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Background
The formation of various protein complexes is building blocks for nearly all physiologi-
cal processes [1–5]. The association rate ( kass ) which measures how fast proteins form 
a complex is of fundamental importance to characterize its function [6]. In a crowded 
environment of cells, different proteins might compete for their binding partners. The 
dynamics of a biological system is usually not under thermodynamic, but under kinetic 
control [7], in which the range of association rates for proteins in the system plays a 
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critical role. For instance, the binding kinetics between ligands and membrane recep-
tors control the speed of signal transduction after they are exposed to extracellular 
stimulations. The observed values of association rate constants span an extremely wide 
range with over ten orders of magnitudes [8–14]. Identification of association rates for 
binding between different proteins within this spectrum is essential for us to under-
stand their functional roles in signal transduction, transcriptional regulation, and many 
other cellular activities [15–18]. For instance, natural-killer (NK) cell receptor NKG2D 
(natural-killer group 2, member D) recognizes both cellular and viral ligands with the 
same binding interface, indicating that these ligands have to compete with each other for 
receptor binding when they coexist in the system [19]. The difference in association rates 
of receptor binding between cellular and viral ligands directly regulates the NK cytolytic 
activity. Another example is the difference in association of binding between receptor 
activator of nuclear factor-κB ligand (RANKL), and its receptor, receptor activator of 
nuclear factor-κB (RANK), from the binding to its competitor osteoprotegerin (OPG) 
[20]. Tthe difference in association rates of RANK binding between RANKL and OPG 
determines the ultimate rate of bone resorption. These examples highlight the signifi-
cance to quantitatively estimate protein–protein association rates.

Fortunately, nowadays a large variety of mature experimental techniques, such as 
surface plasma resonance (SPR) [21] and spectroscopic inhibition assay (IASP) [22], 
are available to measure rate constants of protein–protein interactions. Moreover, the 
information of many experimentally measured binding constants has been collected 
in different publically accessible databases. For an example, SKEMPI contains data on 
thermodynamic parameters and kinetic rate of more than one hundred protein–pro-
tein interactions and thousands of relevant mutations [23]. The structure of these pro-
tein complexes has also been solved and is available in the Protein Databank. These 
experimental data facilitate the development of computational approaches to model 
and predict protein–protein association, which are much less time-consuming and 
labor-intensive comparing with traditional experimental techniques. One type of these 
computational approaches, including molecular dynamic (MD) [24, 25] or Brownian 
dynamic (BD) simulations, is based on physics-based principles to reproduce the asso-
ciation processes between proteins [26–48]. These all atom-based methods, however, 
are computationally expensive. Different levels of coarse-grained (CG) models therefore 
have been developed to simplify protein structures [49]. These models have been applied 
to study protein folding and aggregation [50, 51]. In contrast, the other type of computa-
tional approaches utilized artificial-intelligence-based algorithms to predict association 
rate constants based on the chemical or structural features embedded in the binding 
interfaces of protein complexes [52, 53]. These prediction methods, however, are lack of 
the information that describes detailed mechanisms along the pathways of association.

Different from either type of above-mentioned computational methods, here we pre-
sent a platform that combines both biophysics-based simulations with bioinformat-
ics-based prediction to classify rates of protein–protein association presented in the 
SKEMPI database. A previously developed coarse-grained Monte-Carlo simulation 
(Fig. 1a) was used to generate a large number of protein–protein association trajecto-
ries [54]. In this method, each residue is simplified by its Cα atom plus a representative 
center on the side-chain. Random diffusions are carried out to a pair of initially separate 
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interacting proteins, under the guidance of a simple physics-based force field. The prob-
abilities of association can thus be calculated by counting the frequency of forming the 
encounter complex between these two proteins among a large number of simulation 
trajectories. The back propagation neural network algorithm (Fig. 1b) was then applied 
to classify the probabilities of association that were derived from these coarse-grained 
simulations. Based on the cross-validation results, we show that this method can achieve 
the best performance with specificity, precision, sensitivity and overall accuracy all 

Fig. 1  The flowchart of the overall computational procedure. A coarse-grained Monte-Carlo simulation was 
used to generate a large number of protein–protein association trajectories (a). Based on counting how many 
encounter complexes were formed among all the trajectories, the association probability can be derived. 
Simulations are further carried out under different values of distance cutoff, so that a profile of association 
probabilities was generated for each protein complex in the benchmark set. Using these association profiles 
as input, a back propagation neural network algorithm was then applied to classify whether the association 
rate of a protein complex is higher than a predefined threshold (b)



Page 4 of 20Dhusia and Wu ﻿BMC Bioinformatics          (2021) 22:408 

higher than 70%. Given an independent testing set, we can further successfully predict 
the group of association rates for eight protein complexes out of ten. Finally, the analy-
sis of failed cases suggests the future implementation of conformational dynamics into 
simulation can further improve model. In summary, this study indicates that a new mod-
eling framework using tools of biophysical informatics is able to identify protein–protein 
interactions with low association rates from those with higher association rates. This 
method serves as a useful addition to a collection of existing experimental approaches 
that measure biomolecular recognition.

Results
We first applied kinetic Monte-Carlo (kMC) method to estimate the probability of asso-
ciation under different initial separation for each protein complex in a large-scale bench-
mark set. The detailed information about the construction of this benchmark and the 
algorithm of the kMC simulation can be found in the “Methods”. Specifically, for each 
of the 102 protein complex systems, a large number of simulation trajectories were gen-
erated. As the initial conformation of each trajectory, the residue-based coarse-grained 
models of two binding partners in a complex were individually placed with a random 
position relative to each other, in which the distance between their binding interfaces is 
fallen within a cutoff value dc. We systematically tested ten different values of distance 
cutoff from 16 to 25  Å. For each value of dc, 103 simulation trajectories were carried 
out. The initial conformations in these trajectories are different from each other. After 
the initial conformation, as described in the “Methods”, diffusions of each binding are 
guided by the intermolecular energies which contain both hydrophobic effect and elec-
trostatic interactions. At the end of all these trajectories, two binding partners either 
form an encounter complex through the pre-defined association criteria, or diffuse fur-
ther apart from each other. Based on the simulation results collected from all the trajec-
tories, the association probability under a given a specific value of dc can be calculated 
for each complex in the benchmark set.

Among all the 102 protein complexes, we successfully generated all 103 simulation 
trajectories for 96 complexes under all 10 distance cutoff values, and failed to complete 
all the simulation runs for 6 complexes. As a result, these 6 systems were not consid-
ered in the following study. For the remaining 96 systems, the relation between dc and its 
corresponding association probability was used as the basis for further study, in which 
neural network model will be used to differentiate association rates between various 
protein complexes. The relations between different values of dc and association prob-
abilities were selected and plotted in Fig. 2a for four representative systems. They are: 
E9 DNase domain of Colicin Endonucleases in complex with immunity protein Im9 
(PDB 2VLN); human acetylcholinesterase in complex with the snake-venom toxin fas-
ciculin-II (PDB 1B41); human prolactin receptor antagonist H27A in complex with the 
extracellular domain of the human prolactin receptor (PDB 3N06); and the HLA class 
I histocompatibility antigen in complex with β-2 microglobulin (PDB 2VLR). The cor-
responding structures of these complexes are shown in Fig. 2b–e. Two binding partners 
in the complexes are indexed in red and green, respectively. Their PDB identities and 
experimentally measured association rates are also listed in the bottom. Figure 2a shows 
that probabilities of association drop for all the four systems when the distance cutoff 
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increases, suggesting that complexes are more difficult to form if the initial separation 
of two binding partners are farther away from each other in the beginning. Moreover, 
the figure shows that the overall association probabilities for the complexes with larger 
values of experimental association rates are higher than the complexes with smaller val-
ues of experimental association rates. For instance, the overall association probabilities 
of complex 2VLN are higher than the other three complexes in Fig. 2a, while the asso-
ciation probabilities of complex 2VLR is the lowest. Correspondingly, the experimental 
association rate of 2VLN is 1 × 108 M−1 s−1, the highest among these four systems. Simi-
larly, the experimental association rate of 2VLR is the slowest (5 × 104 M−1 s−1).

To generalize our study, we further tested the correlation between simulated associa-
tion probabilities and their experimental measurements for all 96 protein complexes in 
the benchmark under different distance cutoff values (Fig. 3). All association probabili-
ties of 96 protein complexes with a distance cutoff of 16 Å are plotted as circles in Fig. 3a. 
The y axis in the figure indicates the simulated association probabilities and x axis is the 

Fig. 2  The outputs from the kinetic Monte-Carlo simulations. For each complex, a large number of 
simulation trajectories were generated under ten different values of distance cutoff. The plot (a) shows the 
relations between distance cutoff and association probabilities for four selected systems. They are E9 DNase 
domain of Colicin Endonucleases in complex with immunity protein Im9 (b); human acetylcholinesterase in 
complex with the snake-venom toxin fasciculin-II (c); human prolactin receptor antagonist H27A in complex 
with the extracellular domain of the human prolactin receptor (d); and the HLA class I histocompatibility 
antigen in complex with β-2 microglobulin (e). Their PDB identities and experimentally measured association 
rates are listed in the bottom
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experimental data with the scale in common logarithm. Similarly, the association prob-
abilities with a distance cutoff of 18 Å are plotted in Fig. 3b, while the association prob-
abilities with a distance cutoff of 25 Å are plotted in Fig. 3c. When the distance cutoff 
increases, we found that the association probabilities drop for most protein complexes 
in the benchmark, which is consistent with the results reflected from Fig. 2a. Moreo-
ver, the Pearson’s correlation coefficient (PCC) for all protein complexes between their 
simulated association probabilities and experimentally derived association rates were 
calculated under different distance cutoff. These PCC values are plotted as histogram 
in Fig. 3d. Positive PCC values were observed under all distance cutoff. The PCC equals 
0.43 when distance cutoff is 16 Å (Fig. 3a). It increases to the maximal value of 0.52 when 
distance cutoff equals 18 Å (Fig. 3b). Afterwards, the level of PCC becomes lower and 
it equals 0.39 when distance cutoff finally reaches 25 Å (Fig. 3c), These positive corre-
lations suggest that the Monte-Carlo simulations on average can distinguish fast from 
slow kinetics within a wide range of protein–protein associations.

On the other hand, we also noticed that these positive correlations are only moder-
ate. More specifically, there are still a large number of outliers with high simulated 
association probabilities but low experimentally measured association rates, or with 
low simulated association probabilities but high experimentally measured associa-
tion rates. However, it is worth mentioning that these association probabilities were 
derived from different distance cutoff. The association of a protein complex is a com-
plicated process, and the pathways in the association of different protein complexes 

Fig. 3  The correlations between simulated association probabilities and their corresponding experimental 
measurements. In specific, the correlation between simulated association probabilities and experimental 
association rates for all 96 protein complexes given a distance cutoff of 16 Å, 18 Å, and 25 Å are plotted in (a), 
(b), and (c), respectively. To compare simulated association probabilities with experimental association rates 
on a more quantitative level, we further calculated the Pearson correlation coefficient (PCC) between these 
two data sets as a function of distance cutoff (d)
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are case-dependent. It is possible that a protein complex with low experimental 
association rates but has high simulated association probabilities at certain distance 
cutoff, or vice versa. Instead of focusing on the association probabilities under sin-
gle distance cutoff, it would be more informative to compare association probabilities 
from different distance cutoff values. As shown in Fig.  1, the association profile for 
a protein complex delineates the variations of association probabilities under differ-
ent distance cutoff. We hypothesize that features of association pathways for different 
protein complexes can be reflected by the patterns of these association profiles. More-
over, these high-dimensional patterns can be identified from each other by methods 
that are beyond the physics-based simulations. As a result, a neural-network-based 
classification model was further integrated into our coarse-grained simulation results 
to give a systematic estimation on how associations of different protein complexes 
within this wide range of rate constants can be identified with each other.

In detail, a feedforward back-propagation algorithm was utilized to estimate 
whether the association rate of a protein complex is higher or lower than a predefined 
threshold. In specific, the input of the classification model is in ten dimensions, which 
are the association profile of a protein complex that was generated from kMC simula-
tion with the distance cutoff values between 16 and 25 Å (Fig. 1a), while the binary 
output of the model is simply the information about if the association rate of the 
complex is higher than the threshold or not. As described in the “Methods”, a leave-
one-out cross-validation strategy has been applied to classify all protein complexes 
in the benchmark set. In order to calibrate the performance of the cross-validation, 
we respectively counted the numbers of true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) from the classification results. A TP or TN is 
recognized if we correctly classified a protein complex which experimental associa-
tion rate is higher or lower than the threshold, respectively. Relatively, a FP or FN is 
recognized if a protein complex is classified higher or lower than the threshold but 
its actual experimental association rate is on the opposite side of the threshold. Our 
results are shown in Fig. 4a as a function of the threshold values. The figure indicates 
that while the value of threshold becomes larger, the number of TP decreases and the 
number of TN increases monotonously. On the other hand, the number of FP and FN 
increase at the beginning but decrease later.

The values of sensitivity (TP/(TP + FN)), specificity (TN/(TN + FP)), precision (TP/
(TP + FP)), and overall accuracy ((TP + TN)/(TP + TN + FP + FN)) were further cal-
culated [55]. Figure  4b plots the calculated results under different threshold values. 
The x-axis in the figure is the threshold of association rate under logarithm scale, 
while the sensitivity, specificity, precision and overall accuracy are shown in black, 
red, blue and green along the y-axis, respectively. Figure 4b indicates that the sensi-
tivity and precision decrease to 0, while the specificity increases to the maximal level 
along with the raise of threshold from small to large values. This is because under 
larger values of threshold, fewer protein complexes are classified as TP (the experi-
mental association rates higher than the threshold). Based on the definitions of sensi-
tivity and precision, in which TP is presented as numerator, their values are negatively 
correlated with the increase of threshold. On the other hand, under larger values of 
threshold, more protein complexes are classified as TN (the experimental association 
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rates lower than the threshold). Based on the definition of specificity, in which TN 
is presented as numerator, its values are positively correlated with the increase of 
threshold.

Figure  4b shows that, when the threshold equals 4 × 105  M−1  s−1, corresponding to 
the logarithm value of 5.6 in the figure, the system achieves the optimal performance 
in which specificity, precision, sensitivity and accuracy all higher than 70%. Among all 
the 96 protein complexes in the benchmark set, there are 43 complexes which experi-
mental association rates are lower than this optimal threshold and 53 complexes 

Fig. 4  The overall performance of neural-network-based classification. We plotted the true positive, true 
negative, false positive and false negative (a), as well as the specificity, sensitivity, precision and overall 
accuracy (b) as a function of classification threshold. We also compared the true positive rate with the false 
positive rate from the classification results under different threshold values. The results correspond to a 
receiver operating characteristic (ROC) curve, as shown in (c). Finally, we found that the classification accuracy 
has a positive correlation with the confidence score offered by the neural network model (d)
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which experimental association rates are higher than the cutoff. Therefore, optimal 
performance was obtained when the testing set fall into two classes which sizes are 
relatively close to each other. Moreover, the neural network model can provide a con-
fidence score (between 0 and 1) for each classification. Therefore, under the threshold 
of 4 × 105  M−1  s−1, we further broke down the accuracy of classification into different 
intervals of confidence score. As shown in Fig. 4d, the classification accuracy has a posi-
tive correlation with the model confidence score. For those protein complexes that were 
classified by the model with high confidence score (higher than 0.8), the best accuracy 
of 77% can be achieved. The individual cross-validation results based on the optimal 
threshold are summarized by Table S2 in the Additional file 1 for all protein complexes 
in the benchmark, and can also be found at https://​github.​com/​wulab-​github/​KonPr​ed.

A statistical analysis has further been carried out to test the classification results. In 
detail, after cross-validation was performed to all protein complexes in the benchmark 
for a given threshold, we also investigated the correlation between true positive rate 
(TPR) and false positive rate (FPR) from the classification results. The TPR is equiva-
lent to sensitivity, based on the definition. The FPR, on the other hand, is defined as the 
ratio between the total number of FP versus the summation of FP and TN. Practically, 
both TPR and FPR are covariant with the choice of threshold. We thus changed the 
value of the threshold gradually from 1 × 104 to 1 × 109 M−1 s−1 and monitored the cor-
related changes between TPR and FPR, leading into a collection of points as shown in 
Fig. 4c. Statistically, these points correspond to a receiver operating characteristic (ROC) 
curve [56, 57], and are compared with the red diagonal which is known as the line of no-
discrimination indicating that the test is completely based on random guess. Figure 4c 
shows that the TPRs under all different values of threshold are consistently higher than 
the FPRs. For instance, we obtained a TPR of 0.7 when FPR equals 0.3. Therefore, the 
ROC curve represents the good quality of our classification data.

In order to assess how significantly our obtained classification performance can be 
distinguished from random estimation, we carried out predictions with two different 
models. In one model, predictions were made by our neural-network-based classifica-
tion method with the optimal threshold. In the control model, predictions were made 
purely by random guessing. Each protein complex was randomly assigned either higher 
or lower than the optimal threshold with equal probabilities. Predictions were carried 
out for all 96 protein complexes in the benchmark. This process was repeated 100 times 
for both models. After the predictions, the values of sensitivity, specificity, precision and 
accuracy were calculated, which distributions were plotted and compared in Additional 
file 1: Figure S1. The black histograms in the figure are the distribution from the predic-
tions based on our neural-network model, while the red histograms are the distribution 
from random estimation. The average values and corresponding standard deviations can 
be found in Additional file 1: Table S1. Student’s t-tests were further performed to testify 
the statistical significance in the difference between the prediction results of two models. 
The null hypothesis that no significant difference exists between the results from these 
two models was tested at a 95% confidence interval. Consequently, the derived t-scores 
equal 21.79, 25.15, 34.71 and 35.88, in the comparison of sensitivity, specificity, preci-
sion and accuracy, respectively. The corresponding P values for all these tests are less 
than 0.0001. Therefore, the small P value for the t-test suggests that we can reject the 

https://github.com/wulab-github/KonPred
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null hypothesis and accept the alternative hypothesis, i.e., the differences between the 
outputs generated from our neural-network-based model and the outputs generated by 
random guessing are significant.

In summary, the statistical analysis on the cross-validation results demonstrated that 
we are able to identify protein complexes with high association rates from others with 
low association rates using a reliable and accurate model that combines biophysics-
based simulations and machine-learning-based bioinformatics algorithm.

Although our test proved that the association profiles for most protein complexes can 
be successfully recognized, there are still possibilities that complexes were classified 
into wrong groups. Figure 5 shows two individual cases in which our method failed to 
generate the correct output. One is cytokine Interleukin-13 (IL-13) in complex with its 
receptor IL-13 Receptor α2 (IL-13Rα2) (PDB 3LB6), while the other is an engineered 
outer domain of envelope glycoprotein GP120 from human immunodeficiency virus 1 
(HIV-1) in complex with a VRC01-class broadly neutralizing antibodies (bNAbs) (PDB 
4JPK). The association profiles of these two protein complexes generated from kMC sim-
ulations are plotted in Fig. 5a. The figure shows that the overall simulated association 
probabilities of 4JPK (black squares) are much higher than 3LB6 (red dots), although 
the experimentally measured association rate of 4JPK (1.5 × 104 M−1 s−1) is much slower 

Fig. 5  The individual cases in which our method failed to generate the correct output. The plot (a) shows 
the relations between distance cutoff and association probabilities for these two systems. They are: cytokine 
Interleukin-13 (IL-13) in complex with its receptor IL-13 Receptor α2 (IL-13Rα2) (b), and an engineered 
outer domain of envelope glycoprotein GP120 from human immunodeficiency virus 1 in complex with a 
VRC01-class broadly neutralizing antibodies (c). The corresponding structures of two binding partners in 
the complexes are indexed in red and green, while the flexible regions that undergo large conformational 
fluctuations are highlighted in gray. Their PDB identities and experimentally measured association rates are 
also listed in the bottom



Page 11 of 20Dhusia and Wu ﻿BMC Bioinformatics          (2021) 22:408 	

than 3LB6 (1 × 108 M−1 s−1). As a result, neither 4JPK nor 3LB6 has been classified into 
the correct group by neural network model. The association rate of 4JPK was identi-
fied to be above the threshold 4 × 105  M−1  s−1, while the association rate of 3LB6 was 
identified to be below the threshold. In order to explore the reason why our simulations 
generated the results that are opposite to the experimental measurements, we plot-
ted the structures of these two complexes in Fig.  5b, c. Figure  5b shows the complex 
3LB6, in which the cytokine is shown in red and the receptor is shown in green. IL-13 
is important for the development of T helper cell type 2 (Th2) responses and plays a 
critical role in asthma and allergy. Its interaction with the receptor IL-13Rα2 has high 
association rate and binding affinity. The structure of the cytokine-receptor complex 
in Fig. 5b shows that the receptor has three fibronectin domains connected by domain 
linkers which are highlighted in grey in the figure. The binding interfaces in the recep-
tor to the cytokine are equally distributed on all its three domains. It has been suggested 
that associations of multi-domain proteins with flexible linkers are completed through a 
multistep “dock-and-coalesce” mechanism [4, 58, 59]. Association can be greatly acceler-
ated by this mechanism, in which the conformational flexibility of proteins plays a criti-
cal role. The intramolecular flexibility is neglected in our kMC simulations. This could 
be the reason that our estimated association rated is much lower than the real value. 
On the contrary, the recognition of GP120 outer domain (red in Fig. 5c) by the antibody 
(green in Fig. 5c) is close regulated by the hypervariable loops at the binding interface of 
the antibody [60], as highlighted by grey in the figure. The local conformational dynam-
ics of the flexible loops at the binding interface can impede its association with the viral 
protein. Similarly, because the intramolecular flexibility is neglected in our kMC sim-
ulations, which could result in the result that our estimated association rated is much 
higher than the real value. As a result, our test highlighted the importance of protein 
local dynamics and global conformational changes in regulating the protein–protein 
association. Our method can potentially be improved in the future by the implementa-
tion of conformational dynamics into the kMC simulation.

To further test the stability of our classification model and rule out the possibil-
ity of over-fitting, an additional test set consisting of 10 protein complexes was inde-
pendently collected. The detailed information of these complexes can be found in the 
Table 1. Under each of the 10 different distance cutoff values from 16 to 25 Å, multiple 

Table 1  The detailed information of an independent test set

PDB ID Chain 1 Chain 2 Ionic strength 
(M)

Correctly 
classified?

kon (exp.) (M−1 s−1)

1KAC A B 0.16 Y 7.30E+04

1SBB A B 0.16 Y 1.00E+05

2I25 N L 0.16 N 9.00E+04

2J0T A D 0.23 Y 2.40E+04

2A22 A B 0.025 Y 1.50E+05

1EWY A C 0.31 Y 4.00E+07

1SGN E I 0.26 N 1.20E+06

1TLU A B 0.01 Y 5.60E+06

1UDI E I 0.08 Y 1.50E+08

7CEI A B 0.25 Y 7.60E+08
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trajectories (103) were carried out with different random initial configurations based on 
the reported ionic strength. Their corresponding association profiles were then calcu-
lated from the simulations. Using these profiles as inputs, the neural network model was 
further utilized to estimate whether the association rates of these 10 protein complexes 
are higher or lower than the optimized threshold (4 × 105 M−1 s−1). During the classifica-
tion, the association profiles of all the 96 protein complexes in the benchmark and their 
corresponding experimental association rates were treated as the training set, while each 
of the 10 protein complexes was fed into the neural network for testing. The prediction 
was further compared with the real experimental data. As a result, we found that we can 
correctly predict if the association rates are faster or slower than the threshold for eight 
protein complexes out of ten, consistent with the cross-validation results.

Our prediction results are summarized in Fig. 6. The association profiles of 8 success-
fully predicted cases are plotted in Fig. 6a, while the rest 2 incorrectly predicted cases 
(2I25 and 1SGN) are plotted in Fig. 6b. The profiles with experimental association rates 
higher than the threshold are shown in red, while the profiles with experimental rates 
lower than the threshold are shown in black. The association profiles of complexes 
1EWY, 1UDI and 7CEI are the highest among all the ten and thus can be easily identi-
fied. The association profile of complex 1TLU (red squares in Fig. 6a), on the other hand, 
is mixed with the profiles of the other class, but still was successfully recognized. Finally, 
the association profile of complex 1SGN (red circles in Fig. 6b) is lower than all the other 
complexes, although its experimentally measured rate constant is 1.2 × 106 M−1 s−1. Not 
surprisingly, it has been incorrectly assigned to the class with association rate below 
the threshold. 1SGN is a complex formed between protein Ovomucoid and Streptog-
risin B. A closer structural inspection indicates that the interaction of the complex is 
formed through an inter-molecular β-sheet (Fig.  6c). Without forming complex, the 

Fig. 6  The classification results of an independent test set. The association profiles of 8 successfully predicted 
cases are plotted in (a), while the rest 2 incorrectly predicted cases (2I25 and 1SGN) are plotted in (b). 
Moreover, the structure of a complex (1SGN) that we failed in classification is shown in (c)
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β-strand from the protein Ovomucoid (red in Fig. 6c) might exist as an intrinsic disor-
dered region (highlighted in gray). This conformational transition upon association can-
not be considered in our simulations, and the association rate of the complex thus was 
underestimated. Taken together, our independent test demonstrated the stability of our 
computational method in protein–protein association rate classification and there is no 
over-fitting in the leave-one-out cross-validation procedure.

Discussion
A periodic boundary condition was applied in our previous simulation study. As a result, 
the association rates were directly derived based on the predefined volume of simulation 
box. However, significant overestimation was observed for a group of protein complexes, 
comparing the calculated association rates with their experimental values. We assume 
that the effect of long-rang interactions between proteins on their association might not 
be appropriately captured by fixing the size of simulation box. Therefore, a new strategy 
was adopted in current study. Instead of using the periodic boundary condition, a pair 
of interacting proteins can freely diffuse from different distance cutoffs, and the prob-
abilities of forming an encounter complex were then separately calculated. These high-
dimensional profiles of association probability for different protein complexes were then 
characterized by artificial intelligence so that their association rates can be classified 
based on the experimental observations. As we mentioned in the introduction, these 
experimentally observed association rates form an extremely wide spectrum. If we can 
predict the range of association rates for a protein–protein interaction, it would help us 
understand its biological function in the cellular context.

There are still some limitations in the current model which can be improved in the 
future. First, when we generated initial conformations, we separated two binding part-
ners of a protein complex and calculated the distance between residues in their native 
binding interfaces. Similarly, when we judged if encounter complexes have been formed 
or not, we checked if the native-like inter-molecular interactions have been restored. In 
another word, the basis of our method is that we have already known the structure of a 
protein complex which association rate is unknown and needs to be predicted. In order 
to apply our method to protein complexes with unknown structures, computational 
modeling methods such as TACOS [61] can be integrated into our prediction prior to 
our Monte-Carlo simulations to construct the initial structural models of query protein 
complexes. Second, when we set up initial configurations, the distance between binding 
interfaces is used as the only criterion. Other characteristics of protein complexes such 
their sizes or the chemical properties on the binding interfaces were neglected in current 
study. How these features embedded in the ensemble of initial conformations and how 
they specifically regulate the association of different protein complexes will be consid-
ered in the future.

Finally, in current study the results from the Monte-Carlo simulations are used as the 
only inputs of the neural network classification. Features like the structural characteris-
tics of the protein complexes at their binding interfaces including size, charge distribu-
tion, hydrophobicity, or intrinsic flexibility can also be added to enrich the inputs, which 
could allow the neural network to extract some additional patterns. As a preliminary 
test, the information about the number of intermolecular contacts between residues 
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at native binding interface was used as an independent dimension to train the neural 
network, together with the original inputs from Monte-Carlo simulations. The testing 
results show that it did not improve the prediction (Additional file 1: Figure S6a), prob-
ably due to the low correlation between the numbers of native contacts and the experi-
mental association rates (Additional file 1: Figure S6b). Therefore, input features need to 
be carefully selected in the future to ensure more meaningful outputs from the neural 
network model.

On the other side of the model, only the position with respect to a threshold value 
can be predicted from current study. The method will definitely be much more useful 
if a richer output, such as more specific ranges or values of association rates, can be 
given. In order to reach this goal, more sophisticated algorithms of artificial intelligent 
such as support vector regression will be implemented into our prediction framework 
[62]. However, we need to point out that estimating whether the rates of association are 
faster or slower than a threshold alone can still be important to understand the molecu-
lar mechanism of protein–protein interactions. Previous works showed that the associa-
tion rate constant of forming transient complexes purely via unbiased diffusions is on 
the level of 105 M−1 s−1 [41, 63, 64], corresponding to the optimal threshold in current 
study. The real values of association rate higher than this “basal” rate constant are origi-
nated from the intermolecular interactions in a protein complex such as the long-range 
electrostatic attraction. As a result, the association rates calculated from computational 
models that can differ from several orders of magnitude, such as the method developed 
in this study, can thus help us characterize the chemical features at the binding inter-
faces in different protein complexes.

Conclusion
Protein–protein interactions underlie many important biological processes [65–67]. The 
quantitative estimation of how fast these interactions can be formed has broad implica-
tions to protein design [68] and drug discovery [69]. The improvement of experimental 
techniques and the collection of high-throughput experimental data on protein–protein 
association facilitate the development of computational approaches to model and pre-
dict association rates. In this article, by integrating a coarse-grained simulation approach 
into a neural-network-based classification model, we proposed a biophysical informat-
ics platform to estimate whether the association rate of a protein complex is higher 
than a predefined threshold or not. This platform has been tested against a large-scale 
protein complex benchmark selected from the SKEMPI database. The cross-validation 
results show that, when an optimal threshold was selected, we can reach the best per-
formance with specificity, precision, sensitivity and overall accuracy all higher than 70%. 
The quality of our cross-validation data has further been testified by the statistical analy-
sis of ROC curve. By looking into the individual cases in which our method failed to 
classify the protein complexes into their corresponding groups of association rates, we 
suggest that our model can be improved in the future by implementing the conforma-
tional dynamics of proteins into the simulations of their association. Finally, given an 
independent testing set containing ten additional protein complexes, we can successfully 
predict the group of their association rates for eight. Taken together, our computational 
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model serves as a useful addition to a collection of existing experimental approaches 
that measure protein–protein association rates.

Methods
The collection of protein complex benchmark set for rate classification from SKEMPI

The experimental data of protein–protein association rates used in this study were 
derived from the SKEMPI database. It is a comprehensive database that contains not 
only the absolute values but also the changes of binding constants for wild-type and 
mutated protein complexes. Similar information was also provided in a previous bench-
mark study, in which the structures and binding affinities of 179 protein complexes were 
included [70]. The most updated version, SKEMPI 2.0, includes data of 345 wild-type 
protein complexes and their 7085 associated mutants [71]. All these data is available 
online at https://​life.​bsc.​es/​pid/​skemp​i2/. The structures of all the wild-type complexes 
in the database are also available in the protein databank, while the structures of mutants 
were computationally modeled and can be downloaded from the database. In order to 
avoid second-ordered error in our simulations, only wild-type protein complexes were 
considered in this study. Moreover, among all the 345 wild-type protein complexes, 
only 114 contain the information of association rates. Most of these rate constants were 
measured using SPR or IASP.

For these 114 entries, we further removed the protein complexes with non-consist-
ent experimental data of association rates that were collected from different studies. 
The protein complexes with irregular binding interfaces or untypical association path-
ways were also eliminated from the final benchmark. For instance, the complex formed 
between transcriptional coactivator CBP/p300 and nuclear receptor p160 (PDB 1KBH) 
exists as a cooperatively folded helical heterodimer. The association of this type of com-
plexes cannot be simulated by our method. They are thus excluded in the study. Conse-
quently, the number of protein complexes in the benchmark has further been narrowed 
down from 114 to 102. Coarse-grained Monte-Carlo simulations were carried out for 
protein complexes of all these remaining entries. However, we only successfully gener-
ated simulation trajectories under all different values of distance cutoff for 96 out of 102 
protein complexes. The PDB of six entries which failed to complete all the simulation 
runs are: 1A4Y; 1WQJ; 2B42; 2NY7; 3BT1; and 4K71. Simulations in these systems were 
aborted under small values of distance cutoff. As a result, a total number of 96 protein 
complexes were passed into our final prediction model by feeding them into the neural 
network for association-rate classification. Detailed information about this benchmark 
set can be found at https://​github.​com/​wulab-​github/​KonPr​ed.

A residue‑based Monte‑Carlo algorithm for simulating association between proteins

For each given protein complex in the benchmark, the process of its association from 
separated binding partners was modeled by a previously developed kinetic Monte-
Carlo simulation method. In specific, a coarse-grained model of protein structures is 
used in the simulation. Comparing with other previous coarse-grained models in which 
protein sidechains were grouped into either one [72] or multiple beads [73], each resi-
due of a protein here is represented by the Cα atom plus the representative center of 
its side-chain which is selected based on the specific properties of the amino acid. The 

https://life.bsc.es/pid/skempi2/
https://github.com/wulab-github/KonPred
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simulation starts from an initial conformation, in which two separated binding partners 
of a protein complex are placed randomly whereas their corresponding binding inter-
faces are separated under the range of a given distance cutoff dc [74]. Specifically, this is 
calculated as the distance between the centers of mass of all residues within the known 
interfaces of two binding partners. Moreover, when we generated the initial conforma-
tion, the relative orientations between two binding partners were left as random. Follow-
ing the initial conformation, each protein diffuses randomly within one simulation step. 
A physics-based scoring function is used to guide the diffusions of proteins during sim-
ulations. The scoring function contains a term evaluating the electrostatic interaction 
which was adopted from the Kim-Hummer model [75, 76], as well as a term estimating 
the hydrophobic effect between proteins which was taken from a previous study by Kyte 
and Doolittle [77]. Based on the calculated energy, Metropolis criterion [78] is applied 
to determine the probability that accepts the corresponding diffusional movements. The 
simulation trajectory will be terminated if an encounter complex is formed at the end of 
each simulation step through the corresponding interface. Otherwise, above simulation 
procedure will be repeated until it reached the maximal time duration.

Practically, this simulation algorithm is performed in parallel under 10 different dis-
tance cutoffs from 16 to 25 Å (Fig. 1a). If the distance cutoff is set to be smaller than 
16 Å, the separations of the binding interfaces between two interacting proteins will not 
be far away enough, which leads into stereochemical clashes during the generation of 
initial configurations for some protein complexes in the benchmark. On the other hand, 
the association probability drops along with the increase of distance cutoff. As shown in 
Fig. 3c, the association probabilities for most protein complexes in the benchmark have 
already reached to 0 when the distance cutoff equals 25 Å. It would be less meaningful 
if we spend computational resources in simulations with further larger distance cutoff. 
As a result, simulations in this study were carried out using distance cutoff within the 
range between 16 and 25  Å. Given a specific value of distance cutoff, 103 trajectories 
are carried out. Each trajectory consists of 103 steps and each step is 0.01 ns, so that the 
total simulation time for each trajectory is 10 ns. Moreover, each trajectory starts from a 
relatively different initial conformation, including different relative orientation between 
the interfaces of two binding partners. However, their initial distances are all below the 
given cutoff value in these trajectories.

Encounter complexes can be successfully formed within some of these 103 trajectories, 
while proteins diffuse away from each other at the end of other trajectories (Fig. 1a). We 
assume that an encounter complex can be formed when there are at least three native 
contacts restored in the complex. An intermolecular interaction formed between two 
residues is considered to be restored if the distance between the representative centers 
of these two residues is less than 2  Å from the distance observed in the native struc-
ture of the protein complex. Based on counting how many encounter complexes formed 
among all the 103 trajectories, the probability of association under each specific value of 
distance cutoff can be derived. Finally, the association profile of a protein complex con-
sists of a total dimension of 10 probabilities, which correspond to the calculated associa-
tion probabilities under the distance cutoffs from 16 to 25 Å. As a result, these profiles 
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for all the protein complexes from the benchmark will be fed into the neural network 
model as input for association rate classification (Fig. 1a).

The reliability of the method to model protein–protein association has further been 
validated by systematically adjusting the simulation parameters. Details about the model 
validation can be found in the Additional file 1.

Neural‑network‑based classification of protein–protein association rates

A feedforward back-propagation network was implemented to classify protein–protein 
association rates. For a specific protein complex, the input neurons of the network are 
in ten dimensions. As described in the last section, each dimension gives the probability 
of association that was calculated from the Monte-Carlo simulation under the distance 
cutoff from 16 to 25 Å. With the given inputs of association profile (Fig. 1b), the output 
is in one dimension, which informs whether the association rate is higher than a pre-
defined threshold or not (Fig.  1b). The network further contains a single hidden layer 
with four neurons. A sigmoid activation function was adopted. Weight of each neuron 
is modified using the back-propagation learning algorithm with a sum of square error 
function [74]. The magnitude of the error sum in the learning process is monitored in 
each cycle. The learning is terminated when the network converges.

In order to calibrate the classification performance, the leave-one-out cross-validation 
strategy was applied to the benchmark set. During the cross-validation, one protein 
complex was selected from the benchmark for testing, while the remaining 95 entries 
were considered as the training set. The complexes in the training set were assigned 
into two classes based on comparing the experimentally determined association rate of 
each complex with the threshold. A complex belongs to class one if its association rate 
is lower than the threshold, otherwise it belongs to class two. Both inputs and outputs 
of training set were fed into the neural network model. After training, the association 
profile of the selected testing protein complex was used as input for prediction. The 
predicted outcome was compared with the real association rate. After above procedure 
is gone through all protein complexes in the benchmark for testing, the overall perfor-
mance of classification can be attained by calculating the true positive rate (TPR) and 
false positive rate (FPR) from the summary of each individual complex, as well as the 
specificity, sensitivity, precision and accuracy of the overall prediction. Detailed evalua-
tion of our cross-validation results is described in the “Results and Discussions”.

The classification program is available for download at: https://​github.​com/​wulab-​
github/​KonPr​ed. This package contains an executable file predicting if the association 
rate of two binding partners in an input protein complex is higher than a predefined 
threshold. It also contains the list of 96 protein complexes in the benchmark set and 
their calculated association profiles used as input for the neural network model. The 
package offers an instruction and a demonstration example (PDB 7CEI) of how to obtain 
the prediction with the templates of both input and output files. The program work on a 
Linux platform and downloading is free for academic users.

https://github.com/wulab-github/KonPred
https://github.com/wulab-github/KonPred


Page 18 of 20Dhusia and Wu ﻿BMC Bioinformatics          (2021) 22:408 

Abbreviation
SKEMPI: Structural database of kinetics and energetics of mutant protein interactions.
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