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Background
Biomedical information extraction is an important tool to handle the unmarked medical 
literature of exponential growth, and the extracted information has important value for 
medical research [1]. Biomedical named entity recognition (BioNER) is a basic task in 
biomedical information extraction to extract interested entities such as diseases, drugs, 
genes/proteins from complex, unstructured medical texts [2].

With the efforts of many researchers, more and more deep learning networks have 
emerged, ranging from Convolutional Neural Network (CNN) [3], Long Short-Term 
Memory Networks (LSTM) [4], to Transformers-based BERT language models in 
BioNER. But single-task learning has always had the problem of poor generalization in 
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BioNER task. Mehmood and others [5] proposed multi-task learning based on CNN 
and LSTM to improve the generalization of the model, but the results was difficult to 
go beyond single-task learning based on Transformers model and unstable. In order to 
improve the generalization of the model, we do multi-task learning based on Transform-
ers, but the experimental results once again verify that simple multi-task learning results 
are not stable, some datasets are improved, but some datasets are not better than sin-
gle-task learning. Therefore, we propose the hierarchical shared transfer learning, which 
combines multi-task learning with single-task learning, which not only allows the model 
to have high accuracy, but also improves the generalization and stability of the model.

We used XLNet [6] based on Self-Attention Permutation Language Model (PLM) 
to replace BERT as encoder in the pre-training phase, avoiding the problem of input 
noise from autoencoding language model (AutoEncoder LM). When fine-tuning the 
BioNER task, we decode the output of the XLNet model with conditional random field 
(CRF) decoder. Because XLNet uses tagged input, the connection layer between XLNet 
and CRF is tuned with Label [X]. For multi-tasking training, we split the datasets and 
combined similar entity datasets. We share all the parameters of the XLNet-CRF dur-
ing training, and then evaluate the effects of each dataset separately. We refer to the 
model that shares all XLNet-CRF model parameters for multi-tasking learning as MTL-
XC. However, the experimental results show that the learning of MTL-XC is unstable. 
In order to solve this problem, we propose hierarchical shared transfer learning. We 
divide the parameters of XLNet-CRF model into shared parts and task-specific parts. 
The shared portion is for multi-task learning, the specific task portion is for single-task 
learning, and we refer to this new model as MTL-LS, with good results.

•	 Permutation language model and conditional random field were combined.
•	 Aiming at the instability of multi-task learning in BioNER, a hierarchical shared 

transfer learning method combining multi-task learning and single-task learning was 
proposed.

•	 Through the analysis of the physical relationship between the training set, the test set 
and the training effect, the source of the data-level error was obtained.

The source code is detailed in : https://​github.​com/​pwldj/​MTL-​BioNER.

Related work
Transfer learning

Transfer learning has gained general attention in the field of machine learning in 
recent years [7] by transferring knowledge from relevant tasks that have been learned 
to improve new tasks [8]. Transfer learning can be divided into instance-based trans-
fer, feature representation transfer, parameter transfer and relational knowledge 
transfer [9]. Where parameter transfer is already commonly used in NLP tasks, it is 
assumed to share some parameters between source tasks and target tasks, or to share 
a prior distribution of model hyperparameters [10]. This also enables good accuracy 
when transferring the original model to the new domain [11, 12]. However, there are 
also problems with negative transfer. For the problem of negative transfer, Wang et al. 
quantifies the similarity between target domain and source domain by calculating the 

https://github.com/pwldj/MTL-BioNER


Page 3 of 14Chai et al. BMC Bioinformatics            (2022) 23:8 	

affinity matrix of gene, and automatically learns the fusion network of target cancer 
[13]. Tao et al. proposes that the REFERENCE algorithm makes use of the semantic 
correlation between source sample and target task, rather than the task/sample simi-
larity [14].

Multi‑tasking

Transfer learning, which can be attributed to making the most of all available informa-
tion, has become an important research direction in Biomedical named entity recog-
nition [15, 16]. Multi-tasking learning (MTL) [17] is a major form of transfer learning 
that involves learning part of a model or the whole on multiple similar tasks, thereby 
enhancing the recognition of the model on a particular type of task. Crichton et al., 
first applied it to the field of BioNER, and by using convolutional neural networks and 
different shared layer methods, it achieved more than single-task learning (STL) on 
some entity types [18]. However, the performance on the remaining entity types was 
not satisfactory. Then, the LSTM gradually became the mainstream of BioNER [19]. 
Wang et al. [20] achieved an improvement over single-task learning by sharing differ-
ent parameters embedded in words and character levels. Mehmood et al. use stack-
LSTM to share underlying LSTM to multiple similar tasks, while upper-level LSTM 
trains for different tasks [5]. However, Zuo and Zhang train as a shared layer except 
for CRF, which trains separately for each task [21].

Fine‑tune

Fine-tuning is another way of transferring learning, pre-training a large amount of 
unseen data before applying the pre-training model to other specific downstream tasks. 
Fine-tuning greatly promotes the study of natural language processing [22, 23], and the 
multi-head self-attention mechanism solves the disadvantages of the unidirectional 
LSTM model [24]. The BERT language model based on multi-head attention mecha-
nism proposed by Devlin has achieved the most advanced results in many tasks [25]. 
The BioBERT model and the PubMedBert model have achieved significant improve-
ment in many biomedical tasks by pre-training BERT models using medical materials 
and fine-tuning them [26, 27]. Based on the BERT model, multi-task learning is used to 
train multiple medical text mining tasks. But it has also been found that multi-task is 
not always effective [28]. But the BERT model produces noise during the pre-training 
phase that reduces the recognition of each word element. The XLNet language model 
improves the pre-training process of the BERT model [6]. XLNet combines the autoen-
coder and autoregressive language models and proposes that the PLM can effectively 
suppress mask noise by predicting the different permutation of the same input sequence. 
XLNet outperformed the BERT model on 20 natural language processing tasks. The 
effectiveness of the Distributional Hypothesis of XLNet can acquire common sense and 
the structure of language from the statistical law of corpus. Its modeling approach from 
“unidirectional” context to “bidirectional” context and from “short-range” dependency 
to “long-range” dependency makes XLNet the most refined model for context modeling 
today. So our research revolves around XLNet.
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Materials and methods
XLNet‑CRF architecture

XLNet is a permutation language model. In the pre-training phase, the noise in BERT 
model is eliminated by using the two-stream self-attention. At the fine-tuning phase, there 
is little difference between XLNet and the BERT model, both of which can be considered 
multi-headed self-attention language models.

We have decoded the output of the XLNet model using the CRF decoder. Figure 1 shows 
the XLNet-CRF architecture from a fine-tuned perspective. First, the text is serialized, and 
the input sequence is defined as X = [x1 . . . xt ] , where t is the length of the input sequence. 
The input sequence in XLNet is generated by the SentiencePiece [20] based on the input 
text. Then, after the X has been word-embedded, each input character is mapped to a vec-
tor, forming the sequence H0 = [h01 . . . h

0
t ] as input to the multi-header attention model. 

Finally, the output vector of the final XLNet model is Hn = [hn1 . . . h
n
t ] after the attention 

model is linked by the n layer residue. The entity label for each character entered, cor-
responding to the input, is treated as Y = [y0 . . . yt ] . Defines an entity label collection as 
l ∈ 1, 2 . . .L , L is the total number of target identification tag sets, so BioNER tasks can 
be considered classification tasks that predict Y based on X. Given the continuity of entity 
labels, the CRF is used as the decoding layer to select the most appropriate label from the 
label collection. A is defined as a transition matrix to modify the current forecast based on 
previous label information. Therefore, the label forecast score is defined a

(1)S(X ,y) =

L∑

i=0

Ayi ,yi+1 +

L∑

i=1

Pi,yi .

Fig. 1  Architecture of the XLNet-CRF model
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After softmax standardizes the label score, the conditional probability for each word ele-
ment can be obtained. At the prediction and evaluation stage, the Viterbi algorithm [29] 
is used as the reasoning for the final prediction results.

Multi‑task learning

The general deep learning model can fit the training target data highly. However, even 
for datasets of the same type of entity, it is still difficult to apply models trained for one 
dataset directly to another dataset [30]. On the one hand, when only one data set is tar-
geted, there is inevitably an out-of-vocabulary (OOV). To some extent, the problem of 
OOV is mitigated by the paraphrasing of sentences. On the other hand, over-fitting is 
common for models that train on only one dataset. With the limited size of a single data-
set, multi-tasking learning is an effective way to improve the generalization of models, 
while avoiding the over-fitting of models trained on a single dataset. Multi-tasking is the 
training of shared parameters on multiple tagged datasets where similar entities exist. 
In this paper, fine-tuning is integrated into multi-task learning. Pre-trained XLNet with 
common text data is used as an initialization parameter, while CRF model parameters 
are initialized randomly. On this basis, similar entity datasets are combined for training 
and the effects of each dataset are evaluated separately, corresponding to which single 
task learning is defined as fine-tuning training for each dataset on a pre-training model 
basis. We divided 14 datasets into four categories for multi-task learning. We share all 
the parameters of XLNet-CRF for multi-task, and we call this model MTL-XC.

Hierarchical shared transfer learning

We trained in single-task learning and multi-task learning respectively to evaluate 
the effectiveness of multi-task learning and found that the results were not as good as 
expected.

Inspired by the work of Mehmood et al., we proposed the MTL-LS (layer slicing) model. 
As shown in Fig. 2, we divide the XLNet-CRF model into shared and task-specific sections 

Fig. 2  Model segmentation schematics for hierarchical shared transfer learning. We split XLNet-CRF. The 
underlying layers of the token embedding and XLNet models are share, with the upper layers and CRFs of the 
XLNet as specific tasks



Page 6 of 14Chai et al. BMC Bioinformatics            (2022) 23:8 

by layer. Fortunately, the parameters in the hidden layers of the XLNet model have the same 
output size, allowing them to be split and combined at will. Take Hk as the dividing point 
between H0 and Hn , define the underlying layer between 0 k, and the layer between k n is 
called the upper layer. Because the underlying contains the underlying text encoding infor-
mation [31], we use the underlying as a shared layer, and the upper layer is a special task 
layer trained separately for different tasks. The underlying parameters are derived from 
the corresponding layer parameters of the MTL-XC training. The upper layer parameters 
are initialized by pre-trained parameters on the common corpus, which can accelerate the 
convergence of the model. CRF contains few parameters ( L2 ) and is closest to the decod-
ing layer, making it easier to train, so random initialization is still used so that the decoder 
can train the language characteristics of different tasks separately. It encodes and decodes 
specific tasks and retains the common encoding information learned by multi-task learn-
ing for a class of entities. Define the scale of the number of shared layers after split as the 
slicing rate ( slicingrate = k/n ), and when slicingrate = 0 , MTL-LS degrades to the single-
task learning that is shared by the embedded table parameters. When slicingrate = 0 , this 
is similar to the method proposed Zuo and Zhang [21], where the model is divided into two 
parts: the encoder (XLNet) and the decoder (CRF). The encoder part is used as a shared 
layer, and the decoder part is used for specific datasets.

Datasets and data preprocessing

Using datasets similar to those in Crichton et  al.  [18]. We excluded AnatEM during the 
hierarchical shared transfer learning phase because the dataset was not in the 4 types of 
entities ultimately evaluated. Furthermore, we experimented on 14 other baseline datasets 
and divided the entities into four categories: gene/protein, chemical, disease, and species. 
We take BC5CDR [32], BC4CHEM [33], NCBI-disease [34], BC2GM [35]and LINNAEUS 
[36], five datasets are gold standard master datasets. We analyzed the relationship between 
training sets, test sets, and training effects for five gold standard datasets. These datasets are 
open and available from https://​github.​com/​cambr​idgel​tl/​MTL-​Bioin​forma​tics-​2016.

Evaluation metrics

Due to the limitation of the training cost, it is difficult to conduct multiple random initiali-
zation training, so instead, for each dataset, we first conducted n epoch training sessions 
and then conducted k ∗m-round epoch training sessions with the obtained model param-
eters as the starting point. With the increment of n, m, the time cost becomes unacceptable 
and the convergence effect of the model has not been significantly improved. However, if 
n, m is too small, also cannot converge. And finally we took a 30+ 3 ∗ 30 structure to train. 
In the test, the last five checkpoints of each training exercise were predicted against the 
test datasets. We calculated precision, recall, and F1-scores as evaluation indicators, with 
F1-scores as the primary evaluation indicators. The calculation formula is as follows:

(2)F1− score =
2 · precision · recall

precision+ recall

(3)precision =
TP

TP + FP

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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Training detail

XLNet-Large pre-training parameters provided by Yang et  al.  [6], which contain 24 
layers, 1024 hidden layer nodes, and 16 attention heads. We’re using Adam optimizer, 
Adam epsilon was 1e − 6 and the learning rate was 3e − 5 , because the model was 
already pre-trained, so the model was not warmed-up during training. When multi-
tasking, we unify the labels of the datasets and shuffle the datasets. In order to preserve 
the underlying shared information as much as possible, the layer attenuation strategy is 
used to reduce the learning rate of each layer, i.e. lr[n− 1] = lr[n] ∗ decay_rate , where n 
is the XLNet layer, and decay_rate = 0.9.

Results
Share all the parameters of the XLNet‑CRF (MTL‑XC)

In this lab, the effects of four types of BioNER in MTL-XC were evaluated. Benchmark 
the results of training on a single-task. For datasets that have multiple entity types, we 
compare them separately into a single type. Table 1 provides a complete comparison of 
the performance of chemical, disease, species, and gene/protein on MTL-XC’s precision, 
recall, F1-scores for 14 datasets. As can be seen from Table 1, the F1 of the two types of 
entities, disease, and gene/protein, has been greatly enhanced, and in the vast majority 
of the datasets, multi-task is better than single-task. Some datasets have been improved 
significantly, such as BioNLP13GE dataset by 5.37, Ex-PTM dataset by 6.73 and CRAFT 
dataset by 3.69. Although there has been an increase in disease entities, the increase has 
been relatively limited. In the remaining datasets, performance declines are severe. The 
same phenomenon occurs in the species category, where all datasets have a lower MTL-
XC results than single-task learning. Therefore, direct sharing of full model parameters 
is not ideal. Again, this proves that multi-tasking is not always better than single-task 
learning [28]. Entity categories and dataset features affect multi-tasking learning results, 
including association between dataset and size of datasets.

Hierarchical shared transfer learning on XLNet‑CRF (MTL‑LS)

We try to further improve the training effectiveness and stability of multi-task learning 
by layering the model. The new model is referred to as MTL-LS, as detailed in “Hierar-
chical shared transfer learning” section. Based on previous MTL-XC studies, we further 
trained fourteen datasets on MTL-LS. We made slicingrate 0.25, 0.50, 0.75, and 1.00, 
respectively, as shown in Table 2.

We can see that the effects of different datasets are not stable with slicingrate. 
BC5CDR-chemical dataset results best when Slicingrate = 0.25 , but Slicingrate = 1.00 
in BC4CHEMD, which is also a chemical entity. BioNLP13PC-chemical and CRAFT-
chemical did not exceed single-task learning results but had a 5.93 and 5.91 improve-
ment over multi-tasking, respectively. For disease entities, the BC5CDR-disease 
dataset has the largest F1 value at slicingrate = 1.00 , and the NCBI-disease dataset 
has the best effect at slicingrate = 0.75 . MTL-LS is better than single-tasks in all 10 

(4)recall =
TP

TP + FN
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sub-tasks of the gene/protein entity. In the species class, BioNLP11CG and CRAFT 
obtained the best results at the slicingrate of 0.25 and 1.00 respectively, while BioN-
LP13ID and LINNAEUS obtained the best results at the slicingrate of 0.75. However, 
CRAFT-species and LINNAEUS dataset are slightly different, although the F1 value is 
higher than the MTL-XC, but they do not reach the F1 value achieved by single-task 
learning. In “ card(CL ∩ P ∩ T )/card(CL ∩ P) and (cardP − cardL)/cardL ” sections, we 
analyze the five gold standard dataset to find that the LINNAEUS data is of lower 
quality and smaller size, and that the introduction of other entity sets for training 
would reduce its F1 value.

The results show that MTL-LS is greatly affected by slicingrate and in some cases 
even learns less than STL. On the one hand, as slicingrate decreases, models converge 
more and more slowly. On the other hand, the relevance of the data itself makes it 
possible for the model to learn redundant noise information. But finding the right 
slicingrate makes the result except for JNLPBA better than all results on MTL-XC. 
Overall, training using MTL-LS resulted in a certain degree of steady improvement 

Table 1  Performance of STL-DS and MTL-XC on all tasks

Better scores of each metric are in bold

Dataset STL MTL-XC

P. % R. % F1 P. % R. % F1

Chemical

BC4CHEMD 93.00 92.40 91.70 92.02 92.49 91.25

BC5CDR 92.76 93.96 93.36 93.43 92.94 93.19

BioNLP11ID 55.56 72.58 62.94 61.44 75.81 67.87
BioNLP13CG 83.20 85.14 84.16 82.35 80.88 81.61

BioNLP13PC 88.57 90.33 89.44 76.65 83.80 80.07

CRAFT 84.07 81.05 82.54 75.34 72.38 73.83

Disease

BC5CDR 84.83 88.11 86.44 86.40 87.34 86.87
NCBI-disease 87.27 89.27 88.26 87.80 89.73 88.75
Gene and protein

BC2GM 81.91 82.53 82.22 82.67 82.61 82.64
BioNLP09 88.20 86.82 87.50 87.23 91.95 89.53
BioNLP11EPI 84.23 87.96 85.81 85.32 87.63 86.46
BioNLP11ID 89.22 89.65 89.43 89.6 88.47 89.03

BioNLP13CG 88.45 92.42 90.39 93.56 91.63 92.58
BioNLP13GE 73.57 83.51 78.22 77.62 90.55 83.59
BioNLP13PC 89.56 94.26 91.85 90.66 87.93 89.27

CRAFT 80.48 75.44 77.88 78.56 84.83 81.57
Ex-PTM 74.79 80.46 77.52 81.83 86.83 84.25
JNLPBA 71.98 80.04 75.80 72.58 85.04 78.32
Species

BioNLP11ID 85.41 82.03 83.68 91.22 70.24 79.37

BioNLP13CG 88.34 89.19 88.76 88.39 86.68 87.52

CRAFT 96.45 97.73 97.08 93.76 93.51 93.63

LINNAEUS 91.70 85.62 88.56 88.43 82.14 85.17
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relative to MTL-XC. Sharing mechanisms at different levels can make it easier for a 
model to jump out of a local best.

Among the five sub-tasks for four gold standard datasets excluding LINNAEUS, the 
model presented in this paper has a significant advantage over the model based on 
LSTM [18, 37]. BC5CDR-chemical, BC5CDR-disease, BC2GM, BC4CHEMD, NCBI-
disease compared to single-task XLNet models increased by 2.81, 1.67, 1.52, 1.18, 0.97 
and 1.3 percentage points respectively. It can be concluded that the proposed MTL-LS 
architecture has better effect, generalization, and stability on BioNER.

Comparison with benchmark results

In this section, compare the results of MTL-LS for the five gold standard datasets with 
those of other the corresponding publications. The datasets we use are standard that 
already publicly available, so test splits are the same. To make a fair comparison with 
other people’s work, we adjust the slicingrate on the development set of the data set and 
produce the final test set results, so that the slicingrate is not optimized on the test set. 
Take test set F1-score as shown in Table 3.

Table 2  F1 performance of STL, MTL-XC, and MTL-LS with different slicing rates

Better scores of each metric are in bold

Dataset STL MTL-XC Slicng rate

0.25 0.50 0.75 1.00

Chemical

BC4CHEMD 91.70 91.25 91.82 92.24 92.37 92.47
BC5CDR 93.36 93.19 93.93 93.75 93.60 93.14

BioNLP11ID 62.94 67.87 42.29 52.98 73.41 73.71
BioNLP13CG 84.16 81.61 78.59 78.50 85.13 82.47

BioNLP13PC 89.44 80.07 81.25 82.13 84.03 86.00

CRAFT 82.54 73.83 76.73 79.74 77.96 79.44

Disease

BC5CDR 86.44 86.87 86.10 87.04 86.28 87.34
NCBI-disease 88.26 88.75 85.23 86.79 89.24 88.97

Gene and protein

BC2GM 82.22 82.64 79.85 81.54 81.94 82.94
BioNLP09 87.50 89.53 87.23 89.53 89.47 89.27

BioNLP11EPI 85.81 86.46 84.65 85.65 86.24 86.58
BioNLP11ID 89.43 89.03 83.62 82.69 89.59 86.55

BioNLP13CG 90.39 92.58 91.33 92.05 92.71 92.21

BioNLP13GE 78.22 83.59 81.29 82.61 82.73 84.03
BioNLP13PC 91.85 89.27 89.16 91.87 90.59 90.37

CRAFT 77.88 81.57 79.02 82.62 83.42 82.18

Ex-PTM 77.52 84.25 78.52 80.57 84.64 84.55

JNLPBA 75.80 78.32 75.08 77.00 77.32 77.66

Species

BioNLP11ID 83.68 79.37 70.91 77.45 83.74 79.00

BioNLP13CG 88.76 86.30 88.97 87.39 86.07 86.90

CRAFT 97.08 93.63 95.56 95.04 94.74 95.75

LINNAEUS 88.56 85.17 83.82 84.05 86.40 85.06
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In general, the methods presented in this paper perform poorly on the LINNAEUS 
dataset. After analysis, the model can easily converge with the local optimal when train-
ing LINNAEUS and has not found a way to improve the effect. Except LINNAEUS, sin-
gle-task training results were better than the BERT. The XLNet-CRF single-task is not 
good enough compared to PubWebBERT with only BC2GM. NCBI-disease is better at 
STL without HunFlair, but MTL-LS is better than HunFlair. BioBERT achieved more 
than single-task training through further pre-training in medical data and exceeded 
the model proposed in this paper on BC2GM, NCBI-release and LINNAEUS. How-
ever, hierarchical shared transfer learning outperforms BioBERT models on BC5CDR 
and BC4CHEMD datasets. It can be argued that pre-training of knowledge data in 
biomedical fields can significantly improve entity identification of genes/proteins and 
species classifications. For other entity types, it is better to combine multitasking with 
fine-tuning.

Discussion
Multi-task learning essentially increases the generalization of the model by increasing 
the number of training samples to cover as many entities as possible. Therefore, the cor-
relation of data in multi-task learning often greatly affects the effect of training. If the 
data is less dependent, the F1 value is lowered. We counted the entities of five dataset, 
where the multi-task learning entity set Training is represented by T, and the test set 
contains the entity set Labels represented by L and the entity set Logits predicted by the 
final model are represented by P, shown in Fig. 3 as a Euler graph. We compute the num-
ber of parts of the set, shown in Fig. 4 as a radar chart.

card(CT ∩ L ∩ P)/card(CT ∩ L)

We take BC4CHEMD as an example to describe the meaning of the Euler diagram, 
and CT ∩ L (2.30%+18.37%) indicates a set of entities that need to be predicted but 
not trained. CT ∩ L ∩ P(18.37%) denotes the set of entities that are not in the training 
set, but that predict success. The greater the card(CT ∩ L ∩ P)/card(CT ∩ L) , the more 
adaptable the model is. We present the card(CT ∩ L ∩ P)/card(CT ∩ L) of the six data-
sets as a radar chart in Fig. 4A. The figure shows that this percentage of BC4CHEMD 
reached 88.86%, which explains why the F1 value of BC4CHEMD can reach 92.47%. The 

Table 3  Model performance comparison to other studies

Better scores of each metric are in bold

BC5CDR BC2GM BC4CHEMD NCBI-disease LINNAEUS

Chemical Disease

Crichton et al. [18] 89.22 80.46 73.04 82.95 80.46 83.98

Yoon et al. [37] 93.31 84.08 79.73 88.85 86.36 –

Lee et al. [26] 93.44 86.56 84.40 91.41 89.36 89.81
BERT [26] 91.16 82.41 81.79 90.04 85.63 87.60

PubWebBERT [27] 93.33 85.62 84.52 – 87.82 –

HunFlair [38] – – – – 88.65 –

STL 93.36 86.44 82.52 91.70 88.26 88.56

Proposed 93.83 87.28 82.92 92.42 89.25 86.37
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average value of card(CT ∩ L ∩ P)/card(CT ∩ L) can reach 80.08%, which is a good indi-
cation that our model learns a certain amount of knowledge, has some learning ability, 
and can transfer learning.

card(T ∩ L)/cardL

Figure  4B indicates that card(T ∩ L)/cardL , T ∩ L represents the intersection of the 
training set and the test set entities. The greater this value, the greater the proportion 
of entities covered by the training set, the greater the generalization of the model. The 
average can reach 45.13%, BC5CDR-chemical card(T ∩ L)/cardL even reached 63.42%.

card(CP ∩ T ∩ L)/card(T ∩ L)

Figure  4C shows card(CP ∩ T ∩ L)/card(T ∩ L) , where CP ∩ T ∩ L is the set of 
entities that have been learned by the training set but cannot be identified in the 
test set, which represents an average of 4.42% of T ∩ L . This phenomenon sug-
gests that even learned knowledge can be forgotten, and the introduction of a larger 

Fig. 3  Euler diagram of training entity set (Training), test set (Labels) and predict set (Logits)

Fig. 4  Radar chart of the proportional relationship between the sets of six tasks. A 
card(CT ∩ L ∩ P)/card(CT ∩ L) , B card(T ∩ L)/cardL , C card(CP ∩ T ∩ L)/card(T ∩ L) , D 
card(CL ∩ P ∩ T )/card(CL ∩ P) , E (cardP − cardL)/cardL
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number of samples can distract the model, resulting in a loss of memory and a lack 
of recognition of the learned entity. We can see from the radar chart that the value of 
card card(CP ∩ T ∩ L)/card(T ∩ L) for BC2GM reached 9.8%. Second, BC2GM mixes 
ten task genes/protein entities of card(T ∩ L)/cardL , (Fig.  4B) and only 31.90%. For 
BC2GM, which forgets 9.8% of the knowledge and has low coverage, the F1 value is the 
worst in the six datasets.

card(CL ∩ P ∩ T)/card(CL ∩ P)

Another particular note is the radar chart shown in card(CL ∩ P ∩ T )/card(CL ∩ P) in 
Fig.  4D. CL ∩ P represents the set of entities that recognize the error, and CL ∩ P ∩ T  
and CL ∩ P ∩ CT are included in CL ∩ P ∩ T  , where CL ∩ P ∩ T  is very noteworthy. The 
entity set is treated as the entity training in the training set, but in the test set CL ∩ P ∩ T  
is not the entity, that is, the wrong knowledge is learned when learning, or the model 
identifies the accurate entity according to the prior knowledge, and the test set tells the 
model that the prediction error is contradictory. Therefore, the larger CL ∩ P ∩ T  as 
CL ∩ P , the worse the quality of the dataset. Figure 4D shows that this problem exists 
in all six tasks, with an average of 15.6%. That is, the dataset itself has some errors. And 
the LINNAEUS dataset has 28.57% error recognition from training data, which is why 
LINNAEUS’s single-task results are much better than multi-task results. The introduc-
tion of new training samples increases the probability of model error. The relevance of 
datasets in species categories can be considered to have contributed to this result. There 
is a need to improve the quality of data for this type of dataset to avoid problems with 
misperception.

(cardP − cardL)/cardL

As shown in Fig. 4E, the (cardP − cardL)/cardL values are greater than 0, that is, the 
number of entities predicted by all sets is greater than the original number of entities 
in the test set. The LINNAEUS dataset has a value of 21.64%, which again explains why 
the LINNAEUS multi-task F1 value never reaches the effect of a single-task. For LIN-
NAEUS, our model has learned a lot that is not its own.

In conclusion, we analyze the relationship between training sets, test sets, and entity 
sets of predicted results, and point out the error sources at the data level. This paper 
explains the reason the experiment results of LINNAEUS dataset can’t transcend the 
single-task at the data level.

Conclusion
Because of the previous methods of biomedical named entity recognition through deep 
learning methods, single-task learning or multi-task learning. This paper presents an 
effective hierarchical shared transfer learning method, which combines multi-task with 
single-task, has high generalization and stability, and validates its effectiveness on four-
teen datasets. In addition, we analyzed the physical relationship between training sets, 
test sets, and training effects on five gold standard datasets. The source of error at the 
data level is pointed out.
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