, transforms the problem of variant calling into one of image recognition
where a Deep Neural Network analyzes sequencing data that is formatted as images,
achieving high accuracy. In this paper, we explore an alternative approach to designing
Deep Neural Networks for variant calling, where we use meticulously designed Deep
Neural Network architectures and customized variant inference functions that account
for the underlying nature of sequencing data instead of converting the problem to one
of image recognition.

Results:  Results from 27 whole-genome variant calling experiments spanning
Illumina, PacBio and hybrid Illumina-PacBio settings suggest that our method allows
vastly smaller Deep Neural Networks to outperform the Inception-v3 architecture used
in DeepVariant for indel and substitution-type variant calls. For example, our method
reduces the number of indel call errors by up to 18%, 55% and 65% for Illumina, PacBio
and hybrid Illumina-PacBio variant calling respectively, compared to a similarly trained
DeepVariant pipeline. In these cases, our models are between 7 and 14 times smaller.

Conclusions:  We believe that the improved accuracy and problem-specific customi-
zation of our models will enable more accurate pipelines and further method develop-
ment in the field. HELLO is available at https://​github.​com/​anands-​repo/​hello

Keywords:  Variant calling, Deep learning, Deep neural networks, Illumina, PacBio,
Hybrid variant calling

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Ramachandran et al. BMC Bioinformatics (2021) 22:404
https://doi.org/10.1186/s12859-021-04311-4

*Correspondence:
dchen@illinois.edu
†Work done before joining
Amazon
1 Department of Electrical
and Computer Engineering,
University of Illinois At
Urbana-Champaign, Urbana,
IL 61801, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-3016-0270
https://github.com/anands-repo/hello
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04311-4&domain=pdf

Page 2 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

deletions (indels), which account for most mutations in a typical human genome [5], are
of great interest in many of these studies.

Advances in sequencing technology have enabled probing genomes at a higher res-
olution than before. Sequencing reads from Next Generation Sequencing (NGS) plat-
forms such as Illumina are typically of a few hundred bases long and are highly accurate.
Recent advances in Third Generation Sequencing (TGS) have given rise to sequencing
reads which are long (thousands to tens of thousands of bases) with improved accuracy,
such as from the Pacific Biosciences’ Circular Consensus Sequencing (CCS) platform.
The primary errors in Illumina sequencing reads are the substitution type [6], and while
the average base quality is high, these sequencing reads with errors cannot be mapped
accurately (or at all) [7] everywhere in a reference sequence due to their short length,
which is a drawback. PacBio CCS reads are not affected by mapping and mappability
issues as severely because of their longer length. While these reads also have low average
error-rates, the errors are of indel type and are highly context specific [8], hence it may
be hard to call certain types of indel variants even when there is sufficient read coverage.
Small variant calling using data from these two sequencing technologies provide high
accuracy results. Since both sequencing platforms have different error profiles, it is also
beneficial to combine data from the two platforms to perform hybrid variant calling that
compensates each other’s weaknesses.

Traditionally, variant calling methods have used probabilistic models of sequencing
errors and sequencing read alignment to determine likelihoods of variation at genomic
loci from sequencing data. For instance, the pair-Hidden Markov Model (HMM) has
been used [9] to determine alignment probabilities of reads to different candidate hap-
lotypes at a site leading to the determination of the best haplotypes at the site. Deep-
Variant [10], which demonstrated how Deep Learning may be applied to variant calling,
on the other hand uses a Deep Neural Network (DNN) that makes predictions for can-
didate alternative alleles and pairs of candidate alternative alleles at a site. These pre-
dictions are then converted into variant calls using additional algorithms to filter, sort
and rank the different alleles at the site. DeepVariant outperforms traditional methods
in many published experimental settings for both indels and substitutions and shows
that a sophisticated and general-purpose pattern recognizer such as a DNN with a large
parameter space can better capture sequencing noise and alignment characteristics at
genomic loci than traditional statistical models which use a small number of parameters
but a larger number of domain assumptions. We also note another Deep Learning-based
tool, Clairvoyant [11], a small variant caller which runs rapidly for noisy long-read tech-
nologies, which can call SNVs and indels of length up to 4 bp. Clairvoyant uses a single
input summarizing all the data aligning to a location, and uses a DNN to predict variant
alleles and lengths from this input. In this article, we look at high-accuracy small variant
calling from both short and newer and higher accuracy long-read technologies, and the
methods compared here make calls for the full range of small variant lengths (1–50 bp)
by making predictions for each candidate allele based on analyzing their associated read
supports.

While DeepVariant has shown the ability of DNNs to effectively call variants, it is
important to challenge the fundamental approaches used in DeepVariant in order to
make improvements in variant calling. Such efforts become increasingly relevant as

Page 3 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

more and more difficult-to-call sites are benchmarked. For example, recent efforts [12]
added more than 300,000 new Single Nucleotide Variants (SNVs) and 50,000 new indels
to previous ground-truth sets in difficult regions of the genome. Continual improve-
ments of such benchmarks can upend assumptions regarding best performing meth-
ods since methods developed previously may not work as effectively for newly revealed
segments. In addition, smaller models that can be trained with smaller training sets are
helpful for applications where obtaining new training data may not be easy, such as for
new target organisms, or where a customized pipeline is desired that is tailored to a spe-
cific lab’s variant calling pipeline and quality control heuristics.

Machine Learning models use inductive biases, or simplifying assumptions, which
constrain them to learning specific types of patterns that generalize well beyond the
training set. Image recognition DNNs such as those used by DeepVariant (which uses
the Inception-v3 DNN) encode certain inductive biases that work well for the problem
of image recognition, such as stationarity and locality [13]. However, the DNN in Deep-
Variant encodes scant assumptions specific to sequencing data in the model’s architec-
ture. Not encoding stronger assumptions about the application can be helpful in the case
where the data is complex, such as images of general objects or animals, where it is hard
to manually and exhaustively define individual elements of the problem. However, in a
problem such as variant calling, some basic elements of the data are easily and precisely
defined. We know that sequencing data is in the form of read sequences, and that a vari-
ant call supported by a larger number of reads is more likely to be correct than a vari-
ant call supported by a smaller number of reads. The objectives difficult to engineer or
define exhaustively in this case are models of sequencing and mapping errors, and how
to factor these errors in deciding thresholds for calling a variant. The question then is
whether we can constrain or encourage a Deep Learning method to expend its learning
prowess on the unknown aspects of the problem, rather than spend it on learning almost
everything about the problem from an abstract representation of the input data such
as images. Incorporating genome sequencing-specific inductive biases into the Deep
Learning machinery can achieve this goal.

The concept of relational inductive bias [14], where the DNN designer explicitly cre-
ates structures in the architecture representing elements of the problem as well as their
interrelationship, has been studied before. The basic objects in the variant calling set-
ting are sequencing reads and candidate alleles. Taking our cue from these, we build a
DNN architecture that recognizes reads and alleles as the elements of the problem, and
introduces specific constructs encoding the relationships of reads to alleles, as well as
the relationship of one allele to other alleles. Thus, our method, called HELLO (Hybrid
and stand-alone Estimation of smaLL genOmic variants), built for small variant calling,
accounts for the nature and structure of genome sequencing data and tailors the DNN
model to the problem at hand. Explicitly representing these aspects of the problem in
the DNN can reduce the learning burden of the machinery as compared to, say, an image
recognizer that lacks a notion of reads, or doesn’t use the concept requiring that evi-
dence from multiple reads should add up, and instead operates with assumptions well-
suited to another domain. Through this encoding of structure of the data into a DNN,
we are effectively combining elements of hand-engineering approaches with the Deep
Learning approach. Finally, we introduce a principled way in which DNN predictions for

Page 4 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

each allele at a site can be combined to produce the variant call result through log like-
lihood maximization instead of resorting to complex algorithms or a second machine
learning method. This approach allows the entire framework to also be extended to
polyploid cases with no changes to the underlying DNN.

We performed 27 whole-genome variant calling experiments at various coverage
points for Illumina, PacBio and hybrid variant calling using data from the Genome-
In-A-Bottle (GIAB) [15, 16] repository. We compared our methods to DeepVariant
and Genome Analysis ToolKit (GATK) using these datasets. Our models are up to
14 × smaller in terms of parameter count compared to DeepVariant but performed simi-
larly to or better than DeepVariant in different settings. In the following sections, we
describe in detail, our experimental results and methodology.

Results
In this section, we describe the tools, datasets, experimental setup, and evaluation
results.

Tool versions and training hardware

In addition to HELLO, we performed experiments using DeepVariant version 1.1 [17]
and GATK version 4.2.0.0 [18]. Both HELLO and DeepVariant were trained using the
same datasets in all our experiments. For training the DeepVariant models, we used
Google Cloud Tensor Processing Unit (TPU). For training HELLO, we used our local
cluster which contains machines with IBM POWER8 and POWER9 CPUs and NVIDIA
Tesla V100 and Tesla K80 Graphics Processing Units (GPUs). GATK was run for Illu-
mina and PacBio datasets using the Docker image downloaded from Dockerhub.

Training datasets and training overview

For training HELLO and DeepVariant, we used the GIAB HG002 whole genome BAM
files, and prepared alignments at multiple coverage points to enable the DNNs to make
robust predictions across coverage points. For both Illumina and PacBio sequencing
reads, we emphasized lower coverage data more than higher coverage data in the train-
ing set since variant calling is more challenging at lower coverages, but also quite valu-
able given that both sequencing and computation costs are lower at lower coverage. This
relationship is true especially for PacBio reads since they are more expensive and have
valid use cases for structural variant calling even at lower coverages. With these points
in mind, we downloaded 300 × coverage Illumina alignment data from the GIAB reposi-
tory. Following conversion from Binary Alignment Map (BAM) format to FASTQ files,
we split the FASTQ files into non-overlapping paired-end FASTQ files of coverages 15x,
20x, 25x, 30x, 40x, and 50 × through random partitioning. For PacBio, we downloaded
52 × coverage CCS sequencing data for HG002 available from GIAB, and prepared non-
overlapping BAM files through random partitioning at fractions of 1/3 and 1/6 to obtain
three whole genome datasets at coverages approximately 52x, 17x, and 9x.

Each set of paired-end FASTQ files prepared for Illumina was aligned to the GRCh38
human reference build using the Burrows-Wheeler Aligner (BWA) tool [19]. For
HELLO, we performed indel realignment using GATK 3.8.1. DeepVariant performs indel

Page 5 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

realignment internally using its own implementation, so we directly used the alignment
files without realignment.

Haplotagging is a procedure where reads estimated to be from the same haplotypes
are tagged identically. This process can be performed using the Whatshap tool [20] for
PacBio sequencing reads. For DeepVariant, we trained the model on haplotagged PacBio
alignment files since DeepVariant is known to perform the best when haplotags are pre-
sent in the data for PacBio reads. For DeepVariant, options needed specially for PacBio
data were added to the training dataset generation script. For PacBio datasets, we trained
two HELLO models, one which calls variants from PacBio data without haplotags, and
another which calls variants from alignment files which are haplotagged. We found the
haplotag model to perform better and present those results in this article relegating the
other result to the Additional file 1.

For hybrid training data, for each chromosome and for each Illumina dataset described
above, we randomly selected a PacBio dataset described above and prepared hybrid
training datasets using the two. The same chromosome and alignment file combinations
were used for HELLO and DeepVariant. In addition, for DeepVariant we used the “sam-
tools merge” [21] command to produce a single BAM file with both PacBio and Illumina
reads, and used Picard [22] to apply the same read group to all the reads (both Illumina
and PacBio) as needed for DeepVariant hybrid training. HELLO simply accepts PacBio
and Illumina BAM files as inputs. For DeepVariant, the generated training datasets were
shuffled as required for the tool before training.

Chromosomes 21 and 22 were not used for training HELLO and DeepVariant (the
two chromosomes were held out completely and were not used for gradient descent nor
for determining the best model). For both HELLO and DeepVariant, we designated a
checkpoint interval (or epoch) as one complete pass through the training dataset. We
performed, by default, 20 epochs of training for both methods. For DeepVariant hybrid
training, we found the 20th epoch to have the highest validation accuracy, and we con-
tinued training for another 8 epochs when we found a pre-final epoch to give the best
validation accuracy.

For labeling the training examples, we used GIAB benchmark variant set 4.2 for the
GRCh38 reference. Details on data preparation are released with the Additional file 1.

Evaluation datasets

We performed three evaluations as follows.

•	 GIAB HG003 whole genome data with GIAB benchmark variant set 4.2.1
•	 GIAB HG003 chromosomes 21, and 22 with GIAB benchmark variant set 4.2.1
•	 GIAB HG001 whole genome data with GIAB benchmark variant set 3.3.2 (the latest

version available for this genome)

GIAB benchmark variant set 4.2.1 is the latest iteration of ground truth variant sets
from the Genome In A Bottle consortium. It adds approximately 300,000 SNVs and
50,000 indels not included previously and reveals many regions in the reference that are
difficult to call using short read sequencing technologies like Illumina. This variant call-
ing set is only available currently for the trio HG002 (son), HG003 (father) and HG004

Page 6 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

(mother). Using this ground-truth set for training exposes the models to challenging
patterns in the reference producing more robust models. Using this ground-truth set
for evaluation provides a more comprehensive picture of a tool’s capabilities. Hence it
is important to test our models using this latest ground-truth version. So, we selected
GIAB HG003 as one of the datasets on which to report variant calling accuracies.

HG002 and HG003 are genomes of different but related individuals. To quantify the
similarity between the two genomes from a variant calling perspective, we used the hap.
py tool [23], designating HG003’s truth Variant Call Format (VCF) file as the truth VCF
and HG002’s truth VCF as the query VCF restricting analysis to the confident regions
in HG003. We got an F1 score of only 0.532 for indels and 0.579 for SNVs. Compared
to this, HELLO produces variant calls with an F1 score of 0.99 for indels and 0.999 for
SNVs with 30 × coverage PacBio data for HG003. This means that a model trained on
HG002 cannot make such highly accurate predictions on HG003 simply through memo-
rization (or overfitting) of the training data. However, while it seems very likely that a
highly accurate model is not making predictions on one genome by overfitting on the
other, there may still be an influence of their genetic relation in the variant calling accu-
racy. Hence it is important to examine variant calling accuracy where this genetic rela-
tion is not a factor.

To address this concern, we separately examine variant calling accuracy on GIAB
HG003 chromosomes 21 and 22. As described before, chromosomes 21 and 22 were
completely held out from the training procedure. Hence the models are not aware of the
variants in chromosomes 21 and 22 of HG002 (the son), and the fact that HG002 and
HG003 are genetically related does not influence variant calling accuracies for chromo-
somes 21 and 22 for HG003 (the father). In addition, using HG003 allows us to evaluate
accuracies using the latest GIAB ground-truth set, which has many important qualities,
as described before.

Additionally, we also present results on GIAB HG001 whole genome data. HG001 is
not closely related to the individual HG002. For HG001, we use the GIAB benchmark set
3.3.2, which is the latest available GIAB truth set for that genome. As indicated before,
this ground-truth set does not contain some of the challenging sites in the latest GIAB
release.

For HG001 and HG003, we downloaded 300 × alignment files from the GIAB reposi-
tory for Illumina. We subsampled the BAM files using samtools with different random
seeds to 20x, 30x, 40x, and 50 × coverage alignment files for HG003 and to 20 × and
30 × alignment files for HG001. We converted each alignment file into paired-end
FASTQ files and aligned them to the GRCh38 reference build using BWA. For GATK,
we performed Base Quality Score Recalibration (BQSR) using known Single Nucleo-
tide Polymorphism (SNP) and indel sets provided in the GATK resource bundle, and
for HELLO we performed indel realignment using GATK 3.8.1. For HELLO and Deep-
Variant, single entry-point scripts run the complete variant call flow. For GATK, we
launched haplotype calling, variant scoring, and variant filtering in succession as listed
in the best practices webpage [24].

For PacBio, we downloaded HG003 60 × coverage CCS alignments. From this data-
set, we prepared 15x, 30x, and 60 × coverage alignment files through subsampling
(where applicable using samtools view), BAM to FASTQ conversion, and alignment with

Page 7 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

pbmm2 [25, 26]. For HG001, we downloaded 30 × coverage CCS alignments, and fol-
lowed the same steps as for HG003 for preparing alignment files at 15 × and 30 × cover-
ages. For HELLO, and DeepVariant, we performed haplotagging with the Whatshap tool
[20]. For GATK, we did not find detailed recommendations from Broad Institute regard-
ing how to call variants using PacBio reads, but prior art has described running GATK
for PacBio reads [8], so we followed these recommendations.

For hybrid variant calling, we used the samtools merge command to merge each Illu-
mina dataset described above to each PacBio dataset described above to produce 16
input files for DeepVariant. We used Picard tools to apply the same read group to all
reads. HELLO accepts two different BAM files from two technologies. GATK doesn’t
support hybrid variant calling as described in this paper yet.

Additional details on data preparation and variant calling are released with the Addi-
tional file 1.

Evaluation results

We summarize the main results of the paper below.

GIAB HG003 whole genome variant calling

Tables 1, 2 show the results of calling variants for Illumina sequencing reads from the
three methods we tested. As may be seen at lower coverages, all tools call indels at a
lower accuracy than SNVs based on Precision and Recall values. The accuracy of calling
indels increases significantly with coverage with many times fewer errors being called at
higher coverages.

To visualize the performance of GATK and DeepVariant relative to HELLO, we pre-
pared plots shown in Fig. 1. Each plot indicates the number of excess errors in GATK or

Table 1  Indel results for HG003 Whole Genome Sequencing (WGS), Illumina

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

20x 0.977132 0.962505 30,699 0.980459 0.971863 24,345 0.986638 0.973921 20,052

30x 0.987019 0.981851 15,934 0.991070 0.987324 11,067 0.994046 0.987738 9284

40x 0.990826 0.988121 10,801 0.994484 0.991528 7164 0.996235 0.990973 6516

50x 0.992820 0.991235 8191 0.996153 0.993191 5451 0.997263 0.992274 5325

Table 2  SNV results for HG003 WGS, Illumina

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

20x 0.993089 0.987367 64,904 0.994664 0.990906 47,956 0.996837 0.990922 40,679

30x 0.992641 0.992285 50,157 0.996820 0.993576 31,928 0.998147 0.993197 28,776

40x 0.992119 0.993382 48,286 0.997644 0.994059 27,584 0.998533 0.993424 26,742

50x 0.991823 0.993881 47,633 0.998125 0.994017 26,125 0.998761 0.993395 26,082

Page 8 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

DeepVariant with respect to HELLO. The bars indicate the absolute differences in the
numbers of False Negative (FN) and False Positive (FP) calls and the lines indicate the
excess total errors made by each tool as a fraction of the total number of errors called by
the worse performing tool.

For indels, HELLO improves upon the number of errors in GATK by more than
30% for all cases. The improvement with respect to DeepVariant is more than 15% for
20 × and 30 × coverage data. At higher coverages, the advantage HELLO holds over
DeepVariant steadily decreases. In all cases, HELLO makes fewer indel call errors than
either method. Regarding SNV calls, HELLO improves upon GATK’s number of errors
by more than 35% in all cases due mainly to fewer FP calls. Compared to DeepVariant,
HELLO makes fewer erroneous calls in all cases, with improvements up to 15.17%.

Tables 3, 4 indicate the results for PacBio variant calling. The accuracy of call-
ing SNVs is higher than that of calling indels in all cases. Doubling the coverage from
15 × to 30 × results in reduction of errors by approximately 2 × to 3 × for SNV calls for
all methods. However, increasing coverage further doesn’t seem to have as much effect.
For GATK, increasing coverage results in only modest improvements for indel calls. For
DeepVariant and HELLO, however, significant reductions in indel errors are observed at
30 × with respect to 15 × and at 60 × with respect to 30 × coverage data.

It is interesting to look at GATK’s performance given that GATK is not optimized for
PacBio sequencing data. The fact that even under this situation GATK produces rela-
tively high accuracy for SNVs compared to indels is reflective of the dominant error

Fig. 1  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG003 Illumina Whole
Genome Sequencing (WGS) data. Positive values indicate better performance by HELLO over competitor. Bars
reference the left y-axis and indicate differences in FP and FN counts between tool (GATK or DeepVariant) and
HELLO. Formally, let NT

FP, N
T
FN,∈T=

(

NT
FP + NT

FN

)

 represent, respectively, the false positive count, false negative
count, and total error count for tool T at a given coverage point. Then, the value of the bar, marked “FP”, for
that coverage point for tool T , is NT

FP − NHELLO
FP , and the value of the bar marked “FN” is NT

FN − NHELLO
FN  . The line

plots reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of
the worse performing method at each coverage point. Formally, for the line plots for tool T , the value of a
point in the line plot is (∈T − ∈ HELLO)/max(∈T, ∈HELLO). This scheme is followed for Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9

Page 9 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

type in PacBio sequencing data, which are indel type errors. The relative paucity of
substitution type errors in PacBio data hides the difference in error modeling to a large
extent; on the other hand, the incognizance of the accurate indel error model of PacBio
sequencing by GATK results in significantly lower indel call accuracy and an inability to
utilize higher coverage to improve the situation significantly.

To better visualize relative performance of the tools, we provide plots in Fig. 2 which
indicate excess errors in GATK and DeepVariant compared to HELLO. HELLO makes
approximately 35%—55% fewer indel errors compared to DeepVariant. Improvements
are seen in both FN and FP. In the case of SNVs, HELLO makes approximately up to 20%
fewer errors compared to DeepVariant. Compared to GATK, HELLO makes approxi-
mately 75–95% fewer indel errors, and approximately 50–75% fewer SNV errors. HEL-
LO’s lead increases with coverage in both cases. For PacBio, in all cases, HELLO makes
fewer errors than the compared methods.

Tables 5, 6 summarize the results of calling variants in the hybrid Illumina-PacBio
case. Hybrid variant calling is interesting because coupling data from two different
sequencing platforms provides an opportunity to exploit any complementarity of prop-
erties of the two types of data—for example, Illumina sequencing reads face mapping
issues in certain parts of the genome and PacBio reads have context-dependent and sys-
tematic indel errors.

We first look at the effect of using Illumina reads along with PacBio reads in the
hybrid setting compared to using pure PacBio data with the same PacBio coverage in
the standalone setting. For DeepVariant, using 20 × Illumina reads with 15 × PacBio
reads in the hybrid setting provides significant reduction in SNV errors, whereas
using 20 × Illumina reads with 30 × or 60 × PacBio reads show only small differences.
Similarly, HELLO shows significant improvements when 20 × Illumina reads are used
along with 15 × PacBio reads, and marginal improvements when 20 × Illumina reads
are used with 30 × and 60 × PacBio reads. This indicates that Illumina reads do not

Table 3  Indel results for HG003 WGS, PacBio

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

15x 0.860057 0.858831 144,331 0.949591 0.947211 52,916 0.969548 0.962226 34,847

30x 0.891429 0.889284 112,742 0.980414 0.982694 19,026 0.990916 0.990159 9720

60x 0.897505 0.899685 104,621 0.991986 0.992145 8172 0.996676 0.996115 3702

Table 4  SNV results for HG003 WGS, PacBio

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

15x 0.996702 0.990138 43,719 0.998137 0.994880 23,218 0.998536 0.995063 21,286

30x 0.997521 0.995412 23,501 0.999092 0.998774 7101 0.999470 0.998794 5776

60x 0.997561 0.995716 22,357 0.999405 0.998650 6471 0.999636 0.998794 5223

Page 10 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

add to the quality of SNV calls when PacBio reads are available at sufficient cover-
age. The performance of both tools for SNV calls compared to standalone Illumina
reads is significantly improved when additional PacBio sequencing reads are used in
the hybrid setting. But this is an expected outcome given that standalone PacBio SNV
performance with 15 × reads outperforms even 50 × SNV results with Illumina reads,
even for GATK, which is optimized for short read platforms.

Fig. 2  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG003 PacBio WGS data.
Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis and
indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Table 5  Indel results for HG003 WGS, Hybrid

Values in bold indicate the best operating point for each tool for the corresponding metric

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

20 × 15x 0.987302 0.988139 12,661 0.994011 0.993572 6381

20 × 30x 0.989490 0.991368 9894 0.996103 0.995849 4137

20 × 60x 0.989477 0.993166 9012 0.997052 0.996892 3114

30 × 15x 0.993222 0.993308 6939 0.996341 0.995970 3951

30 × 30x 0.993277 0.994482 6324 0.997269 0.997177 2856

30 × 60x 0.992232 0.995110 6570 0.997664 0.997566 2453

40 × 15x 0.995176 0.995084 5016 0.997139 0.996838 3095

40 × 30x 0.995033 0.995756 4755 0.997790 0.997649 2345

40 × 60x 0.993734 0.995974 5338 0.998024 0.997841 2125

50 × 15x 0.996197 0.995881 4077 0.997726 0.997257 2576

50 × 30x 0.995982 0.996470 3895 0.998047 0.997816 2126

50 × 60x 0.994690 0.996468 4582 0.998192 0.998016 1949

Page 11 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

Next, we look at the hybrid setting with added Illumina reads compared to standalone
PacBio calling with the same PacBio coverage from the perspective of indel errors. For
both DeepVariant and HELLO, using 20 × Illumina sequencing reads in hybrid set-
ting improves indel call errors in all cases by significant margins, except for the case
of 60 × PacBio data where performance is very similar with or without Illumina data.
Unlike the case of SNVs, PacBio reads are affected by a context-specific agglomeration of
indel errors and in these contexts, it may be difficult to find sufficient support for non-
erroneous alleles from reads. Meanwhile Illumina reads do not suffer from such issues
and hence adding Illumina data seems to be able to neatly complement the PacBio reads
in this situation. The indel performances of both tools are also improved with respect
to standalone Illumina calls when additional PacBio sequencing reads are used in the
hybrid setting.

So far, we have examined how the addition of extra PacBio or Illumina reads affects
accuracy compared to standalone calling. Then, what if the added reads are not extra,
but a replacement or a substitute? Interestingly, when HELLO is input with 20 × Illumina
and 15 × PacBio dataset (total input data coverage of 35x), it outperforms 40 × coverage
Illumina sequencing data for indel and SNV calls from all the three methods. In addi-
tion, it performs almost as well as 60 × PacBio variant calling using DeepVariant for both
indels and SNVs. Coupled with the fact that long reads can provide strong performance
for structural variants at 15 × coverage [8], 20 × Illumina with 15 × PacBio hybrid calling
may be an interesting use-case for many sequencing experiments where all types of vari-
ants (SNVs, indels, and large structural variants) are desired to be called.

Interestingly, prior literature [27] reports an optimal configuration of 25 × coverage
PacBio reads with 60 × coverage Illumina reads for hybrid structural variant calling.
Newer sequencing techniques from PacBio, such as the CCS read platforms examined
in our experiments, can potentially reduce the coverage requirements of both short
and long reads in such hybrid setups for structural variant calling. Given that PacBio
CCS data can provide accurate structural variants at 15 × coverage, as mentioned

Table 6  SNV results for HG003 WGS, Hybrid

Values in bold indicate the best operating point for each tool for the corresponding metric

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

20 × 15x 0.998807 0.998758 8104 0.998937 0.998999 6872

20 × 30x 0.998882 0.998790 7748 0.999233 0.999186 5266

20 × 60x 0.999035 0.998691 7565 0.999418 0.999234 4487

30 × 15x 0.999043 0.998848 7018 0.999061 0.999022 6382

30 × 30x 0.999081 0.998938 6594 0.999306 0.999185 5022

30 × 60x 0.999151 0.998820 6752 0.999443 0.999248 4358

40 × 15x 0.999185 0.998838 6579 0.999165 0.998970 6209

40 × 30x 0.999193 0.999006 5993 0.999354 0.999170 4912

40 × 60x 0.999223 0.998893 6269 0.999473 0.999242 4277

50 × 15x 0.999286 0.998796 6383 0.999243 0.998915 6131

50 × 30x 0.999272 0.999035 5635 0.999387 0.999130 4937

50 × 60x 0.999244 0.998932 6071 0.999500 0.999235 4211

Page 12 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

above, the recommendation in this article of using 20 × Illumina, and 15 × PacBio
CCS reads may also be examined for its potential as a viable candidate for hybrid
structural variant calling as well.

To help visualize the relative performance of the methods for the hybrid case, we
prepared the plots shown in Fig. 3 that show surplus errors in DeepVariant compared
to HELLO. For indel calls, HELLO consistently makes fewer false negative and false
positive errors in all cases. Overall, HELLO improves upon the number of errone-
ous indel calls in DeepVariant by between 40 and 65% approximately. For SNV calls,
HELLO makes fewer errors by up to 40% approximately. The advantage held by
HELLO decreases at higher Illumina coverages, but increases at higher PacBio cover-
ages for both indels and SNVs.

We examined the number of trainable parameters in DeepVariant’s checkpoints.
We found 21,775,363 parameters for both the hybrid and Illumina models, and
21,776,227 parameters for the PacBio model. HELLO uses 1,536,082 parameters for
the PacBio model, 1,536,034 parameters for the Illumina model and 2,857,538 param-
eters for the hybrid model. These numbers indicate that HELLO’s DNNs are 7.6 × to
14.1 × smaller.

Fig. 3  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG003 hybrid WGS data.
Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis and
indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Page 13 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

GIAB HG003 chromosomes 21–22 variant calling

We examined the variant call performance of the methods for HG003 chromosomes
21 and 22 which were completely held out during training. The results are presented
in Tables 7, 8, 9, 10, 11, 12 and Figs. 4, 5, 6. We find that the precisions and recalls
for chromosomes 21 and 22 track closely what was observed for the whole genome
HG003 calling. In addition, HELLO maintains its lead over competitors in almost all
cases.

The following is a summary of the comparisons.

Table 7  Indel results for HG003 chr21-22, Illumina

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

20x 0.974686 0.953333 993 0.978402 0.966126 769 0.985003 0.968089 648

30x 0.987363 0.977466 488 0.990523 0.983499 361 0.993741 0.983717 312

40x 0.989344 0.983863 373 0.994353 0.988878 233 0.995318 0.987425 239

50x 0.991753 0.986843 298 0.995205 0.990332 201 0.996740 0.989460 191

Table 8  SNV results for HG003 chr21-22, Illumina

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

20x 0.991290 0.985697 1975 0.991890 0.989302 1616 0.995664 0.989523 1272

30x 0.990683 0.991279 1552 0.994724 0.992616 1088 0.997117 0.992349 905

40x 0.989799 0.992535 1522 0.996386 0.993291 887 0.997759 0.992721 818

50x 0.989585 0.992988 1502 0.996747 0.993453 842 0.998167 0.993058 754

Table 9  Indel results for HG003 chr21-22, PacBio

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

15x 0.862101 0.857818 3903 0.943052 0.937196 1666 0.964158 0.950716 1179

30x 0.902858 0.895181 2812 0.977656 0.979065 606 0.989340 0.986043 343

60x 0.909926 0.904776 2585 0.990084 0.989460 286 0.996480 0.994912 120

Table 10  SNV results for HG003 chr21-22, PacBio

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

15x 0.996704 0.984290 1631 0.997950 0.989488 1079 0.998090 0.989535 1063

30x 0.998283 0.993698 689 0.998906 0.997105 343 0.999558 0.997070 290

60x 0.998308 0.994581 611 0.999232 0.997581 274 0.999732 0.997895 204

Page 14 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

•	 For PacBio, HELLO outperforms DeepVariant and GATK in all cases.
•	 For Hybrid variant calling, HELLO outperforms DeepVariant in all cases except SNV

calling for 30 × Illumina and 30 × PacBio reads; DeepVariant makes approximately 5%
fewer errors in this case.

•	 For Illumina variant calling, HELLO outperforms DeepVariant and GATK in all cases
except indel calling at 40 × Illumina coverage where DeepVariant makes approximately
3% fewer errors.

Table 11  Indel results for HG003 chr21-22, Hybrid

Values in bold indicate the best operating point for each tool for the corresponding metric

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

20 × 15x 0.986837 0.984444 401 0.991683 0.989605 261

20 × 30x 0.988237 0.989823 308 0.995143 0.993676 156

20 × 60x 0.989732 0.991568 263 0.997114 0.995929 97

30 × 15x 0.992761 0.991059 226 0.996052 0.993458 146

30 × 30x 0.992854 0.993458 192 0.996902 0.995639 104

30 × 60x 0.992244 0.993821 196 0.997958 0.996802 73

40 × 15x 0.995501 0.993312 156 0.996622 0.995202 114

40 × 30x 0.994741 0.994839 146 0.997608 0.996874 77

40 × 60x 0.992944 0.994839 172 0.997258 0.997165 78

50 × 15x 0.995572 0.993967 146 0.997323 0.995202 104

50 × 30x 0.995649 0.995348 126 0.997257 0.996656 85

50 × 60x 0.993425 0.995348 158 0.997890 0.997383 66

Table 12  SNV results for HG003 chr21-22, Hybrid

Values in bold indicate the best operating point for each tool for the corresponding metric

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

20 × 15x 0.998487 0.997302 362 0.998581 0.997442 342

20 × 30x 0.998732 0.997512 323 0.998779 0.997802 294

20 × 60x 0.998709 0.997639 314 0.999221 0.998035 236

30 × 15x 0.998894 0.997407 318 0.998860 0.997570 307

30 × 30x 0.999104 0.997802 266 0.998907 0.997837 280

30 × 60x 0.999011 0.997791 275 0.999221 0.998058 234

40 × 15x 0.998929 0.997372 318 0.998953 0.997523 303

40 × 30x 0.998976 0.997651 290 0.998977 0.997826 275

40 × 60x 0.998953 0.997733 285 0.999244 0.998023 235

50 × 15x 0.999011 0.997349 313 0.999023 0.997500 299

50 × 30x 0.999057 0.997826 268 0.999128 0.997860 259

50 × 60x 0.998860 0.997826 285 0.999302 0.998093 224

Page 15 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

GIAB HG001 whole genome variant calling

Some of the salient points of the variant calling results for HG001 are reflective of the
nature of its ground-truth set and sequencing data, rather than of the variant callers

Fig. 4  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG003 Illumina
chr21-chr22 data. Positive values indicate better performance by HELLO over competitor. Bars reference the
left y-axis and indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The
line plots reference the right y-axis, and indicate the differences in total error count as a fraction of total errors
of the worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Fig. 5  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG003 PacBio chr21-chr22
data. Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis
and indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Page 16 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

themselves. In addition to having a different ground-truth set as discussed before,
GIAB PacBio sequencing data available for HG002 and HG003 are from the newer
chemistry 2 process from PacBio whereas for GIAB HG001, the available datasets
are from chemistry 1, which indicates that the data quality of PacBio reads may also
be poorer in this case. Combined, we expect improvements in Illumina variant call
results, a decrease in the accuracy of PacBio results, and smaller differences between
the methods in SNV calling for PacBio and hybrid variant calling.

Results for whole genome variant calling in HG001 are presented in Tables 13, 14,
15, 16, 17, 18 and relative performances of the tools are presented in Figs. 7, 8, 9.
All tools give higher accuracy SNV calls with Illumina rather than PacBio reads for
HG001, the opposite situation compared to HG003. In addition, whereas hybrid SNV

Fig. 6  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG003 hybrid chr21-chr22
data. Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis
and indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Table 13  Indel results for HG001 WGS, Illumina

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

20x 0.975429 0.956826 34,098 0.976854 0.968963 27,455 0.984478 0.972669 21,619

30x 0.986186 0.981593 16,367 0.989031 0.987899 11,763 0.992588 0.989808 8938

Page 17 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

Table 14  SNV results for HG001 WGS, Illumina

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

20x 0.996457 0.994914 26,242 0.997263 0.996855 17,898 0.998376 0.997280 13,217

30x 0.997000 0.999002 12,188 0.998809 0.999297 5767 0.999292 0.999378 4048

Table 15  Indel results for HG001 WGS, PacBio

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

15x 0.882206 0.848058 134,865 0.951037 0.938379 55,902 0.964688 0.950110 42,985

30x 0.917539 0.887374 97,949 0.979646 0.980324 20,445 0.987364 0.986196 13,466

Table 16  SNV results for HG001 WGS, PacBio

Values in bold indicate the best operating point for each tool for the corresponding metric

GATK DeepVariant HELLO

Precision Recall Errors Precision Recall Errors Precision Recall Errors

15x 0.993747 0.991098 46,067 0.995494 0.994095 31,673 0.995558 0.994285 30,905

30x 0.994958 0.998203 20,865 0.997091 0.999462 10,520 0.996894 0.999524 10,934

Table 17  Indel results for HG001 WGS, Hybrid

Values in bold indicate the best operating point for each tool for the corresponding metric

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

20 × 15x 0.984914 0.986604 14,582 0.990969 0.991731 8840

20 × 30x 0.986462 0.990168 12,013 0.993106 0.994709 6242

30 × 15x 0.990535 0.992549 8676 0.993668 0.995411 5598

30 × 30x 0.990507 0.993720 8114 0.994388 0.996606 4627

Table 18  SNV results for HG001 WGS, Hybrid

Values in bold indicate the best operating point for each tool for the corresponding metric

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

20 × 15x 0.996889 0.999635 10,610 0.996529 0.999816 11,166

20 × 30x 0.996778 0.999513 11,320 0.996589 0.999858 10,853

30 × 15x 0.997409 0.999743 8691 0.996933 0.999851 9822
30 × 30x 0.997159 0.999649 9738 0.996795 0.999870 10,188

Page 18 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

Fig. 7  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG001 Illumina WGS
data. Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis
and indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Fig. 8  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG001 PacBio WGS data.
Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis and
indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Page 19 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

call performance was better compared to stand-alone Illumina calling in the case
of HG003 for both tools at all coverage points, it is not so for HG001. This could
be because of a combination of fewer challenging SNV sites for Illumina, and older
PacBio sequencing data.

Comparing the performances of the tools, the following main points may be observed:
For Illumina, HELLO makes approximately 35–45% fewer indel errors compared to

GATK and 20–24% fewer indel errors compared to DeepVariant. The improvements are
approximately 50–65% and 25–29% respectively for SNVs.

For PacBio, HELLO makes approximately 67–85% fewer indel errors compared to
GATK and 22% to 34% fewer indel errors compared to DeepVariant. For SNVs, HELLO
makes approximately 32–46% fewer errors compared to GATK. DeepVariant and
HELLO perform at par for SNVs with HELLO making 2% fewer errors than DeepVariant
at 15x, and DeepVariant making 4% fewer errors than HELLO at 30x.

For hybrid variant calling, HELLO makes approximately 35–48% fewer indel errors
than DeepVariant. For SNVs, there is not a single winner with HELLO outperforming
DeepVariant by approximately 4% in one case, and DeepVariant outperforming HELLO
in other cases with the highest improvement of 12%.

Fig. 9  Excess errors in DeepVariant and GATK variant calls compared to HELLO for HG001 hybrid WGS data.
Positive values indicate better performance by HELLO over competitor. Bars reference the left y-axis and
indicate differences in FP and FN counts between tool (GATK or DeepVariant) and HELLO. The line plots
reference the right y-axis, and indicate the differences in total error count as a fraction of total errors of the
worse performing method at each coverage point. Please refer to Fig. 1 for additional explanation

Page 20 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

Other implementation considerations

Execution speed, memory consumption and training time

We compared the execution time for HELLO vs DeepVariant on an Intel E5-2683
Central Processing Unit (CPU) for chromosome 21. We used PacBio 30 × coverage
data and both models use haplotagged inputs. We used PacBio reads and not Illu-
mina reads so that both pipelines are uniform in terms of input preprocessing steps.
HELLO used 28 parallel threads and DeepVariant was configured to use 28 shards
(tool option) which may be processed by the tool in parallel. HELLO took 1597 s on
average among three runs while DeepVariant took 639 s. We also measured the peak
memory and CPU utilization of the two flows over three runs. DeepVariant had a
peak CPU utilization of approximately 40 threads and 14.83 GB peak memory usage,
while HELLO had a peak CPU utilization of approximately 24 threads and a peak
memory usage of 13.04 GB.

HELLO’s flow is not optimized for speed and many software components of HELLO
may be sub-optimal including reading of sequencing data, preparation of DNN inputs,
and the preparation of output files. Improving these components through software engi-
neering practices (for example, removing duplication of work between different stages,
better work partitioning so CPU threads are better load-balanced, more efficient conver-
sion of sequencing reads to DNN inputs, etc.) will be part of our future focus.

However, given the smaller DNNs in HELLO, it may be expected that HELLO’s
DNN runs faster than that of DeepVariant, even when a lot of engineering effort hasn’t
been spent on optimizing its running time. DeepVariant is divided into three separate
scripts—DNN input preparation, DNN inference, and conversion of DNN inference
results to variant calls, and the time taken for each stage is reported by DeepVariant.
However, the standard HELLO flow is not written into separate scripts, making it dif-
ficult to compare the running time of the DNN in HELLO to the running time of the
DNN in DeepVariant. To facilitate the comparison, we prepared a new flow for HELLO
which operates similarly to the flow in DeepVariant. The new HELLO flow has three
scripts as well—the first script prepares input data for the DNN and stores it on disk, the
second script reads the DNN inputs, runs them through the DNN and writes the infer-
ence results to disk, and the third stage reads the inference results and converts them to
output variant calls. It must be noted that this new flow is written for comparing DNN
execution times, and for exploratory purposes of HELLO’s execution speed and is not
the standard HELLO flow. Using this new flow, we compared the execution times of the
DNN inference stages of DeepVariant and HELLO on the same compute platform and
for the same input data as described above. DeepVariant’s DNN takes 338 s on aver-
age for completion over three runs, and HELLO takes 273.3 s on average for completion
over three runs, indicating that the HELLO DNN is faster than the DeepVariant DNN.
For this HELLO flow, we relied on PyTorch to manage the CPU utilization, and we
measured a peak CPU utilization of approximately 29 threads and a peak memory usage
of 18.28 GB, averaged over three runs. It may be noted that there are various aspects
to these execution times and resource utilizations beyond the sole parameter counts of
the two DNNs, which could include how input data is prepared for DNN consumption,
DNN architectures, how the respective DNN libraries manage machine resources such
as memory and CPU usage (PyTorch vs Tensorflow), and others.

Page 21 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

Regarding training times, for PacBio data, DeepVariant took approximately 51 min to
complete one epoch of training with a batch size of 256 on the Google Cloud TPU v2-8
platform (it has 8 TPUs), and HELLO took approximately 195 min with a batch size of
256 on a Power 9 machine using 2 NVIDIA V100 GPUs. Note that the two compute
platforms are very different, and the training times cannot be easily compared. But this
comparison provides readers an estimate of how long training the models can take.

Use of GATK indel realigner

As mentioned before, we used GATK’s indel realigner to preprocess Illumina reads.
This step can be avoided by implementing local haplotype assembly and readjustment
of read alignments to the most prominent consensus haplotypes within HELLO. Code
for doing similar operations is available open source, for example, in DeepVariant’s code
repository, which does internal haplotype reassembly to preprocess Illumina reads.
However, integrating such code into HELLO will require additional software engineer-
ing resources, which we could not allocate so far. We plan to make investments in this
direction in the future.

In the meanwhile, it is interesting to measure the impact of not doing indel realign-
ment on the accuracy of HELLO, since avoiding GATK-based preprocessing may be
useful for certain users. Towards this goal, we ran variant calling for HG003 chr21 and
chr22 without indel realignment, for both Illumina and hybrid variant calling, the two
cases which can be influenced by indel realignment. Comparison of these runs to Deep-
Variant are given in Table 19. HELLO seems to be robust to lack of indel realignment
as it continues to perform competitively, outperforming DeepVariant in most of these
cases. Note that HELLO models were trained with indel realignment and training the
models without indel realignment could help further improve these accuracies.

Discussion
A challenge in developing Deep Learning-based methods for variant calling is the enor-
mity of the data required for training, as well as the need for machines with high com-
putational capacity. Models trained for variant calling, even when they are developed for
a specific application such as whole-genome calling, need to account for a reasonable
spectrum of use-cases such as different coverage points. While popular benchmarks in
Deep Learning such as ImageNet do not explicitly check DNN efficacy under different

Table 19  HELLO without indel realignment: results for HG003 chr21-22

DeepVariant HELLO

Precision Recall Errors Precision Recall Errors

a. Illumina indel

30x 0.990523 0.983499 361 0.992667 0.981609 356

b. Illumina SNV

30x 0.994724 0.992616 1088 0.997012 0.992349 914

c. Hybrid indel

20 × 15x 0.988237 0.989823 308 0.991680 0.989096 268

d. Hybrid SNV

20 × 15x 0.998732 0.997512 323 0.998581 0.997442 342

Page 22 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

instrument settings (e.g., performance under different levels of lighting for the same set
of images), we believe similar checks (e.g., performance against different coverages) are
essential in testing variant calling efficacy, since it may be difficult to shoehorn a sin-
gle variant calling pipeline to operate under a fixed and specific coverage point. Cou-
pled with this, the absence of theoretical guarantees from the Deep Learning machinery
doesn’t provide the user confidence that a model works well when targeting different
coverages, if such empirical benchmarking is not performed. In addition, variant calling
is expected to provide high accuracy solutions compared to many other Deep Learning
applications.

Covering any single use case (e.g., coverage point) may require hundreds of Gigabytes
of data and hours of training on high-performance hardware. This strategy deviates
from traditional approaches which encode domain assumptions necessitating very little,
if any, training processes. As genome builds evolve and more difficult-to-call genomic
regions become benchmarked, models will need to be trained and improved continually.
Methods that perform well under current benchmark regions will need to be reevalu-
ated in the future. Smaller and more efficient models, that have reduced parameter sizes
enabled by the introduction of structure and domain assumptions into neural networks,
can alleviate some such difficulties. Such models may be more easily trained for cases
where procuring large amounts of ground-truth data is difficult or expensive – such as
for example in the case of Whole Exome Sequencing, or building models customized to
new organisms.

Conclusions
We presented a novel DNN architecture for small variant calling that encodes the struc-
ture of the problem explicitly into the model. Specifically, we model that (i) reads are the
fundamental units of sequencing data, (ii) more reads supporting the same candidate
allele reinforce the confidence in the allele, and that (iii) the confidence in a candidate
allele should be evaluated in relation to other candidate alleles in a simple manner. We
introduce strict mathematical relations instead of heuristics to convert model predic-
tions of allelic probabilities into variant calls, and these methods can be used for any
ploidy without changing the Neural Network architecture. In experiments, we observe
that our model uses 7—14 × fewer parameters than DeepVariant, yet provides variant
calls with up to approximately 18 – 65% fewer indel errors across Illumina, PacBio, and
hybrid variant calling scenarios.

Structurally well-suited models can provide better solutions to a problem than pow-
erful, general purpose models. To an extent, the demands of end-to-end learning from
large, monolithic models originally developed for a different, related application such as
image recognition, where every aspect of the problem is learnt during training and a few
aspects are explicitly coded into the DNN, can be met with very large amount of training
data. However, it comes with added costs. Customized models may generalize well (i.e.,
offer higher accuracy on unseen examples) with a smaller amount of data, and can be
advantageous where the correct inductive bias can be coded in by the tool designer.

There are clues in the design of DeepVariant that an image-recognizer may not be the
most natural fit for the problem of variant calling, though it is an effective one. These
hints manifest in the form of some level of input feature engineering in the DeepVariant

Page 23 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

pipeline, where (i) for short reads, the reads are sorted and ordered in alignment order
and (ii) for PacBio reads, reads are haplotag sorted and aligned to reference and alterna-
tive alleles. These feature-engineering steps are aimed at making the input data more
well-behaved and more easily accessible to the image processing DNN used in the tool;
however, these steps appear arbitrary and the motivation behind them is not well-under-
stood. Our goal is to build a DNN that works for the problem by encoding unmistakable
assumptions that can be made about sequencing data and variant calling directly into the
structure of the DNN. We also present clear motivations behind these constructions. We
hope that these methods lead to improved variant calling accuracy in many use cases, as
well as enable future method development for the myriad applications of variant calling.

Methods
In a typical variant calling pipeline, sequencing data is first aligned to the reference
sequence. Alignments indicate where the reads originated from during sequencing. At
any site in the reference, we can infer a list of candidate alleles at that site by collect-
ing the list of alleles implied by the reads aligned to that location. Furthermore, we can
group the reads aligned to the site by the candidate alleles they imply. A local assem-
bly and realignment of the reads may be performed before enumerating the candidate
alleles so that identical alleles are not represented differently by different reads. Insuf-
ficient sequencing data can cause the true candidate allele to be missed by all sequencing
reads at the site, in which case recovery of the true allele is impossible by looking at the
sequencing data.

Traditional methods that probabilistically model sequencing error and read alignment
to different candidate alleles have been popular [9]. Here, explicit assumptions and algo-
rithms are used that treat individual sequencing reads as fundamental data units sup-
porting different hypotheses, leading to rules on how to combine support from multiple
reads for a candidate allele, and how to evaluate the significance of evidence supporting
a candidate allele. For example, one expects a candidate allele with a large proportion of
sequencing reads with high base quality and high mapping quality to be a strong candi-
date, and such notions may be found systematized under this modeling approach.

DeepVariant follows many steps that have been followed traditionally up to a certain
point. Local reassembly and realignment are performed for short reads to avoid equiv-
ocal representation of variants, and candidate alleles are listed. However, DeepVariant
doesn’t explicitly model individual reads and how read support accumulates towards
the evidence supporting a candidate allele. Instead pileup data at a site is converted to
images with reads supporting different candidate alleles marked or colored differently.
This data is then fed into a computer vision DNN, a Convolutional Neural Network
(CNN), that predicts, for every non-reference candidate allele and pairs of non-reference
candidate alleles, the probabilities for three possibilities – whether the site is homozy-
gous reference, heterozygous, or homozygous alt. These predictions are used to deter-
mine scores supporting homozygous/heterozygous calls involving each non-reference
candidate allele, and then additional algorithms perform ranking and selection of the
top alleles at the site based on these scores. The reason to make predictions in this man-
ner is that a standard CNN makes a fixed number of predictions, and in variant calling
the number of candidate alleles and number of true alleles are not fixed. DeepVariant

Page 24 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

side-steps this discrepancy by decomposing the problem into one where a CNN predicts
a fixed number of labels for each subproblem and using an algorithm to post-process
these results. HELLO takes a different approach and makes probabilistic arguments to
deal with this multi-allelic situation in a precise and well-reasoned manner, as described
later.

DeepVariant’s overall approach largely follows the Deep Learning paradigm, in which
only a few assumptions are encoded into the mathematical formulation of the problem,
and the DNN’s universal function approximation property [28] is leveraged to learn the
necessary patterns and rules to make correct predictions by training the model using a
large number of training examples. The use of a powerful DNN avoids the use of many,
potentially oversimplifying, biases or assumptions, a pitfall of many traditional models.
However, it may be possible to encode certain incontrovertible facts or notions about
the problem into the Deep Learning machinery that reduces the learning burden of the
DNN without affecting the learning efficacy of the algorithms. This approach can lead to
more efficient DNN architectures offering higher accuracy solutions.

The DNN architecture in HELLO is structured with DNN elements representing fun-
damental data units of the problem such as reads and alleles. HELLO recognizes reads
as the fundamental units of sequencing data, and the notion that reads that support the
same allele reinforce the evidence for that allele. It introduces explicit operations to com-
pare allelic evidence to the data content at a site to determine whether the allelic evi-
dence is significant, or simply represents noise. This comparison recognizes the fact that
the support for an allele should be evaluated in relation to the support for the remaining
alleles at the site. Finally, HELLO uses simple formulae derived from probabilistic rea-
soning to produce variant calls from allelic predictions, an approach that can be easily
extended to any ploidy without making any changes to the DNN architecture.

DNN architecture

HELLO uses a DNN to predict the status of each candidate allele, the status being either
that the candidate allele is a true allele at the site (indicating that the allele is present at
the site), or a false allele (indicating that the allele is absent).

HELLO uses different DNN architectures for single-sequencing platform variant call-
ing and dual platform hybrid variant calling. We first describe the single-platform archi-
tecture, and then describe how it is modified for the hybrid variant calling case.

Single‑platform architecture

Figures 10, 11 represents the DNN architecture in HELLO for single sequencing plat-
form analysis. HELLO’s DNN is split into three CNN stages. The input to the first stage
is information of read alignments at and around the site being analyzed. How a single
read alignment is encoded is indicated in Fig. 10. We collect both the portions of a read
aligned to the site being analyzed as well as to surrounding contextual reference loca-
tions. The input representation of a read is a sequence of 6-dimensional vectors. Each
vector is an encoding of the read base, the reference base, the base quality, the mapping
quality of the read, the strand identity of the read, and a position flag indicating whether
the vector corresponds to the genomic site that is being analyzed or whether it simply
represents a position collected from the surrounding context. For the PacBio haplotag

Page 25 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

models, we include an additional dimension (not shown in figure) encoding the haplotag
value.

Read representations are padded so that the position of the site being analyzed lines
up at the center of the representation. The read representations are encoded following
DeepVariant’s 8-bit encoding scheme. While it is possible to use floating point numbers
or one-hot encoding, or other methods to represent some of these values, the 8-bit rep-
resentation is compact.

This input representation is processed by the first stage CNN to produce feature rep-
resentations of reads. The CNN performs 1-D convolutions on individual reads and pro-
duces output feature representations for each read, which we call the read-level feature.
Read-level features are treated as superposable, by which we mean that adding two of
these representations is expected to produce a meaningful representation (we depend
on the Deep Learning machinery to learn features with such properties). Read feature
representations of reads implying the same candidate allele at a site are added together
and passed through a second CNN to produce allele-level feature representations.
Allele-level feature representations are a summary of the evidence in support of each
candidate allele at the site. The final stage CNN compares the allele-level feature for each
allele j to the allele-level feature of every other candidate allele at the site and outputs the
likelihood estimate that allele j is a true allele at the site. We further constrain the nature
of these comparisons to a specific format that reduces the number of parameters and
computations needed. This strategy is described in detail below.

Fig. 10  Input read representation

Fig. 11  The architecture of HELLO

Page 26 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

Let Ri be the input representation of the ith read. Let fi be the read feature repre-
sentation of the ith read. Let Aj be the allele-level representation for the jth allele, and
Sj represent the set of reads supporting allele j. Let CNN1,CNN2,CNN3 be the three
CNNs in HELLO. Let D represent the sequencing data at the site including the candi-
date allele list, and the reads supporting each candidate allele, as well as the reference
context. We also define a term, M =

∑

j

Aj , which pools together the evidence from all

alleles. M is a representation produced from all the data at a site, thus we call it, the
site-level feature. Then, we have the following mathematical relationships for the
HELLO architecture.

Equation 3 indicates the specific type of computations that are used to compare the
allelic evidence for one allele to the allelic evidence of all other alleles. That is, an
allele’s evidence is judged to be significant only in relation to the evidence presented
by all other alleles.

The architecture explicitly defines how alleles are inferred from reads, and how
alleles should be compared amongst each other. Enforcing simple mathematical
relationships between the basic elements of the problem here induces the relational
inductive biases inherent to the problem of variant calling, and limits the DNN to
learning feature representations from a subset of feature representations that are
meaningful for the problem, rather than a space of possible representations that gen-
erally apply to a different class of problems such as, say, image processing problems.

In other words, limiting allelic comparisons to be performed through subtractions
in this manner, as well as causing allelic representations to derive from read level rep-
resentations through superpositions encourages the DNN to search within a solution-
space that conforms to certain notions such as (i) more reads supporting a candidate
allele result in higher confidence in that candidate allele (ii) the confidence in a candi-
date allele can be determined only in a simple relative sense with respect to the
remaining candidate alleles at the site. As a technical aside, note that for n candidate

alleles, this requires only n invocations of CNN3 instead of O
((

n
2

))

 invocations that

would be necessary for a pairwise comparison for all candidates.
After the CNN computations are performed, we have n values, pj , 1 ≤ j ≤ n, for n

candidate alleles. As indicated in Eq. 3, pj represents the probability of allele j being
a true allele at the site, which we model to be conditionally independent of the status
(true/false) of another allele, given D . This gives us the following probabilistic for-
mulation where an outcome, E , is an n-tuple of values ej ∈

{

True, False
}

, 1 ≤ j ≤ n .

(1)fi = CNN1(Ri)

(2)Aj = CNN2





�

k∈Sj

fk





(3)

P[allele j is True|D] = pj = CNN3(Aj−

∑

k �=j

Ak) = CNN3

(

2Aj −

∑

k

Ak

)

= CNN3

(

2Aj −M
)

Page 27 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

ej indicates the status of candidate allele j. The log-likelihood of the outcome, E , is
hence given as follows. Here, 1v is the indicator function which takes the value 1 when
the Boolean variable, v, is True , and takes the value 0 otherwise.

Ploidy of 2 requires the additional assumption that we only look at a subset of the event-
space where either one allele has a true status or two alleles have true statuses, and the
remaining have false statuses (assuming the true allele is never missed by sequencing reads).
Denoting the set of such events as �2 , we have for each E ∈ �2,

Any event E ∈ �2 corresponds to a valid variant call for ploidy = 2. We wish to pick the
best event, or the event with the best log-likelihood from this set and determine the corre-
sponding set V of true alleles at the site. This selection may be done based on the following
equations.

Equations 4 and 5 are fairly easy to compute by looping through the set �2 . Once V is
determined, HELLO converts it to variant records. If V is a singleton set, HELLO treats the
site as homozygous, and if not, it treats the site as heterozygous and prints appropriate VCF
records reflecting these determinations.

Dual‑platform (hybrid) architecture

The DNN architecture for calling variants from dual sequencing platforms is derived from
the architecture presented earlier for the single sequencing platform. We use two copies of
CNN1 , and CNN2 each in the hybrid architecture corresponding to each sequencing plat-
form. CNNs processing Illumina sequencing reads are labeled CNNI

1 ,CNN
I
2 and CNNs

processing the PacBio sequencing reads are labeled CNNP
1 ,CNN

P
2  . The allelic features for

allele j output from CNNP
2 is labeled AP

j and the allelic features output from CNNI
2 is labeled

AI
j  . Similarly, the corresponding site-level features are MP , and MI respectively. To make

allele-level predictions as in Eq. 3, we need to consider allele and site-level features from
both platforms. Towards this purpose, we create hybrid versions of both features as follows.
Here, (a, b) represents the concatenation operation along the channel dimension.

log P(E|D) =

n
∑

j=1

log(1ej pj + 1ej (1− pj))

log P
(

E|D, ploidy = 2
)

= log P(E|D)− log
∑

E′∈�2

P
(

E′
|D

)

(4)E∗
= argmaxE∈�2 log P

(

E|D, ploidy = 2
)

= argmaxE∈�2 log P(E|D)

(5)V = {i|e∗i isTrue}

(6)A
hybrid
j = CNN4

((

AI
j ,A

P
j

))

(7)Mhybrid
= CNN5

((

MI ,MP
))

Page 28 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

CNN4 and CNN5 are small two-layer networks which take two feature-maps, concat-
enate them along the channel dimension, and mix them together. We constructed these
CNNs in such a manner that the output feature size is the same as the feature size of one
of the inputs. Given the hybrid features, we can now rewrite Eq. 3 using hybrid allele and
site-level features instead of single-platform features as shown in Eq. 8 and then proceed
to perform variant calls using Eqs. 4 and 5.

Details of DNN construction

The CNNs in HELLO use standalone convolutional layers and Residual Blocks [29]
which form the bulk of the model. Residual Blocks use skip connections across multiple
convolutional layers. In HELLO, skip connections are used over pairs of convolutional
layers. We use rectified linear units as neuronal activations. We apply weight normali-
zation [30] to the DNN layers in HELLO, in favor of the more popular Batch Normali-
zation [31]. Batch Normalization estimates mean and variance statistics of the dataset
from running mean and running variance of the layer input batches. In HELLO, the
batches may have varying sizes because different sites may have different numbers of
reads and candidate alleles because of the nature of sequencing data and hence these
estimates may not be sufficiently accurate. Detailed architectural diagrams are provided
in the Additional file 1 (Figures S1 – S3).

Variant calling pipeline

The DNN we described above is embedded into HELLO’s variant calling pipeline which
consists of multiple steps. We describe these steps below.

Indel Realignment for short reads

Short reads aligned independently can represent the same indel deviations from the ref-
erence in different ways. In addition, soft clipping can cause some legitimate insertions
to be discarded from the aligned section of a read. To circumvent such issues, we realign
Illumina reads using GATK 3.8.1’s indel realignment algorithm where reads are locally
reassembled and realigned to produce consensus indels. This step is not performed for
PacBio reads.

Determining hotspots

Input alignment files (after realignment) are analyzed to determine for each reference
position, the number of read bases in support of the reference bases as well as in support
of each non-reference candidate allele. If any non-reference candidate allele has support
from a sufficient fraction of reads aligning to the site, the site is determined to be a hot-
spot and is analyzed using the DNN. For the hybrid variant calling case, we prepare sep-
arate hotspots from the two sets of sequencing data from the two sequencing platforms
and use the union of the two sets.

(8)pj = CNN3

(

2Ahybrid
−Mhybrid

)

Page 29 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

Variant calling

For each hotspot location, we extract all candidate alleles and group the reads according
to the candidate alleles they support. We construct input read representations for each
read supporting each candidate allele. The input representations are sequences of 1-D
sequences of length 150 and dimensionality six (seven for PacBio haplotagged reads) and
padded such that the site of interest is at the center of the vectors, as described before.
These input representations are fed to HELLO’s DNN architecture and variant calling
proceeds according to Eq. 1 to Eq. 8. HELLO uses GNU parallel [32] to launch analysis
of multiple hotspots in parallel.

Preparing training data

Training data preparation for HELLO follows many of the same steps as for variant calling
starting with indel realignment and hotspot detection. In the next step, we prepare can-
didate alleles scanning reads at hotspots, and prepare input data for the DNN. However,
since this process is for preparation of data for the training process, the data is not fed
into a DNN and instead we have a different step, which is to label the candidate alleles
as true or false alleles. To do so, HELLO accepts labeled ground-truth variants and high-
confidence regions. Any candidate hotspots outside the high-confidence regions provided
as part of the ground-truth set are discarded. Within the high-confidence regions, we label
those candidate alleles as true alleles which match the descriptions in the ground-truth
variants file. This labeling method is not straight-forward because the allelic representa-
tions in the ground-truth variants file may differ from the representation of candidate
alleles as inferred by HELLO even when they are identical. To resolve this problem, we
group hotspot locations which are nearby and collect all ground-truth variants at or near
these locations constructing candidate ground-truth haplotype-pairs for the region. We
then search for these haplotype pairs in a prefix-tree induced by the candidate alleles and
the surrounding reference segment to locate the true alleles among the candidate alleles
inferred by HELLO. The selected candidate alleles are labeled true, and the remaining can-
didate alleles are labeled false. The details of this algorithm may be seen in our source code
and, except perhaps for the prefix-tree-based search implementation, is similar to methods
developed elsewhere [10]. The labeled candidate alleles and corresponding read sequence
representations are written to disk and are then used to initiate a training process.

Availability and requirements
Project name: HELLO.
Project homepage: https://​github.​com/​anands-​repo/​hello
Operating system: Linux.
Programming Languages: Python, C +  + 
Other requirements: Other software requirements provided in Docker image at https://​
hub.​docker.​com/r/​oddjo​bs/​hello_​image.​x86_​64
License: MIT.
Restrictions for use by non-academics: Free to use.

https://github.com/anands-repo/hello
https://hub.docker.com/r/oddjobs/hello_image.x86_64
https://hub.docker.com/r/oddjobs/hello_image.x86_64

Page 30 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404

Abbreviations
Indels: Insertions and deletions; NGS: Next generation sequencing; TGS: Third generation sequencing; CCS: Circular
consensus sequencing; HMM: Hidden Markov model; DNN: Deep neural network; SNV: Single nucleotide variant; HELLO:
Hybrid and stand-alone estimation of small genomic variants; GIAB: Genome-in-a-bottle; GATK: Genome analysis toolkit;
TPU: Tensor processing unit; GPU: Graphics processing unit; BAM: Binary alignment map; BWA: Burrows-wheeler aligner;
VCF: Variant call format; BQSR: Base quality score recalibration; SNP: Single nucleotide polymorphism; FN: False negative;
FP: False positive; CPU: Central processing unit; WGS: Whole genome sequencing; CNN: Convolutional neural network.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04311-4.

Additional file 1. The supplementary file provides details of steps followed in performing experiments, additional
results, and additional information regarding the DNN architecture in HELLO

Acknowledgements
We thank Prof. Ravishankar K. Iyer and the University of Illinois-led Center for Computational Biotechnology and Genomic
Medicine for continued support throughout the project. We also thank Kiran Koshy Thekumparambil for valuable inputs
during the project.

Authors’ contributions
AR designed the DNNs, wrote the software and scripts used in this study, and ran the experiments. SSL and EK contrib-
uted to the conception of the variant calling pipeline, designing the experiments and the analysis of variant caller results.
DC directed all aspects of the project from concept, to design, to engineering to experimentation. All authors have read
and approved the final version of the manuscript.

Funding
This material is based upon work supported by the National Science Foundation (NSF) under Grant Nos. CNS 1624790,
and CNS 1337732. This work also utilizes resources supported by the National Science Foundation’s Major Research
Instrumentation program, grant #1725729 [33], as well as the University of Illinois at Urbana-Champaign. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Foundation. The funding entities did not participate in the design of the
study, or collection, analysis and interpretation of data, or in preparing or editing the manuscript.

Availability of data and materials
All experiments in this paper use GIAB data, which are available publicly at ftp://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​Refer​enceS​
amples/​giab/​data. The GRCh38 reference genome is used as standard reference sequence for alignments, and may be
found at the following link ftp://​ftp.​ncbi.​nlm.​nih.​gov/​genom​es/​all/​GCA/​000/​001/​405/​GCA_​00000​1405.​15_​GRCh38/​
seqs_​for_​align​ment_​pipel​ines.​ucsc_​ids/​GCA_​00000​1405.​15_​GRCh38_​no_​alt_​plus_​hs38d1_​analy​sis_​set.​fna.​gz. The
ground-truth variants used this paper are downloaded from ftp://​ftp.​ncbi.​nlm.​nih.​gov/​giab/​ftp/​data/​Ashke​nazim​Trio/​
analy​sis, ftp://​ftp-​trace.​ncbi.​nlm.​nih.​gov/​Refer​enceS​amples/​giab/​data/​Ashke​nazim​Trio/, and https://​ftp-​trace.​ncbi.​nlm.​
nih.​gov/​Refer​enceS​amples/​giab/​relea​se/​NA128​78_​HG001/, How this data is processed for different variant calling pipe-
lines is described in the Additional file 1 in detail.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication.
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Electrical and Computer Engineering, University of Illinois At Urbana-Champaign, Urbana, IL 61801, USA.
2 Biomedical Statistics and Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.

Received: 9 January 2021 Accepted: 30 July 2021

References
	1.	 Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, et al. Exome sequencing as a tool for Mende-

lian disease gene discovery. Nat Rev Genet. 2011;12(11):745–55.
	2.	 Dai J, Huang M, Amos CI, Hung RJ, Tardon A, Andrew A, et al. Genome-wide association study of INDELs identified

four novel susceptibility loci associated with lung cancer risk. International Journal of Cancer. 2019.

https://doi.org/10.1186/s12859-021-04311-4
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_plus_hs38d1_analysis_set.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis
ftp://ftp.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis
ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/NA12878_HG001/

Page 31 of 31Ramachandran et al. BMC Bioinformatics (2021) 22:404 	

	3.	 Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget.
2017;8(66):110635–49.

	4.	 Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, et al. Genome-wide genetic changes during modern breeding of
maize. Nat Genet. 2012;44(7):812–5.

	5.	 Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic varia-
tion. Nature. 2015;526(7571):68–74.

	6.	 Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, et al. Fast Mapping of Short Sequences with Mis-
matches, Insertions and Deletions Using Index Structures. PLOS Computational Biology. 2009; 5(9).

	7.	 Lee H, Schatz MC. Genomic dark matter. Bioinformatics. 2012;28(16):2097–105.
	8.	 Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read

sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37(10):1155–62.
	9.	 DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and

genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
	10.	 Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller

using deep neural networks. Nat Biotechnol. 2018;36(10):983–7.
	11.	 Luo R, Sedlazeck FJ, Lam TW, Schatz MC. A multi-task convolutional deep neural network for variant calling in single

molecule sequencing. Nat Commun. 2019;10(1):998.
	12.	 Wagner J, Olson ND, Harris L, Khan Z, Farek J, Mahmoud M, et al. Benchmarking challenging small variants with

linked and long reads. bioRxiv. 2020.
	13.	 Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun

ACM. 2017;60(6):84–90.
	14.	 Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi VF, Malinowski M, et al. Relational inductive biases,

deep learning, and graph networks. arXiv preprint https://​arxiv.​org/​abs/​1806.​01261. 2018.
	15.	 NIST. Genome in a Bottle. [Online].; 2012. Available from: https://​www.​nist.​gov/​progr​ams-​proje​cts/​genome-​bottle.
	16.	 Zook JM, McDaniel J, Olson ND, Wagner J, Parikh H, Heaton H, et al. An open resource for accurately benchmarking

small variant and reference calls. Nature Biotechnology. 2019;: 561–566.
	17.	 Google. Deepvariant Docker page. [Online]. [cited 2021. Available from: https://​hub.​docker.​com/r/​google/​deepv​

ariant.
	18.	 Broad Institute. [Online]. [cited 2021. Available from: https://​hub.​docker.​com/r/​broad​insti​tute/​gatk.
	19.	 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009;25(14):1754–60.
	20.	 Martin M, Patterson , (Shilpa) SG, Fischer S, Pisanti N, Klau GW, et al. WhatsHap: fast and accurate read-based phas-

ing. bioRxiv. 2016;: 85050.
	21.	 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools.

Bioinformatics. 2009;25(16):2078–9.
	22.	 Broadinstitute. Picard tools. [Online].; 2020. Available from: http://​broad​insti​tute.​github.​io/​picard/.
	23.	 Krusche P, Trigg L, Boutros PC, Mason CE, Vega FMDL, Moore BL, et al. Best practices for benchmarking germline

small-variant calls in human genomes. Nat Biotechnol. 2019;37(5):555–60.
	24.	 Broad-Institute. Germline short variant discovery. [Online].; 2020. Available from: https://​gatk.​broad​insti​tute.​org/​hc/​

en-​us/​artic​les/​36003​55359​32-​Germl​ine-​short-​varia​nt-​disco​very-​SNPs-​Indels-.
	25.	 Pacific-Biosciences. pbmm2 aligner for long reads. [Online].; 2020. Available from: https://​github.​com/​Pacif​icBio​scien​

ces/​pbmm2.
	26.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
	27.	 Fan X, Chaisson M, Nakhleh L, Chen K. HySA: a Hybrid Structural variant Assembly approach using next-generation

and single-molecule sequencing technologies. Genome Res. 2017;27(5):793–800.
	28.	 Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw.

1989;2(5):359–66.
	29.	 He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR); 2016. p. 770–778.
	30.	 Salimans T, Kingma DP. Weight normalization: a simple reparameterization to accelerate training of deep neural

networks. In NIPS’16 Proceedings of the 30th International Conference on Neural Information Processing Systems;
2016. p. 901–909.

	31.	 Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of The 32nd International Conference on Machine Learning; 2015. p. 448–456.

	32.	 Tange O. GNU Parallel: The Command-Line Power Tool. login Usenix Mag. 2011; 36.
	33.	 Volodymyr Kindratenko DM,Z,M,HH,R,X,C,P,G. HAL: Computer System for Scalable Deep Learning. Practice and

Experience in Advanced Research Computing. 2020;: 41–48.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1806.01261
https://www.nist.gov/programs-projects/genome-bottle
https://hub.docker.com/r/google/deepvariant
https://hub.docker.com/r/google/deepvariant
https://hub.docker.com/r/broadinstitute/gatk
http://broadinstitute.github.io/picard/
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://github.com/PacificBiosciences/pbmm2
https://github.com/PacificBiosciences/pbmm2

	HELLO: improved neural network architectures and methodologies for small variant calling
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Tool versions and training hardware
	Training datasets and training overview
	Evaluation datasets
	Evaluation results
	GIAB HG003 whole genome variant calling
	GIAB HG003 chromosomes 21–22 variant calling
	GIAB HG001 whole genome variant calling

	Other implementation considerations
	Execution speed, memory consumption and training time

	Use of GATK indel realigner

	Discussion
	Conclusions
	Methods
	DNN architecture
	Single-platform architecture
	Dual-platform (hybrid) architecture
	Details of DNN construction
	Variant calling pipeline
	Indel Realignment for short reads
	Determining hotspots
	Variant calling
	Preparing training data

	Availability and requirements
	Acknowledgements
	References

