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Background
Next generation sequencing (NGS) technologies have become increasingly a standard 
application for large-scale DNA sequencing because of their high throughput and cost-
effectiveness. Both targeted sequencing (TS) and whole‐exome sequencing (WES) are 
used as effective assays to detect single-nucleotide variations (SNVs) and small insertion 
and deletion (indels) [1–5]. Copy-Number Variants (CNV) have been associated with a 
wide collection of diseases including Parkinson [6, 7], Autism [8, 9], or Alzheimer [10] 
and some were proven to be the genetic cause of several hereditary diseases [11]. How-
ever, accurate detection of copy-number variants (CNV) from NGS data is still chal-
lenging due to several technical issues including short read length and GC-content bias 
[12]. Furthermore, compared to whole-genome sequencing (WGS), TS and WES data 
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introduce more biases due to hybridization and to a non-uniform read-depth distribu-
tion among regions [13–15] that make CNV detection even more difficult. Nevertheless, 
TS and WES can offer greater depth at a lower price and a faster and less complex data 
analysis.

Many tools have been developed for CNV detection using TS or WES data [13, 16–
20]. Among them there is DECoN [18], which has shown a high performance with NGS 
panel data [21, 22]. DECoN is based on read depth data to call CNV and is the result of 
modification and optimization of ExomeDepth v1.0.0 [16]. However, its performance is 
highly dependent on the selected parameters which should be tuned for each specific 
dataset to maximize sensitivity [22] and should not be used directly with data produced 
differently, i.e. with different sequencing technologies, targeting probes or capture pro-
tocol [22].

Parameter optimization can be performed using an optimizer from the CNVbench-
markeR framework [22]. However, the parameter optimization process requires a CNV 
validation set, which is usually generated using either multiplex ligation-dependent 
probe amplification (MLPA) or array comparative genomic hybridization (aCGH). They 
are the gold standard methods [23], but both are time-consuming and costly approaches.

Here we present the isoCNV pipeline, which performs in silico optimization of DECoN 
parameters to maximize its sensitivity using only NGS data. We propose to obtain the 
CNV validation set from the overlapping calls of three CNV calling tools: CNVkit [24], 
panelcn.MOPS [19] and DECoN. We show that our tool increases the sensitivity of 
DECoN for both TS and WES data. In addition, it is easy to implement and allows to 
obtain analysis-ready CNV from DNA sequencing read alignments in BAM format [25].

Implementation
Our pipeline is a Python 3.7 software package comprising a command-line program, 
isoCNV.py. The input to the program is a batch of BAM files from TS or WES samples 
obtained under the same conditions and the regions of interest (ROI) in BED format that 
should correspond with the capture bait locations. The program is completely modular 
and allows to run the complete pipeline in batch or perform the step-by-step analysis. 
The pipeline consists of 5 main steps: individual CNV calling using three different algo-
rithms, creation of an in silico validation dataset, parameter optimization, CNV calling 
with optimized parameters and CNV annotation (Fig. 1).

Datasets

A targeted and a whole-exome sequencing dataset were selected to evaluate the per-
formance of isoCNV: ICR96 exon CNV validation series [26] and NimbleGen set [27], 
respectively. ICR96 exon CNV validation series includes 96 samples and NimbleGen set 
includes 34 samples. Both datasets have available validated CNV information, ICR96 
have been validated by MLPA and NimbleGen by SNP microarray [28]. ICR96 exon CNV 
validation series can be downloaded from European-Genome phenome Archive (EGA), 
which is hosted by the EBI and the CRG, under accession number EGAS00001002428. 
The FASTQ files for NimbleGen dataset can be accessed through the Sequence Read 
Archive (SRA) [29] under accession number SRP010920.
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Data preprocessing

All samples were aligned to the GRCh37 human genome assembly using BWA-MEM 
algorithm developed by Wellcome Trust Sanger Institute [30]. Sentieon sort utility [31] 
was used to sort and index BAM files. Then, duplicate reads were removed and base 
quality score recalibration (BQSR) was performed using the Sentieon utilities [31]. 
Sentieon is a commercial variant caller that is designed as an accelerated software for 
Genome Analysis Toolkit (GATK) [32].

Individual CNV calling

Preliminary identification of copy number variants is performed using three differ-
ent CNV callers: DECoN v1.0.2 [22] with default parameters, CNVkit v0.9.6 [24] and 
panelcn.MOPS v1.12.0 [19]. Since the CNV identification method is based on depth of 
coverage, the gender of the samples is a critical factor to determine variations in copy 
number of sex chromosomes. Therefore, one of the mandatory inputs to perform the 
analysis is the gender of the samples, which can be provided by the user or it will be 
automatically inferred using the CNVkit gender tool.

Default parameters are applied to perform the CNV calling using DECoN but with the 
modifications described below. DECoN creates a reference set for each sample of inter-
est consisting only of those samples which are well correlated [22]. Hence related indi-
viduals should be excluded from the reference, otherwise common CNV in the family 
would not be detected. For this reason, a list of related samples can be provided in order 
to automatically exclude them from the reference set of their relatives in order not to 
lose CNV of the family. In addition, it has been found that the optimum size of the refer-
ence set is between 5 and 10 samples [16] so DECoN has been modified to only accept 
a maximum of 10 samples as reference. Moreover, it should be noted that by default, 
CNV calling is performed separately between male and female samples, thus allowing 

Fig. 1 Overview of the pipeline. (1) CNV calling is performed using three different tools: CNVkit, panelcn.
MOPS and DECoN with default parameters. (2) The CNV validation set is obtained from the overlapping 
calls of the three CNV calling tools. (3) DECoN algorithm is executed using up to 22 different values for each 
parameter. The results obtained with each combination of parameters are compared with the validated set to 
obtain optimized parameters. (4) CNV calling is performed using DECoN with optimized parameters. (5) CNV 
are annotated
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the detection of CNV in the sex chromosomes. However, if there are less than 5 female 
or male samples, all samples are analyzed in a single batch, disabling a reliable CNV call-
ing on sex chromosomes. Optionally, only sex chromosomes can be analyzed separately 
between male and female samples, using the “batch2” option of isoCNV. Regions of 
interest (ROI) will be dropped if they are below the default minimum median coverage 
threshold (100) for any sample (measured across all ROI in the target) or region (meas-
ured across all samples). CNV will be filtered out from samples that do not meet either 
the minimum coverage threshold (100) or the minimum correlation threshold (0.98). 
Samples which do not have a high correlation with other samples in the set are likely to 
have suboptimal detection across the entire target. These two types of filters have been 
added as options so that the user can easily select whether to apply them.

Regarding CNV calling with CNVkit, default parameters are also applied except for 
filtering where the ‘cn’ method is applied instead of ‘ci’. Here a single reference set is cre-
ated for all samples, it will be composed of all female samples in the batch with a stand-
ard deviation (SD) between − 2 and 2. Such a reference set will be only modified if the 
sample of interest is female, in which case it will be excluded from the reference. Two 
exceptions should be noted in the creation of the reference set: (1) if there are less than 
5 female samples, then males will be the ones used as reference and (2) in the case that 
there are less than 5 females and less than 5 males, then all samples will be used as a 
reference and CNV in Y chromosome will be unreliable. Furthermore, the thresholds 
used by CNVkit to define copy numbers 0 and 1 were modified to be more restrictive: 
for CN0 the threshold range  (log2 value up to) has changed from  log2 ≦ − 1.1 to  log2 ≦ − 2 
and for CN1 from − 1.1 <  log2 ≦ − 0.4 to − 2 <  log2 ≦ − 0.4. The precise copy number val-
ues obtained by CNVkit (0. 1, 2, 3, etc) are then converted to deletion (DEL) or duplica-
tion (DUP) taking into account the gender of the sample of interest and the gender of the 
references.

The identification of CNV with panelcn.MOPS is also carried out using the default 
parameters of the tool. As with DECoN, the analysis is carried out in two groups, one 
with the female samples and another with the male ones, unless there are less than 5 
females or males that all samples will be analyzed together. ROI are excluded from the 
analysis if marked as “low quality” by panelcn.MOPS: their median read count across 
all samples does not exceed the minimum default threshold (30) or if their read count 
shows a high variation across all samples as marked by the default behaviour of the 
algorithm.

In silico validation dataset

The in silico validation dataset is composed of the overlapping calls of the three CNV 
calling tools (DECoN with default parameters, CNVkit and panelcn.MOPS). In order to 
compare the results obtained by the three calling tools and create an in silico validation 
dataset, the output of each tool is normalized to a single format, a tab-delimited BED 
file. This file contains five columns corresponding to chromosome, start position of the 
CNV, end position of the CNV, CNV type (DEL or DUP) and samplename. Using BED-
Tools utilities v2.29.2 [33] and pybedtools Python library v0.8.1 [34], the overlapping 
CNV between call sets from the three algorithms are selected if meet two criteria (1) at 
least 60% of overlap with one of the call sets from the algorithms and (2) a minimum size 
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equivalent to the mean size of the target ROIs. If one of the tools reports no CNV in any 
sample, only the output of the other two algorithms is used to create the in silico valida-
tion set.

Parameter optimization

Parameter optimization is performed using the feature optimizer from CNVbench-
markeR framework [22]. From a validated dataset, it executes DECoN algorithm against 
the dataset using up to 22 different values for each parameter. The results obtained with 
each combination of parameters are compared with the validated copy number states in 
order to obtain optimized parameters for the dataset.

Here, the validated CNV are the ones obtained in silico from the overlapped calls 
between DECoN, CNVkit and panelcn.MOPS (the in silico validation dataset). Never-
theless, it is also necessary to provide validated information about regions with a nor-
mal copy number state. To do this, all regions where a CNV has been found (and has 
been validated in silico) in any of the samples from the dataset are selected as validated 
regions, and then, a normal copy number state is assigned to each validated region with 
no validated CNV.

The DECoN parameters subject to optimization are the following: (1) the minimum 
correlation threshold between a test sample and any other sample to be considered well 
correlated, (2) the minimum median coverage for any sample or ROI to be considered 
well-covered and (3) the transition probability between normal copy number state and 
either deletion or duplication state in the hidden Markov model.

The identification of copy number variants is performed using DECoN algorithm 
using the same approach applied to create the CNV validation dataset: (1) a maximum 
of 10 samples are used as reference per sample, (2) related individuals are excluded from 
the reference set and (3) female and male samples are processed separately. Neverthe-
less, instead of using the default parameters, the optimized ones obtained in the previ-
ous step are used to perform the analysis.

The results are the final copy number variants, which are normalized in BED format 
with the following columns: chromosome, start position of the CNV, end position of the 
CNV, CNV type (DEL or DUP), sample name, reads ratio and the precise copy num-
ber value. Reads ratio corresponds to the one calculated by DECoN algorithm and copy 
number values are calculated based on the reads ratio (Table 1).

Table 1 The reads ratio thresholds map to integer copy numbers

Threshold range Copy number value

ReadsRatio ≦ 0.1 0

0.1 < ReadsRatio ≦ 0.8 1

0.8 < ReadsRatio ≦ 1.2 2

1.2 < ReadsRatio ≦ 1.8 3

1.8 < ReadsRatio ≦ 2.2 4

2.2 < ReadsRatio ReadsRatio * 2
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CNV annotation

Finally, CNV are annotated using the AnnotSV tool [35]. AnnotSV provides numerous 
relevant annotations: genes-based annotation (OMIM, Haploinsufficiency, Gene intol-
erance, etc), annotation with features overlapping the CNV (databases of known CNV 
such as gnomAD or 1000 genomes), annotation with features overlapped with the CNV 
(pathogenic SV from dbVar, promoters, etc) and annotation of the breakpoints (GC con-
tent, segmental duplications, etc). Therefore, it classifies CNVs according to their patho-
genicity into one of the 5 classes proposed by the American College of Medical Genetics 
and Genomics (ACMG) guidelines: benign, likely benign, variant of unknown signifi-
cance (VUS), likely pathogenic or pathogenic. All of this makes it easier for prioritization 
of copy number variants of interest.

Benchmark evaluation metrics

The performance of isoCNV was evaluated per region of interest (ROIs). Such ROIs cor-
respond to the target bed file of each dataset and were treated as independent entities. If 
the tool matched the result of the validation information was classified as true positive 
(TP) or true negative (TN). If the tool identified a CNV not present in the validation 
information was a false positive (FP) and if the tool missed a validated CNV was a false 
negative (FN).

Furthermore, the performance of isoCNV was evaluated taking the no calls into 
account. This is due to the fact that in a real diagnostic scenario, all regions where there 
is no call should be confirmed by an orthogonal method.

Results
In silico validation dataset

The total copy number variants identified per ROI, for each calling tool and dataset, is 
shown in a Venn diagram (Fig. 2). It is shown that the total number of CNVs per ROI 
varies across algorithms. In both datasets, panelcn.MOPS identified the greatest num-
ber of CNVs whereas DECoN identified the least number. The overlapped CNVs per 
ROI between the three call sets were 205 in the TS dataset (ICR96) and 693 in the WES 

Fig. 2 Counts of the CNV per ROI detected by three callers. A Venn Diagram of the CNV in ICR96 dataset. B 
Venn Diagram of the CNV in NimbleGen dataset
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dataset (NimbleGen) (Fig. 2). From these, the validation dataset was composed from the 
ones that overlapped at least 60% with one of the call sets from the algorithms and that 
had a minimum size equivalent to the mean size of the target ROIs. Hence, 72 validated 
CNVs were obtained in ICR96 and 388 in NimbleGen.

After the regions with normal copy number state were attached to the validation set, 
such validation set could be compared to the real copy number information obtained by 
MLPA in ICR96 and by SNP microarray in NimbleGen set (Table 2). For both datasets, 
specificity was 1 as no FP were identified, while sensitivity was quite low as a high num-
ber of FN were found. These results were expected, due to the stringent filters that we 
apply to define a copy number as validated before proceeding to the optimization step.
Benchmark evaluation

After the parameter optimization of DECoN, 597 CNV were identified in ICR96 and 
125601 in NimbleGen. There was an increase in sensitivity and F-score for both dataset 
but especially for NimbleGen set where there was a major improvement in sensitivity 
(from 16.2 to 84.5%) and F-score (from 27.1 to 82.7%) by slightly decreasing specificity 
(from 99.4 to 96.3%) (Fig. 3, Table 3). Negative Predictive Value (NPV) was higher than 
the Positive Predictive Value (PPV) before and after optimization process in both data-
sets (Fig. 3, Table 3) as expected in unbalanced datasets with a much larger number of 
negative elements (no calls) than positive ones.

To evaluate if parameter optimization of DECoN allows to identify new CNVs only 
predicted by the other two methods (CNVkit and panelcn.MOPS) when default param-
eters are used, the unique CNVs of CNVkit (identified by CNVkit but not by DECoN 
with default parameters) have been obtained and compared to the final CNVs (identi-
fied by DECoN with optimized parameters) and found 86 and 2727 CNVs in common in 

Fig. 3 Benchmark results with default and optimized parameters. Shows sensitivity, specificity, PPV, NPV and 
F‑score when executing DECoN with the optimized parameters in comparison to the default parameters
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the ICR96 and NimbleGen dataset, respectively. The same approach has been applied to 
the unique CNVs of panelcn.MOPS and 88 (ICR96) and 68569 (NimbleGen) CNVs have 
been found in the final CNVs that were not identified initially by DECoN with default 
parameters.

In addition, the performance of isoCNV was evaluated depending on the number of 
samples analyzed. This relates to the reference set as samples with a better correlation 
or a higher coverage may be included and could improve the performance of DECoN. 
The ICR96 set reached almost 100% specificity and NPV independently of the number 
of samples with both default and optimized parameters (Fig.  4). An improvement in 

Fig. 4 Benchmark results with default and optimized parameters when analyzing different numbers of 
samples in ICR96. Shows sensitivity, specificity, PPV, NPV and F‑score when executing DECoN for different 
numbers of samples (from 5 to 96) with the optimized parameters in comparison to the default parameters

Fig. 5 Benchmark results with default and optimized parameters when analyzing different numbers of 
samples in NimbleGen. Shows sensitivity, specificity, PPV, NPV and F‑score when executing DECoN with the 
optimized parameters in comparison to the default parameters for different numbers of samples adding 5 
each time
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PPV and F-score can be observed in the ICR96 set when at least 20 samples were ana-
lyzed together and then, from 24 samples, both PPV and F-score remained fairly con-
stant, being always higher when executing DECoN with optimized parameters (Fig. 4). 
The sensitivity in the ICR96 set also remained quite constant and above 80% when at 
least 6 samples were analyzed with optimized parameters, whereas there was a decrease 
in the sensitivity when more than 86 samples were analyzed with default parameters 
(Fig. 4). The NimbleGen set showed a fairly constant sensitivity, specificity, PPV, NPV 
and F-score with optimized parameters (Fig. 5). However, sensitivity, F-score and NPV 
decreased considerably when analyzing more than 20 samples using default parameters 
(Fig. 5).

Conclusions
We presented isoCNV, an automated pipeline to optimize DECoN algorithm using 
only NGS data. It allows the detection of analysis-ready CNV from a set of DNA 
alignments and their corresponding capture bait locations. It has been shown to 
improve sensitivity of DECoN in both TS and WES data, which is especially critical 
when this tool is used as a screening step in a diagnostic strategy. We thus hope to 
reduce the number of assays required per patient to reach a diagnosis as orthogonal 
methods, such as MLPA or aCGH, are not required.
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