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Background
Concept recognition is a fundamental task in text mining for biomedical texts. Biomedi-
cal text mining finds applications in literature analysis, literature-based discovery but 
also over other types of text, such as clinical records and social media. For most applica-
tions, identifying occurrences of biomedical concepts is an essential first step. The task is 
usually tackled in a two-stage approach: First, named entity recognition (NER), or span 
detection, is concerned with identifying textual mentions of relevant entities, such as 
proteins, chemicals, or species. Second, the identified mentions are assigned to a con-
cept entry in a controlled vocabulary, which is referred to as named entity normalisation 
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(NEN), linking, or grounding. Typically, the two steps are performed in a sequential 
manner, using a sequence classifier for NER and a ranking- or rule-based module for 
NEN. While this approach allows focusing on different methods for the individual steps, 
it suffers from error propagation, an inherent drawback of any pipeline architecture. For 
example, a certain NEN system might have excellent accuracy when using ground-truth 
spans as input, but its performance will decrease when operating on the imperfect out-
put of a span tagger. In particular, a normaliser might be inclined or even forced to pre-
dict a concept ID for spurious spans, and it cannot recover from cases where a span is 
missing.

In this work, we investigate an alternative architecture for concept recognition, which 
alleviates the problem of error propagation: parallel sequence tagging for NER and NEN. 
In this architecture, NEN is modeled as a sequence-classification problem (like NER) 
and applied to the input text independently of the span tagger. The predictions of the two 
taggers are harmonised using different strategies, the choice of which is a hyperparam-
eter of the complete system. We test our approach with a manually annotated dataset for 
biomedical concepts, the CRAFT corpus, continuing the efforts from our participation 
in the CRAFT shared task 2019.

Related Work

Concept recognition has often been approached as a pipeline of NER+NEN. For NER, 
sequence labeling with conditional random fields (CRF) has dominated the field to 
present, be it pure CRF as in Gimli [1] or DTMiner [2], on top of a recurrent neural 
network as in HUNER [3], Saber [4], or DTranNER [5], or even as the head of a BERT-
based system as in SciBERT [6]. BERN [7] performs NER by fine-tuning BioBERT alone, 
even though [8] report improved results when stacking CRF atop BioBERT. Different 
approaches have been taken to NEN, where extracted mentions are mapped to a vocabu-
lary: exact match as in Neji [9], expert-written rules [10], learning-to-rank as in DNorm 
[11], linking through an ontology using word embeddings and syntactic re-ranking [12], 
or sequence-to-sequence prediction [13].

Knowledge-based concept-recognition systems like Jensen tagger [14] or NOBLE 
coder [15] do not allow for a clear separation between NER and NEN, as span detec-
tion and linking happens at once, even if machine-learning components are added for 
improving accuracy, like for OGER++ [16] or RysannMD [17]. Joint approaches like 
TaggerOne [18], JLink [19], and others [20, 21], however, have separate modules for NER 
and NEN, which are trained simultaneously. The multi-task sequence labeling archi-
tecture for NER and NEN in [21] has been highly inspirational for the present work, 
although we were unable to reproduce their results, even using the code that the authors 
made publicly available.

CRAFT corpus and shared task

The Colorado Richly Annotated Full-Text (CRAFT) corpus [22, 23] is a collection of 
97 scientific articles from the biomedical domain. It is manually annotated for syntac-
tic structure, coreferences, and bio-concepts (entities), the last of which are used in the 
present study. In the latest release (Version 4), the concept annotations are divided into 
10 sets of different entity types, which are provided in two versions each (proper and 
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extended1), for a total of 20 separate annotation sets over the same text collection. The 
concepts are linked to 8 different ontologies, as shown below (ontology in parentheses):

CHEBI: chemicals/small molecules (Chemical Entities of Biological Interest [24])
CL: cell types (Cell Ontology [25])
GO_CC: cellular and extracellular components and regions (Gene Ontology [26])
GO_BP: biological processes (Gene Ontology)
GO_MF: molecular functionalities possessed by genes (Gene Ontology)
MOP: chemical reactions and other molecular processes (Molecular Process Ontol-
ogy [27])
NCBITaxon: biological taxa and organisms (NCBI Taxonomy [28])
PR: proteins, genes, and transcripts (Protein Ontology [29])
SO: biomacromolecular entities, sequence features (Sequence Ontology [30])
UBERON: anatomical entities (UBERON [31])

The extended annotations are referred to by appending EXT to the abbreviations for the 
proper annotations (CHEBI_EXT, CL_EXT etc.).

The CRAFT corpus has been used in a range of studies. Through repeated improve-
ments and extensions over time, the corpus has become a high-quality resource with 
rich annotations, but it also led to the situation that most experiments are not directly 
comparable to each other, as their setup differs in many ways. In the first release of the 
CRAFT corpus, only 67 articles were available. The remaining 30 documents were not 
released until the evaluation period of the CRAFT shared task 2019 [32], where they 
served as a test set. This competition was part of the BioNLP Open Shared Tasks and 
comprised three core NLP tasks, where participating systems were evaluated against the 
ground-truth annotations of Version 4 of the CRAFT corpus. However, most prior work 
on concept recognition was carried out with an older version of CRAFT, i. e. using a dif-
ferent test set, possibly an earlier stage of annotations and a different evaluation method, 
which means that results are not directly comparable.

While the majority of studies is concerned with concept recognition (i.  e. systems 
that predict IDs), some are restricted to NER, e.  g. [4, 33, 34]. Methodologically, the 
approaches range from pure dictionary-based [15, 35] to entirely example-based systems 
[36], even though the NEN step almost always includes dictionary lookup. Since no offi-
cial test set was available prior to Version 4, many experiments use an arbitrary train/
test split [37] or apply evaluation to the entire corpus [9]. The metrics used are consist-
ently precision, recall and F-score, but differences exist with respect to considering par-
tial matches. Also, many studies do not cover the full set of annotations, but rather focus 
on a small selection of entity types, such as Gene Ontology [38] or gene mentions [33].

1  The extended annotations are based on a modified version of the reference ontologies. Through these modifications, 
the corpus creators aimed at more accurately capturing language use in scientific literature.
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Methods
We propose a paradigm for biomedical concept recognition where named entity recogni-
tion (NER) and normalisation (NEN) are tackled in parallel. In a traditional NER+NEN 
pipeline, the NEN module is restricted to predict concept labels (IDs) for the spans iden-
tified by the NER tagger. In order to avoid the error propagation inherent to this serial 
approach, we drop this restriction and provide the full input sequence to the normaliser. 
As such, we cast the normalisation task as a sequence-tagging problem – very much like 
an NER tagger, but with a considerably larger tag set, consisting of all concept IDs of the 
training data.

Design implications

Modeling concept normalisation as sequence tagging has a number of drawbacks. As 
discussed in the next section, the CoNLL representation of the data enforces exactly one 
label for each token, which disallows learning and predicting annotations with overlap-
ping and discontinuous spans. This representation also entails that the model has to pro-
duce a consistent series of individual predictions in order to correctly label a multi-word 
expression. This often means that highly ambiguous tokens like prepositions, numbers, 
or single letters must be interpreted correctly in context (e. g. “of” in “inhibitor of cal-
pain”, “I” in “hexokinase I”). As the most serious limitation, a sequence tagger can only 
ever predict labels it has seen during training, which restricts the label set of the trained 
system to a fraction of the target label set (the ontology) in many cases. Since many con-
cepts occur extremely rarely in the biomedical literature (cf. Fig. 1), this limitation might 
not critically reduce performance measured on a typical evaluation data set. However, 
it is highly undesirable to have a tagger that is completely incapable of predicting labels 
beyond the training set.

Fig. 1  Occurrence counts (y axis, log scale) of the most frequent bio entities in a large subset of PubMed, 
ordered by their rank (x axis). The documents were automatically annotated by a dictionary-based tagger 
(OGER). High-frequency false-positives were manually removed. The plot shows that a small number of 
frequent entities accounts for a majority of the occurring mentions, resembling a Zipfian distribution (see 
also [51, p. 569])
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On the other hand, the ID-tagging architecture is technically an end-to-end concept-
recognition system, i. e. it does not depend on any span predictions, which means that 
the NER step could potentially be skipped entirely. However, due to the small number of 
tags, span tagging is far more robust with respect to ambiguous tokens and unseen con-
cepts. By adding span predictions, we might thus be able to overcome the limitations of 
direct ID tagging. Therefore, we chose to combine the strengths of span and ID tagging 
by applying both in parallel and merging the results in postprocessing.

Data preparation

Our system processes documents in a variant of the CoNLL format, i. e. a verticalised 
format where each text token is assigned exactly one label. Based on our architecture 
with two sequence classifiers, we employed two different label sets. For the span tagger, 
the text is tagged with IOBES labels, i. e. each token is assigned one of the five labels I, 
O, B, E, or S. Entities spanning only a single token are annotated with S. For multi-word 
entities, the first and last token are tagged with B and E, respectively, and any interven-
ing tokens with I. The rest of the text (i. e. all tokens outside of an entity) are annotated 
with O. For the ID tagger, all tokens of an entity are tagged with the respective concept 
ID. We added a NIL label to mark non-entity tokens, analogously to the O tag of the 
span tagger.

This representation does not have the same expressiveness as the stand-off format 
used in CRAFT, which offers great flexibility for anchoring annotations in the text. In 
particular, the CRAFT corpus contains discontinuous annotations (multiple non-adja-
cent text spans for the same annotation), overlapping annotations (words shared by 
multiple annotations) and sub-word spans (annotation refers to part of a word). Since 
these complex annotations cannot be represented with token-level labels, their structure 
needs to be simplified.

In order to measure the performance impact of this simplification, we converted the 
reference annotations of the training set to CoNLL format and back to stand-off using 
the standoff2conll suite [39]. This utility offers two strategies for unifying discontinu-
ous annotations (full-span and last-span), to which we added a third option (first-span) 
[40]. For unnesting overlapping annotations, two strategies are available as well (keep-
longer and keep-shorter). The effect of unifying and unnesting annotations is illustrated 
in Fig. 2. Sub-word annotations are extended to span entire tokens.

After this round-trip conversion, the annotations are run through the official evalu-
ation suite provided by CRAFT [41]. Table 1 shows the results for different combina-
tions of unification and unnesting strategies on the non-extended annotation sets. These 
numbers mark the upper limit for a system trained on input data in CoNLL format. For 
all annotation sets, using the first-span and keep-longer strategies achieved the highest 
F-score.

Architecture

The sequence taggers used in our experiments are built atop a pretrained language-
representation model, BioBERT [42], which in turn extends BERT [43]. BERT is an 
attention-based multi-layer neural network which learns context-dependent word-vec-
tor representations. It creates bidirectional contextual representations of a token from 
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unlabeled text conditioned on the left and the right context. BERT is trained to solve two 
tasks: first, to predict whether two sentences follow each other, and second, to predict a 
randomly masked token from its context. After a slight modification to its architecture, 
training of BERT can be continued on a different task like NER; this process is referred 
to as fine-tuning with a task-specific head.

For our experiments, we downloaded BioBERT v1.1, which includes code, configura-
tion and pretrained parameters. BioBERT is based on BERTBASE , which was pretrained 
for 1M steps by Devlin et  al. [43] on a 3.3B-word corpus from the general domain 

Fig. 2  Example phrase with a discontinuous annotation (“ES ... cells”, solid red spans) that partially overlaps 
with a contiguous annotation (“somatic cells”, dashed blue spans). The annotations are simplified in two steps 
(unification and unnesting), for which different strategies are compared. In this example, the six possible 
combinations produce four different outcomes, of which three have lost one annotation entirely

Table 1  Upper bound of annotation performance (F-score) when using the CoNLL format, 
comparing different simplification strategies

For each annotation type (row), the best value is given in bold

For reasons of clarity, the combinations full-span/keep- shorter and last-span/keep-shorter are omitted; their results are in 
most cases inferior to those presented in this table

Unification First-span Full-span Last-span

Unnesting Keep-shorter Keep-longer Keep-longer

CHEBI 0.9979 0.9980 0.9972 0.9974

CL 0.9706 0.9720 0.9574 0.9692

GO_BP 0.9607 0.9626 0.9587 0.9570

GO_CC 0.9811 0.9813 0.9801 0.9785

GO_MF 0.9974 0.9974 0.9974 0.9974
MOP 0.9967 0.9967 0.9967 0.9967
NCBITaxon 0.9996 0.9996 0.9995 0.9996
PR 0.9624 0.9627 0.9619 0.9618

SO 0.9829 0.9831 0.9816 0.9825

UBERON 0.9792 0.9798 0.9776 0.9780
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(English Wikipedia, BooksCorpus). Lee et  al. [42] continued training for another 1M 
steps on a 4.5B-word biomedical corpus (PubMed abstracts). Finally, we fine-tuned 
BioBERT for sequence-tagging on the CRAFT corpus for 55 epochs (approximately 53k 
steps).

To perform NER and NEN in parallel, we used two different tag sets for fine-tuning, 
as described in the previous section: IOBES labels for the span tagger and the set of all 
concept IDs for the ID tagger. In addition to that, both taggers used a small set of tags 
inherited from the original BERT implementation, which flag tokens with a special func-
tion, such as padding, sub-word unit and sentence boundary. We trained a pair of span 
and ID tagger for each annotation set, which resulted in a total of 40 individual models.

The predictions of the span tagger are always aligned with the IDs produced by a 
dictionary-based concept-recognition system, OGER [16, 44]. OGER detects men-
tions of ontology terms in running text through efficient fuzzy-matching. We man-
ually optimised OGER’s configuration on the CRAFT training set. We used no 
additional terminology resources besides the ontologies provided with the corpus. 
However, we manually added a handful of synonyms for GO_MF. This combined sys-
tem resembles a classical NER+NEN pipeline, where the high-recall output of the 
dictionary-based system is combined with the context-aware span detection using an 
example based classification model.

Hyperparameter tuning

In order to determine the best hyperparameters for each annotation set, we per-
formed extensive grid search in cross-validation over the training set. In particular, 
we investigated the following configurations:

ontology pretraining: enable/disable
abbreviation expansion: enable/disable
prediction harmonisation: 6 strategies

If ontology pretraining is enabled, the ID classifier is trained on synonym–ID pairs 
from the terminology for 20 epochs before switching to the actual training corpus. 
For abbreviation expansion, we first used Ab3P [45] to detect abbreviation definitions, 
then replaced occurrences of short forms with the corresponding long form. For har-
monising the predictions of the two classifiers, we compared six different strategies; 
these are described in the next section.

From previous experiments [46], we knew that ontology pretraining has a positive 
effect for some, but a negative effect for other annotation sets. We therefore con-
cluded that hyperparameters had to be tuned individually for each of the 20 anno-
tation sets. In order to obtain reliable figures, we performed 6-fold cross-validation 
with up to 3 runs for each combination.

As we expected, ontology pretraining yielded a mixed picture. In many cases, a clear 
decision was not possible, as repeated runs gave contradictory results. Unexpect-
edly, abbreviation expansion showed a clear improvement only for CL and a slight 
improvement for GO_MF; in all other cases (including CL_EXT and GO_MF_EXT) 
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the results decreased. We decided to disable both ontology pretraining and abbrevia-
tion expansion, as the isolated merits do not justify the added complexity.

For prediction harmonisation, the best strategy for each annotation set is given in 
Table  2 and discussed in the following section. The full results for the whole tuning 
phase are included in Additional file 1.

Harmonising predictions

The predictions of the span and ID classifier are not guaranteed to agree, even if trained 
jointly. Disagreement occurs if the span classifier predicts a relevant tag (B, I, E, S) for 
a particular token while the ID classifier predicts NIL, or, conversely, if the ID classifier 
predicts a specific concept for a token tagged as irrelevant (O) by the span classifier. In 
addition, the dictionary feature of the knowledge-based entity recogniser might or might 
not agree with the neural predictions. This results in 2× 2× 2 = 8 prediction patterns 
concerning the relevance of a given token.

We considered four different strategies for harmonising conflicting predictions: spans-
only, ids-only, spans-first, and ids-first (cf. Fig. 3). These strategies are heuristics with a 
predetermined bias towards one of the two classifiers. Two additional strategies (mutual 
and override), which use the confidence scores for balancing the classifiers, consistently 

Table 2  Best-performing harmonisation strategy by annotation set, based on 6-fold cross-validation 
over the training set

For GO_MF and MOP, results for spans-first and ids-first are identical

Annotation set Proper Extended

CHEBI spans-first spans-first

CL spans-first ids-only

GO_BP spans-first ids-only

GO_CC spans-first spans-first

GO_MF spans-/ids-first spans-first

MOP spans-/ids-first ids-first

NCBITaxon ids-first ids-first

PR spans-only spans-only

SO ids-only ids-only

UBERON spans-first spans-first

Fig. 3  Strategies for harmonising predictions of the ID classifier ( NNID ), span tagger ( NNspan ), and 
dictionary-based entity recogniser (Dict). “S” is a cover symbol representing any relevant tag (B, I, E, S); “ IDNN ” 
and “ IDDict ” refer to any non-NIL prediction of the ID classifier and entity recogniser, respectively
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produced worse results compared to the simpler bias strategies. The score-based strate-
gies are thus not discussed here; however, we used and described the mutual strategy 
when participating in the CRAFT shared task [46, p. 188]. The systematic application of 
different harmonisation strategies is one of the major differences of this work compared 
to the work presented at the shared-task workshop.

With the spans-only strategy, the ID predictions are completely ignored. In order to 
provide a concept label, the span predictions are combined with the dictionary feature 
provided by OGER; in case of multiple features, an arbitrary decision is taken (lexically 
lowest ID). Since a concept label is always required, span predictions without a support-
ing feature have to be dropped.

With the ids-only strategy, the predictions are based primarily on the ID predictions, 
whereas the span predictions are overridden (e. g. the span tag cannot be O when the ID 
classifier predicts a non-NIL concept). The dictionary feature is ignored in the decision.

The spans-first and ids-first strategies are combinations of the previous two. With the 
former, the spans-only strategy is applied first, backing off to the ids-only strategy if the 
outcome is O-NIL. Analogously, the ids-first strategy gives preference to ids-only. An 
example with partially disagreeing predictions is given in Figure 4.

We compared the effect of the different strategies in a 6-fold cross-validation over 
the training set. For each annotation set, we determined the best harmonisation strat-
egy based on F-score according to the official evaluation suite. As shown in Table  2, 
using both span and ID predictions was beneficiary most of the time. In many cases, the 
same strategy worked best for the proper and extended classes. Intuitively, the choice 
of spans-only for proteins makes sense, as PR[_EXT] shows an exceedingly high num-
ber of different concepts with a small overlap between training and test data, which is 
a tough scenario for the ID tagger. Conversely, entity types with a limited number of 
distinct concepts in the corpus like sequences and organisms rely more heavily on the ID 
tagger. The choice of harmonisation strategy was fixed as a hyperparameter for the test-
set predictions.

Fig. 4  Predictions for PR on a short phrase, harmonised with the ids-first strategy. Using the spans-only or 
spans-first strategy would yield the same result in this example, since the ID and span predictions are identical 
for “Hexokinase I”
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Results and discussion
We evaluated our concept-recognition system using the official evaluation suite [41]. 
Performance is measured in terms of F-score, i. e. the harmonic mean of precision and 
recall, and slot error rate (SER) [47]. Both metrics are based on the counts of matches 
(true positives), substitutions (partial errors), insertions (false positives), and deletions 
(false negatives). Partially correct predictions are assigned a similarity score m in the 
range [0, 1], which measures the accurateness of the predicted spans and concept labels 
[48]. The similarity score incorporates a notion of textual overlap (Jaccard index at the 
character level) and a weighted measure of shared ancestors in the ontology hierarchy, 
as introduced in [49]. The fractional value m is added to the match count, whereas the 
remainder 1−m is counted as a substitution. While precision, recall, and F-score are 
figures of merit ranging from 0 (worst) to 1 (best), SER is a measure of error that assigns 
0 to a perfect system and higher values to lower performance. Even though the values for 
SER and F-score often correlate, they are not guaranteed to produce identical rankings. 
In particular, SER is more sensitive to false-positive errors than F-score, and low preci-
sion has a stronger impact on SER than low recall. Please note that perfect scores cannot 
be reached by our systems due to limitations in the input representation, as explained in 
the Data preparation section.

The results for our parallel NER+NEN system are given in Table  3. The scores are 
compared to our systems developed for the shared task [46] and to the official baseline 
published in the workshop overview [32]. Our system consistently achieves better scores 
than the baseline, which is a pipeline with a CRF-based span tagger and a BiLSTM-based 
concept classifier that were also trained on the CRAFT corpus alone. For most annota-
tion sets, our current system performed better than the best system presented in the 
shared-task paper, with the exception of GO_MF_EXT and PR_EXT. For NCBITaxon_
EXT and PR, the comparison is inconclusive, as SER and F-score give contradictory 
rankings.

Unfortunately comparison with other systems is difficult due to the fact that the com-
plete CRAFT corpus was not available before the shared task. Previous published results 
on the CRAFT corpus (such as [50]) are based on a different (and smaller) version of the 
corpus.

Effect of harmonisation

In order to measure the effect of the different harmonisation strategies, we evaluated all 
four strategies on the test set, as shown in Fig. 5. This study also serves as a validation for 
our hyperparameter-tuning approach, i. e. whether cross-validation on the training set 
can be used for reliably picking the best-suited harmonisation strategy. For the majority 
of the annotation sets, the picked strategy also worked best for the test set. Where the 
picked strategy was not the best (GO_MF_EXT, MOP[_EXT]), the difference to the top-
performing strategy was comparatively small.

Unseen concepts

As stated above, a major limitation of trained sequence labeling for IDs is the inability to 
predict concepts not seen among the training examples. An important goal of combining 
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the ID tagger with a span tagger and dictionary-based predictions is to overcome this 
limitation. To study the effect of the different harmonisation strategies on unseen con-
cepts, we performed another evaluation on a subset of the annotations. To this end, we 
filtered both ground truth and predictions of the test set to contain only annotations 
with concept labels that are not used in the training set.

Table 4 shows precision and recall scores as well as annotation counts for the subset 
of unseen concepts. The ids-only strategy is omitted in the table, as this configuration 
can never predict unseen concepts. The spans-only and spans-first strategies systemati-
cally yield identical results, as they only differ in cases where the latter backs off to ID 
predictions, which have been filtered out in this evaluation. With the ids-first strategy, 
many span predictions for unseen concepts are shadowed by an ID prediction for a con-
cept known from the training set (which is then ignored in this specific evaluation). For 
some annotation types (e. g. CHEBI[_EXT], GO_BP[_EXT], SO[_EXT]), the removal of 
known concepts improves precision, i. e. more false positives than true positives were 
removed. In other cases, precision suffers from the removal. Recall decreases in all cases, 
as is to be expected for an evaluation that focuses on more difficult examples.

Interpretation

Tackling concept recognition for multiple entity types with a single architecture is very 
challenging, even if a separate model is trained for every annotation set. The compara-
tive results for the different harmonisation strategies (Figure 5) illustrate well how some 
annotation sets profit more from the span tagger (blue, left-most bars), others more 
from the ID tagger (red, right-most bars). In many cases, merging predictions from 
the two taggers (middle bars) yields better results than relying on a single tagger (outer 

Fig. 5  F1 and SER scores for different harmonisation strategies. Top-down bars represent SER (right scale), 
bottom-up bars represent F-score (left scale). Hatched bars denote the strategies used in the final results, as 
determined through hyperparameter tuning. For GO_MF and MOP, spans-first and ids-first yielded identical 
results in the training set, which was repeated in the test set experiments. The exact figures are available as a 
table in Additional file 2
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bars). This preference does not directly correlate with ontology size: the two annotation 
sets with the largest ontologies (NCBITaxon and PR) show quite distinct result patterns. 
However, it is possible to empirically determine how well each harmonisation strategy 
suits the characteristics of a given annotation set. Using cross-validation over the train-
ing set resulted in robust estimations for ranking the harmonisation strategies.

The diversity of the individual annotation sets shows even more clearly when it 
comes to predicting unseen concepts. In general, the level of precision and recall for 
unseen concepts varies greatly across annotation sets, as does the number of unseen 
concepts in the reference (cf. Table  4). There is a loose negative correlation to the 
performance on the entire test set: annotation sets like NCBITaxon[_EXT] and SO[_
EXT] show high overall scores and low scores for unseen concepts, whereas more 

Table 3  Results for our current BioBERT system, best system reported in the shared-task paper [46], 
and the official baseline

In case of the shared-task systems, the results were selected independently for SER and F-score, i. e. the two scores for a 
given annotation set do not necessarily come from the same system. For the baseline and the current BioBERT system, 
however, only one system was evaluated for each annotation set

Annot. set System Proper Extended

SER F-score SER F-score

CHEBI Baseline 0.44 0.72 0.29 0.80

Shared-task 0.3388 0.7700 0.2571 0.8209

Current 0.2492 0.8528 0.2289 0.8459

CL Baseline 0.53 0.61 0.33 0.73

Shared-task 0.4862 0.6657 0.3361 0.7484

Current 0.4013 0.7526 0.2777 0.7926

GO_BP Baseline 0.39 0.72 0.29 0.79

Shared-task 0.3047 0.8037 0.2786 0.8138

Current 0.2587 0.8297 0.2015 0.8506

GO_CC Baseline 0.44 0.71 0.20 0.88

Shared-task 0.3788 0.7645 0.1678 0.8936

Current 0.2817 0.8219 0.1486 0.9073

GO_MF Baseline 0.07 0.95 0.45 0.66

Shared-task 0.0319 0.9838 0.3881 0.7438

Current 0.0149 0.9904 0.4135 0.7139

MOP Baseline 0.43 0.75 0.36 0.79

Shared-task 0.2684 0.8705 0.3080 0.8437

Current 0.1567 0.9188 0.1713 0.9082

NCBITaxon Baseline 0.07 0.96 0.07 0.96

Shared-task 0.0537 0.9694 0.0466 0.9722

Current 0.0436 0.9744 0.0460 0.9704

PR Baseline 0.69 0.48 0.62 0.52

Shared-task 0.3052 0.8026 0.3030 0.8011

Current 0.3068 0.8041 0.3130 0.7951

SO Baseline 0.21 0.86 0.18 0.89

Shared-task 0.1593 0.9027 0.1230 0.9187

Current 0.1206 0.9223 0.0899 0.9419

UBERON Baseline 0.41 0.70 0.36 0.75

Shared-task 0.3752 0.7488 0.3371 0.7714

Current 0.2790 0.8177 0.2537 0.8315
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difficult sets like PR[_EXT] have comparatively high precision and recall for unseen 
concepts. A possible explanation is that the former annotation sets have little vari-
ability and a high overlap between training and test set, leading to a strong bias for 
known concepts (overfitting tendency), which is beneficiary for the test set as a whole, 
but not for the subset of unseen concepts. The latter annotation sets show great vari-
ability of concept labels and surface names in the training data, which makes the task 
harder but also leads to better generalisation, as the classifier cannot achieve good 
performance by only learning a few frequent concepts.

Error analysis

We performed an analysis of prediction errors in order to find potential weaknesses or 
systematic mistakes. As expected, many errors are false negatives due to missing train-
ing examples. There are several cases where spelled-out mentions are matched, whereas 
their abbreviated versions are missed. For example, “olfactory tubercle” is correctly 
linked thanks to the dictionary-based predictions, while the ad-hoc acronym “OT” is 
missed. False positive predictions are also frequently seen among abbreviations, which 
have an increased likelihood of being ambiguous. For example, the short-hand “NF” 
denotes either “neurofilament” or “nuclear factor” in the training set, which cannot 
always be correctly distinguished by the classifier.

Table 4  Precision and recall for unseen concepts in the test set

For each annotation set, the number of annotations (ref. count) in the test set is given, counting both occurrences (occ.) and 
unique labels (unique). A dash for precision and recall means that the corresponding system did not predict any unseen 
concept at all (neither true nor false positive)

Annotation set Harmonisation Proper Extended

Ref. count Prec. Recall Ref. count Prec. Recall

Unique Occ. Unique Occ.

CHEBI Spans-only/-first 110 447 0.7747 0.5199 134 538 0.6265 0.5462

Ids-first 0.8805 0.0867 0.7131 0.0530

CL Spans-only/-first 52 484 0.8817 0.2222 52 484 0.6900 0.2338

Ids-first 0.8750 0.0723 0.4326 0.0152

GO_BP Spans-only/-first 120 484 0.6170 0.1402 126 508 0.2699 0.1621

Ids-first 0.7466 0.0524 0.4243 0.0175

GO_CC Spans-only/-first 32 184 0.6343 0.1965 36 231 0.5158 0.1853

Ids-first 0.4956 0.0458 0.3375 0.0058

GO_MF Spans-only/-first 1 1 – – 73 416 0.5366 0.1393

Ids-first – – 0.5329 0.0090

MOP Spans-only/-first 2 2 – – 2 2 – –

Ids-first – – – –

NCBITaxon Spans-only/-first 40 87 0.3805 0.2974 44 95 0.4070 0.3342

Ids-first 0.7346 0.1689 0.7363 0.1163

PR Spans-only/-first 278 4782 0.8170 0.7350 309 5156 0.8286 0.7230

Ids-first 0.7402 0.1200 0.6852 0.0909

SO Spans-only/-first 16 101 0.0962 0.0571 25 123 0.1586 0.2579

Ids-first 1.0000 0.0198 0.9345 0.1823

UBERON Spans-only/-first 203 1297 0.7246 0.2447 207 1308 0.7142 0.2555

Ids-first 0.5913 0.0342 0.5342 0.0225
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At first sight, it seems like abbreviation expansion should be able to alleviate errors like 
these. Replacing short forms with their corresponding long forms increases chances for a 
dictionary match and, since it is performed within document scope, potentially reduces 
ambiguity. However, abbreviation expansion is not guaranteed to work perfectly and can 
be a source of confusion even if it does. For example, “OT” was correctly expanded to 
“olfactory tubercle”. Unfortunately, this misguided the classifier to label the term as olfac-
tory bulb, as the first token was only used for this concept in the training data. In our 
experiments, the net effect of abbreviation expansion was negative, as stated above in 
the Hyperparameter tuning section.

Sometimes, spurious predictions are caused by a substring shared with a training 
example. Since the WordPiece tokeniser used in (Bio)BERT cuts unknown words into 
sub-word segments, the classifier sometimes associates a concept label with the fraction 
of a word, which might trigger false positives in unexpected contexts. As an extreme 
example, mentions of “PDGFR”, “PFK”, “PKD”, “PI3K”, and “PFKD” are erroneously linked 
to phosphoglycerate kinase (abbreviated “PGK”). This is most likely due to the shared ini-
tial letter, as the terms do not refer to semantically similar concepts (even though PFK 
and PI3K are also kinases). Similarly, “forkhead” is linked to fork, “polymorphonuclear” 
is linked to nucleus and “prosensory” is linked to forebrain (after the synonym “prosen-
cephalon” seen in training data).

In some cases, the chosen harmonisation strategy prefers an erroneous label over a 
correct one. For example, the term “monkey” is linked to mouse by the ID tagger due 
to context (training: “mouse kidney”, test: “monkey kidney”). Since the NCBITaxon sys-
tems are harmonised with the ids-first strategy, this erroneous prediction overrides the 
correct annotation from the dictionary-based tagger. Conversely, the dictionary predic-
tions for “insulin” always link to PR:000009054, a specific protein. In the ground truth, 
however, the more general concept PR:000045358 is used throughout the corpus, which 
denotes a family of proteins. Even though the ID tagger produces correct labels, the 
spans-first strategy used for PR gives precedence to the dictionary predictions in these 
cases.

Another interesting category of errors are the ones that were amended through the 
system improvements, i. e. spurious and missing annotations from the shared-task sys-
tem that are correctly predicted by the current system. A frequent case are short spans 
by the shared-task system, such as “Ephrin” instead of “Ephrin-B1” for PR or “X” instead 
of “X-Gal” for CHEBI, which are now correctly recognised. Another re-occurring pat-
tern are incorrect IDs, such as “benzodiazepine” linked to CHEBI:16150 (benzoate) 
rather than CHEBI:22720 (correct ID by the current system). Furthermore, coverage of 
frequent terms has improved, for example the shared-task system found “Staphylococ-
cus Aureus” in some context but missed it in others which were correctly identified by 
the current system.

Conclusions
In this work, we present a concept-recognition architecture for parallel NER and NEN. 
Compared to a sequential NER+NEN pipeline, our approach avoids error propagation 
from the span-detection to the normalisation step. Modeling NEN as a sequence-labe-
ling task allows it to operate directly on running text, at the cost of restricting the label 
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set of the normaliser to the concepts from the training set. We counter these limitations 
by fusing its predictions with the output of a span detector and a knowledge-based con-
cept recogniser.

In the CRAFT shared task and in the current study, we have shown that parallel con-
cept recognition can outperform a pipeline system created specifically for the CRAFT 
corpus. Merging the predictions of a span and an ID tagger is a fruitful way of combin-
ing the complementary strengths of both of them. However, the specifics of interpolat-
ing between span and ID predictions is subject to further research. We took an empiric 
approach to pick the best harmonisation strategy for each annotation set.

For future work, we intend to test our approach on other datasets. Even though the 
CRAFT corpus allows validating systems on a broad range of entity types, there is only 
little opportunity for direct comparison to competing approaches at the time of writing 
– to the best of our knowledge, there are no published results for the latest version (Ver-
sion 4) of CRAFT besides the shared task.
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