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Abstract 

Background:  Compound–protein interaction prediction is necessary to investigate 
health regulatory functions and promotes drug discovery. Machine learning is becom‑
ing increasingly important in bioinformatics for applications such as analyzing protein-
related data to achieve successful solutions. Modeling the properties and functions of 
proteins is important but challenging, especially when dealing with predictions of the 
sequence type.

Result:  We propose a method to model compounds and proteins for compound–pro‑
tein interaction prediction. A graph neural network is used to represent the com‑
pounds, and a convolutional layer extended with a bidirectional recurrent neural net‑
work framework, Long Short-Term Memory, and Gate Recurrent unit is used for protein 
sequence vectorization. The convolutional layer captures regulatory protein functions, 
while the recurrent layer captures long-term dependencies between protein functions, 
thus improving the accuracy of interaction prediction with compounds. A database of 
7000 sets of annotated compound protein interaction, containing 1000 base length 
proteins is taken into consideration for the implementation. The results indicate that 
the proposed model performs effectively and can yield satisfactory accuracy regarding 
compound protein interaction prediction.

Conclusion:  The performance of GCRNN is based on the classification accordiong to a 
binary class of interactions between proteins and compounds The architectural design 
of GCRNN model comes with the integration of the Bi-Recurrent layer on top of CNN to 
learn dependencies of motifs on protein sequences and improve the accuracy of the 
predictions.

Keywords:  Machine learning, Drug discovery, Protein compound interaction, CNN, 
Bi-LSTM, Bi-GRU​

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Elbasani et al. BMC Bioinformatics          (2021) 22:616  
https://doi.org/10.1186/s12859-022-04560-x BMC Bioinformatics

*Correspondence:   
kjdvhu@gmail.com 
1 Department of Computer 
Science and Engineering, Sun 
Moon University, Asan 31460, 
South Korea
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-5113-221X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04560-x&domain=pdf


Page 2 of 13Elbasani et al. BMC Bioinformatics          (2021) 22:616 

Introduction
Compound–protein interaction (CPI) is important in the design of new compounds for 
the pharmaceutical industry. Proteins consist of large of small units called amino acids, 
which forms long chains that regulate specific functions of the human body. In humans, 
20 types of amino acids are combined to form proteins. An amino acid sequence is 
structured into a three-dimensional complex, and its surface has a pocket that interacts 
with a compound through a specific combination of amino acids. In the framework of 
modern pharmaceutic research, the relationship between a compound and a protein can 
be depicted as a network, in which each node represents a compound or a protein, and 
an edge indicates a CPI.

Based on this paradigm, many methods based on in silico networks have been intro-
duced to predict CPIs [1–3]. Nevertheless, these methods present limitations, such as 
simulating the CPI as a bipartite network while ignoring the similarities between com-
pounds and interactions between proteins. Moreover, CPI is essential for achieving a 
variety of health states. In fact, compounds may be small chemical elements composed 
of molecules, single elements, or other combined elements that contain a variety of pro-
teins with specific functions determined by their structure. The protein function var-
ies according to the interaction sites that enable interaction with compounds. Thus, the 
interaction between molecular compounds and proteins is being actively studied for the 
discovery and development of safe and effective drugs. Drugs are generally low-molecu-
lar-weight compounds that regulate the biological functions of targets [4], which mostly 
correspond to disease-related proteins. When drugs interact with such targets, they can 
be used to treat the related diseases [5, 6].

The discovery of new drugs is time-consuming and costly, usually taking over 10 years 
in development to then conduct clinical trials for their profound study and ensure com-
pliance with safety standards. The recording and sharing of drug information has greatly 
accelerated discovery and production, further facilitating the search for new interactions 
of drugs that can bind to more than one protein. Experimental wet laboratory experi-
ments are available to predict interactions of known drugs, but they require considerable 
effort and time to set up and implement. The need for faster results has triggered the 
development of accurate and powerful analytical tools. Although such tools have been 
experimentally implemented in previous decades, current technologies and data avail-
ability have enabled the analytic process of drug development to be driven by machine 
learning and artificial intelligence.

Bioinformatics and data science have been combined to develop solutions based on 
various methods and algorithms, especially for CPI prediction [7, 8]. Conventional 
methods in this field use similarity-based approaches, which consider the similarity of 
known compound matrices with each other and across protein data. Bleakly et  al. [9] 
proposed a model for CPI prediction with a variety of similarity information, achieving 
reasonable prediction performance but often demanding high computational cost, addi-
tional expertise, or three-dimensional structures of proteins.

Machine learning has been used to construct strong and sustainable drug delivery 
pipelines in a shorter time compared with the use of conventional methods [10]. Such 
pipelines allow to rapidly synthesize and analyze a small number of compounds that 
would help refine developed models and new designs. For drug discovery, machine 
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learning and other technologies have enabled faster, cheaper, and more effective solu-
tions [11].

Artificial intelligence involves various machine learning methods, with the most 
prominent being deep neural networks (DNNs), which provide state-of-the-art solu-
tions in many applications, such as speech recognition and visual object recognition 
[12]. DNNs have also achieved excellent performance in the investigation of com-
pounds and proteins [7, 8]. However, most available methods do not include end-
to-end representation learning and consider on molecular encodings and protein 
phylogenetic data banks as input features that remain fixed during training. Convolu-
tional neural networks (CNN) and recurrent neural networks (RNNs) are variants of 
DNNs used to classify time series and sequential data [13]. Given the long sequential 
nature of protein data, RNNs with long short-term memory (LSTM) layers have been 
proven successful. These machine learning methods can help developing high-value 
and cost-effective target drugs with faster transport and less harm to patients. Moreo-
ver, customized drugs can be developed to achieve the desired results faster than con-
ventional drugs, substantially reducing the costs and time of treatments. By analyzing 
data of genome, proteomics, metabolomics, and clinical trials, we may fully under-
stand the structure of a disease. Then, this knowledge may be applied to machine 
learning toward the development of drugs with faster and more accurate targeting.

Unlike conventional methods, a feature vector allows to automatically extract fea-
tures from data without requiring expert knowledge or the three-dimensional struc-
ture of objects/proteins. Jacob et  al. [14] applied tensor-product-based features to 
represent compound and protein families in mathematical vectors and then applied 
a support vector machine to predict CPIs. Jones et al. [15] used a CNN and combina-
tion graphs to find a CPI with a pairwise model, also Tsubaki et al. [16] use a similar 
structure for CPI prediction. Specifically in pairwise models, a CNN is used to ana-
lyze the protein structure and a graph neural network (GNN) was used for the molec-
ular structure. Then, vectors were obtained from these branches and concatenated for 
the final CPI prediction.

This study contributes to the development of an end-to-end learning framework 
based on chemical information using a graph representation of a compound and 
a sequence of a protein by combining neural networks to identify the existence of 
CPIs. We represent compound and protein complexes as feature vectors and apply a 
learning algorithm to train a classifier for CPI prediction. This method, called graph 
convolutional recurrent neural network (GCRNN), uses protein analysis based on a 
CNN after a max-pooling layer followed by a bidirectional LSTM layer. The integra-
tion of recurrent layers into a CNN for protein modeling improves the representation 
of protein functions that dictate interactions with a compound and promote accurate 
results in real laboratory experiments. In addition, we integrate a recurrent layer after 
the max-pooling layer because protein functions follow patterns that represent spe-
cific biological arrangements, and the integration increases the detection probability 
and provides memory for capturing long-term dependencies [17, 18].

The remainder of this paper is organized as follows. Section 2 presents result and 
discussion, we draw conclusions in Sect.  3 and the proposed method is detailed in 
Sect. 4.
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Results and discussion
A hybrid architecture improves the performance of prediction

After selecting the features for analyzing the data, despite factors such as data size or 
complexity, the performance is essential to choose the appropriate machine learn-
ing model. In addition, the selected model should deal with factors such as linearity, 
numbers of parameters and features of the data bank, training time, and accuracy. This 
work mainly measures the performance based on the classification accuracy. Also, to 
be noticed that the study conducted in this paper is compared with accuracy of repli-
cated work of Tsubaki et al. [16] the model named GCNN(Graph Convolution Neural 
Network), with the intention improving parts of this research to convey our idea practi-
cally. The nature of data for CPI prediction is computed based on binary classes, where 
a class is determined by an output threshold. This work use a binary class representing 
the existence or absence of CPI. To accurately evaluate the model and prevent overfit-
ting, the data were split into disjoint training (65% of the samples), validation (20% of 
the samples), and test (15% of the samples) sets. This work evaluate the performance 
using measures based on the numbers of true positives (TP), which indicate the cor-
rect classification of positive samples (i.e., CPIs), true negatives (TN), which indicate the 
correct classification of negative samples (i.e., no CPIs), false positives (FP), which indi-
cate incorrect classification of positive samples, and false negatives (FN), which indicate 
incorrect classification of negative samples. The evaluation measures based on TP, TN, 
FP, and FN, and a study of performance measures for classification tasks that are used 
widely in learning techniques is presented in [19].

The open source genomic and protein data were retrieved from respective data reposi-
tories, for chemical structure of the compound from the PubChem database and protein 
sequences from the Protein Data Bank [20]. Protein and chemical data are processed in 
order to have a training data of compound protein interaction which is detailed from 
Liu et al. [21]. This work have used these data for CPI analysis, and 7000 sets of anno-
tated data containing 1000 base length proteins have been obtained. The classes estab-
lish balanced data, and this fact demonstrate the importance of training process to have 
a close detection rate of each classes, raising the probability of generating a model with 
high accuracy. Thus, models can achieve high classification performance compared with 
the use of imbalanced data. We conducted experiments using various machine learning 
modules to evaluate different architectures.

The GNN uses a chemical input given by the simplified molecular-input line-entry sys-
tem, which provides molecular encoding sequential strings. The system uses RDkit [22] 
to obtain graphical representations, and as an open source package include library of 
cheminformatics operations for compound or molecules structures.

This study use a three-layer GNN with an r-radius number of 2 to represent molecules 
as vectors. For proteins, the CNN takes the original amino acid sequence and passes 
through a three-layer structure with 320 convolutional kernels and a window size of 30 
with random initiation based on a similar model [23]. The pooling layer has a window 
size of 15 and step size of 15, followed by two layers of bidirectional LSTM with 320 
forward and backward neurons. The same architecture is used for the bidirectional GRU, 
and computations are performed over several iterations sets. The best set of hyperpa-
rameter for tuning GCRNN w\LSTM and GRU are selected to be 100 training epoch, 
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choosing Adam optimizer, learning rate of 0.001 and decay of learning rate 0.4. The 
model showed high performance after tuning the hyperparameters.

This study implemented the experiments in the PyTorch [24] using a computer run-
ning the Ubuntu 18.04 operating system and equipped with an Intel i9-10,940 × proces-
sor with 256 GB memory and an NVIDIA 4xRTX2080TI graphics processor with 44 GB 
memory.

Compound protein interaction prediction accuracy

CPI analysis requires wet laboratory experiments, but we only considered the data bank 
in this study assuming that the protein and interaction information is approved before 
the data were recorded. In addition, the bidirectional LSTM or bidirectional GRU after 
the max-pooling layer affects the CPI prediction performance. Thus, we obtained a high 
accuracy on the data, as shown in Fig. 1a, b for the corresponding models.

The results in Fig.  1 show that the proposed GCRNN can predict the CPIs at 98% 
accuracy. Further experiments related to error rate when inserting a new test set sepa-
rated and the results are given for Bi directional GRU which performed better compare 
to Bi-LSTM and the result is visualized in the Fig. 2, showing that the training and test 
accuracies and the error graphs do not overfit over 100 iterations.
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Fig. 1  Accuracy of training and testing prediction over 100 iterations for proposed GCRNN with a 
bidirectional LSTM and b bidirectional GRU​
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Compared with the GCNN, our GCRNN shows a small improvement in the over-
all performance, as listed in Table 1. This result suggests that the proposed GCRNN 
provides a more reliable prediction because protein function extraction is important 
for CPI. Data about proteins are available in data banks [25] and are obtained over 
years of research. The similarity between proteins in humans reduces the burden of 
data recording, and thus various calculations are facilitated by only selecting a type of 
protein and a type of interaction. During drug discovery, analytic results and health 
information are linked to recognize patterns of compounds with different proteins.

Visualization tools provide insights on the medical outcomes expected for patients 
with a high accuracy to predict effects while reducing the time and setup workload 
of wet laboratory experiments for producing a specific drug. With the advancement 
of research, data banks will become larger, increasing our ability to understand CPI 
patterns for healthcare, and patients will be treated with specific drugs related to their 
health condition.

This research is limited to the analysis process of the framework, even why sev-
eral implementations are performed, a confident discussion of compound protein 
interaction requires wet laboratory experiments to be associates with, but this work 
will focus only on the database supposing that protein and interaction information is 
approved before when data are recorded.

Conclusions
This work proposes GCRNN to identify CPIs using high-end machine learning meth-
ods. Also, emphasize the end-to-end representation learning of a GNN and a CNN 
with bidirectional LSTM/GRU to predict CPIs. Experimental results demonstrate 
that a relatively low-dimensional end-to-end neural network can outperform various 
existing methods on both balanced and imbalanced data.

This study provides new insights on CPI prediction to construct general machine 
learning methods in bioinformatics rather than using feature engineering. Unlike 
existing structure-based computational approaches, the proposed GCRNN shows 
high performance using only protein primary structure information instead of three-
dimensional structure information. Nevertheless, a deep learning model is usually 
considered a black box. Consequently, it is difficult to interpret the features that the 
model learns for CPI prediction. Improving the prediction performance on the vali-
dation and test sets would provide a starting point for subsequent research. In future 
work, this study will evaluate the model learning and performance considering com-
parisons with the results from wet laboratory experiments.

Table 1  Classification performance of evaluated methods for CPI prediction

Method Precision Recall Accuracy F1-measure

GCNN 0.92 0.94 0.96 0.92

GCRNN w/LSTM 0.95 0.92 0.97 0.93

GCRNN w/GRU​ 0.97 0.94 0.98 0.95
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Methods
GCRNN for CPI prediction

Machine learning and computational methods are enhancing data analysis on a large 
scale and providing faster solutions, impacting research on biology and pharmaceu-
tics. Biological data have been collected in data banks with plenty of information 
about genome and proteins being available for researchers to obtain reliable results in 
areas such as healthcare.

This work address CPI prediction, an important aspect for drug discovery and 
development. Figure 3 illustrates the development of new drugs for improving health 
conditions based on the information of proteins and chemical structure of natural or 
artificial compounds.

A normal or abnormal condition carries information in the genome sequence, 
which can be translated into a protein sequence that interacts with a compound. The 
interactions can be stored continuously by using machine learning to determine the 
effective compound and protein for a specific disease. Then, laboratory experiments 
provide accurate results for clinical trials, and the resulting compound extends the 
dataset for new cases and developments.

Deep learning techniques provide state-of-the-art performance and high accuracy 
for handling protein sequences and modeling molecules. Among the available models 
and architectures, we combine three powerful methods for CPI prediction, namely, 
GNN, CNN, and bidirectional RNN, as shown in Fig. 4. These methods constitute the 
proposed GCRNN and are detailed below.

Fig. 3  Deep learning-based drug discovery approach
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GNN

The GNN can provide the low-level error vector of a molecular chart. We use the GNN 
to represent a molecular embedding that maps a graph into a vector through transfor-
mation and output functions. In the GNN, the transformation function updates the node 
values related to the neighboring nodes and edges, and the output function describes the 
nodes as vectors. In the graph structure, G = (N, E), where N is the set of nodes, and E 
is the set of edges that connect neighboring nodes. We consider undirected graph G, 
in which a node ni ∈ N represents atom i of a molecule, and eij ∈ E represents the bond 
between atoms ni and nj.

Considering molecules as graphs simplifies the representation by defining few types 
of nodes and bonds and few parameters to learn. We also adopt r-radius subgraphs [26] 
that outperform the representation learning of the number of neighboring nodes. In an 
r-radius subgraph, for graph G = (N, E), the set of all nodes within a radius r of node i are 
represented as S(i,r), and the subgraph of r-radius nodes ni is defined as

where N (r)
i =

{

nj
∣

∣j ∈ S(i, r)
}

 and E(r)
i = {emn|(m, n) ∈ S(i, r)× S(i, r − 1)} . The sub-

graph for the r-radius edges is defined as

An embedded vector is assigned for the r-radius node and r-radius edge, which are 
randomly initialized, and backpropagation is used for training. To update the node 
information with respect to its neighborhood, the transition functions in Eqs. (3) and (4) 
are used. At time step t of a given graph with random embeddings of nodes and edges, 

(1)n
(r)
i =

(

N
(r)
i ,E

(r)
i

)

,

(2)e
(r)
ij =

(
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(r−1)
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j ,E
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i ∪ E

(r−1)
j

)
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Fig. 4  Architecture of GCRNN for CPI prediction
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n(t) represents a node in Eq. (3) and e(t) represents an edge in Eq. (4). The updated vec-
tors are defined as

where σ is the sigmoid function [27] and p(t)ij = f

(

Wneighbor

[

n
(t)
j

e
(t)
ij

]

+ bneighbor

)

 is a 

neural network with f being a ReLU (rectified linear unit) activation function [27] and 
Wneighbor and bneighbor being a weight matrix and bias vector, respectively, at time step t. 
In the same iteration, the edges are updated as follows:

where function q is the neural network model for the edges and 
q
(t)
ij = f

(

Wside

(

n
(t)
i + n

(t)
j

)

+ bside

)

 . The transition functions generate an updated set of 

nodes N =
{

n
(t)
1 ,n

(t)
2 , ..,n

(t)
|N |

}

 , where |N| is the number of nodes in the molecular 

graph. Finally, the molecular representation vector is given by

CNN

CNNs are DNNs that also effective for analyzing protein sequences. As a CNN uses a 
weight-sharing strategy to capture local patterns in data, it is suitable for studying DNA 
(deoxyribonucleic acid) because convolution filters can determine functions of protein 
sequences that are short repeating patterns in DNA that may have a biological func-
tion. The proposed deep CNN is characterized by sequential interactive convolutional 
and pooling layers that extract features form sequence at various scales, followed by a 
fully connected layer that computes the whole-sequence information to extract protein 
features. Each CNN layer undergoes a linear transformation from the previous output. 
Then, it is multiplied by a weight matrix and proceeds with a nonlinear transformation. 
To minimize prediction errors, the weighted value matrix is learned during training. The 
CNN model base layer is a convolutional layer that calculates the output of a one-dimen-
sional operation concerning a specific number of kernels (weight matrices later trans-
formed by ReLU activation). The CNN for proteins maps sequence P into vector y with 
multiple filter functions. The first CNN layer is applied to proteins, where the n-gram 
(n = 3) technique allows to represent amino acids as words. The group of three overlap-
ping amino acids makes a word and represents input sequence P. The convolution for 
input protein sequence P is defined as

(3)n
(t+1)
i = σ



n
(t)
i +

�

j∈S(i)

p
(t)
ij



,

(4)e
(t+1)
i = σ

(

e
(t)
i + q

(t)
ij

)

,

(5)ymolecule =
1

|N |

|N |
∑

i=1

n
(t)
i .

(6)convolution(P)
(t)
ik = ReLU

(

M−1
∑

m=0

N−1
∑

n=0

Wk
mnP

(t)
i+m,n

)

,
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where i is the index of the output position, k is the index of the kernels, and Wk is an 
M × N weight matrix with M windows and N input channels. Then, a max-pooling 
layer reduces the size of the input or hidden layers by choosing the maximally activated 
neuron from a convolutional layer. Accordingly, for the CNN to be independent of the 
length of the protein sequence, max-pooling is applied when the maximally activated 
neuron is selected from the convolutional layer. Consequently, the number of hidden 
neurons generated by the convolution filter is the same as that of filters and not affected 
by the length of the input. For input Q, pooling is defined as

Bidirectional RNN

An RNN is another type of DNN. Unlike a CNN, the connections between the RNN 
units form a directed cycle that creates an internal state of the network to exhibit a 
dynamic temporal or spatial behavior. A bidirectional LSTM is a variant of the RNN 
that combines the outputs of two RNNs to process a sequence both from left to right 
and from right to left. Instead of regular hidden units, the two proposed RNNs con-
tain LSTM layers, which are smart network units that can remember a value over an 
arbitrary period. A bidirectional LSTM can capture long-term dependencies and has 
been effective for various machine learning applications. Bidirectional gated recur-
rent units (GRUs) are an alternative to bidirectional LSTMs to constantly represent 
sequential input without using separate memory units [28]. We use LSTM and GRU 
to prove that adding a recurrent structure after the CNN increases performance.

Features V provided from the pooling layer form a sequence x = {x1, x2, . . . , xV } , 
which serves as input for a two-layer bidirectional neural network. The bidirec-
tional LSTM layers updated at step v depend on forward and backward processing as 
follows:

At time t, → and ← indicate the calculation direction, i is the input gate, f is the for-
get gate, o is the modulate gate, h is the hidden state at time t, Wi, WF, Wo, and Wc are 
weight matrices for their corresponding gates, and ⊙ denotes the elementwise multi-
plication. The equivalent bidirectional GRU is defined as follows:

(7)pooling(Q)
(t)
ik = max

(

QiM,k ,Q(iM+1,k), . . . ,Q(iM+M−1,k)

)

.

(8)

�it = σ

(

�Wi

[

xt , �ht−1

]

+ �bi

)

,

�ft = σ

(

�Wf

[

xt , �ht−1

]

+ �bf

)

,

�ot = σ

(

�Wo

[

xt , �ht−1

]

+ �bo

)

,

�gt = tanh
(

�Wc

[

xt , �ht−1

]

+ �bc

)

,

�ct = �ft ⊙ �ct−1 +�it ⊙ �gt ,

�ht = �ottanh(�ct)

H = �Wh
�ht +

←
W
h

←

h
t
.
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where r is the reset gate and z is the update gate. The LSTM/GRU encodes �ht along the 
left direction of the embedded protein at position t. As both the left and right direc-
tions are important for the global structure of proteins, we use a bidirectional LSTM 
(or bidirectional GRU). The bidirectional layers encode each position into leftward and 
rightward representations. H is the output, which is the sum of the results along both 
directions:

where H is a set of hidden vectors H =
{

h
′ (t)
1

, h
′ (t)
2

, . . . , h
′ (t)
|V |

}

 obtained from the bidi-

rectional LSTM/bidirectional GRU output. The protein vector representation is given by

The vectors are concatenated to obtain output vector Out = Wout

[

ymolecule; yprotein
]

+bout , 
which is the input of a classifier, where W out is a weight matrix and bout is a bias vec-
tor. Finally, softmax activation is added to vector Out[y0, y1 ] to predict a binary label 
that represents the existence or not of a CPI.
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