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Introduction
Genome-wide association studies (GWAS) have been used to identify variants that are 
significantly associated with the phenotype of interest. Yet, for complex diseases such as 
substance use disorders (SUD), the phenotype tends to be influenced by a combination 
of multiple genes or variants, each of which has a very small effect. As a result, many 
GWAS with small to moderate sample sizes fail to identify important variants even 
though the phenotype has been shown to be highly heritable. This phenomenon is called 
the “missing heritability problem” [1]. Although increasing the sample size of GWAS or 
conducting a meta analysis on several studies are possible remedies to reach sufficient 
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statistical power, they may not be feasible in some practical settings. An alternative 
approach that shows promise is the polygenic risk score (PRS), also known as genetic 
risk score or risk profile score [2]. PRS derived its name from the notion that complex 
diseases are highly polygenic [3] with the effect of each variant being very small. To deal 
with this issue, the PRS approach proposes an additive model to summarize the mar-
ginal effects of many variants to quantify genetic influences on a particular phenotype 
[4]. Thus, PRS represents the distribution of aggregated genetic liability that can be used 
to profile the genetic contribution to the phenotype. To our knowledge, Wray et al. [5] 
was the first study to apply the PRS approach in GWAS.

PRS has been applied to therapeutic intervention, disease screening, and life planning 
[6]. For example, PRS was used to predict onset and early patterns of heavy episodic 
drinking in males [7]. The well-known Adolescent Brain Cognitive Development Study 
(https://​abcds​tudy.​org/) also demonstrated its ability to predict cognitive performance 
in a large sample of 9–10 years old children in the US population [8]. Further, PRS was 
integrated with family history and traditional risk factors to improve the screening for 
coronary heart disease [9].

In spite of the above potential applications of PRS, how to accurately estimate PRS 
remains an open research question. Because the allele frequencies of variants and the 
linkage disequilibrium (LD) patterns vary across different populations [10], constructing 
PRS without considering these two key factors is likely to result in either bias or lower 
power. According to a recent comprehensive review of existing PRS studies [11], 67% 
of studies included exclusively European ancestry participants; 19% included only East 
Asian ancestry participants; and only 3.8% were among cohorts of African, Hispanic, or 
Indigenous individuals. Importantly, the same study showed that the predictive perfor-
mance of European ancestry-derived PRS is lower in non-European ancestry samples 
with the worst performance found among African ancestry samples. This is the so-called 
transferability issue with PRS [12].

In this paper, we review conventional PRS methods and identify important methodo-
logical issues. To deal with these issues, we propose a PRS method based on lower rank 
approximation of the observed genotypes and eigen-correlation selection. Empirical 
data collected from the substance use field are chosen to demonstrate the applications of 
these PRS methods because substance use disorders (SUD) are highly heritable [13–15] 
and many variants have been identified to be associated with SUD [16]. Secondary data 
analysis is conducted to compare different PRS methods in terms of their performance. 
The results also shed some light on future applications of these methods.

Review of conventional PRS methods
In general, the PRS method requires two independent data sets: the discovery data and 
the target data. The discovery data is used to identify the set of variants associated with 
the phenotype and estimate their effects. These estimated effects are later applied to the 
genotypes of the participants in the target data to calculate their PRS.

Let β̂j be the marginal effect size for Variant j ( j = 1, . . .m ) estimated from the discov-
ery data; and gij be the genotype coded as the number of the effect allele at Variant j for 
Individual i from the target data. The PRS for Individual i is calculated as

https://abcdstudy.org/
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Equation (1) indicates that the PRS is an additive function of the genotype gij . The PRS 
for Individual i in the target data is the weighted sum of his/her genotype gij with the 
weights β̂j estimated from the discovery data.

Based on Eq.  (1), the performance of PRS depends on the set of variants gij and the 
effect size of each variant β̂j . In a typical setting of GWAS, the number of variants well 
exceeds 1 million whereas the number of participants is usually between 1000 and 
10,000. If all the variants are included for calculating PRS, it is not feasible to jointly 
model all variants and estimate their effects accurately. In fact, the majority of variants 
are not likely to be associated with the phenotype.

Choi et al. [17] summarized various approaches for PRS construction. Among them, 
the clumping and thresholding approach is widely used because of its simplicity and rel-
atively good performance. In addition, this approach only requires summary statistics 
rather than the original genetic data which are usually not publicly accessible due to con-
fidentiality issues. The clumping step identifies the variant with the strongest association 
with the phenotype and removes neighboring variants that are in linkage disequilibrium 
with it. Thus, it produces a subset of variants which are in linkage equilibrium with one 
another. The thresholding step further reduces the number of variants identified in the 
clumping step by only keeping those variants if their p values are smaller than a given 
threshold. The optimal values of clumping and thresholding are usually determined by a 
model selection procedure. The details of these steps can be found in Choi et al. [17] and 
this approach was adopted by the popular PRS software: PRSice [18]. Another popular 
approach—based on a Bayesian model—takes the linkage disequilibrium among vari-
ants into account and models the faction of causal variants in the prior distribution. The 
Markov chain Monte Carlo method is used to estimate the shrink effects of variants. 
This approach was implemented in LDpred [19] and its improved version: LDpred2 
[20].

Important methodological issues of PRS
The performance of PRS depends on not only the chosen variants but also the quality of 
estimates of their effects. The traditional PRS construction usually follows the method 
described in Purcell et al. [21]. The fist step is to separate discovery samples into ances-
trally homogeneous subgroups. The next step is to derive principal components such 
as 10 in each group and add these 10 principal components as covariates in the regres-
sion model to estimate the effect of each variant. Some researchers further adjusted for 
additional covariates such as age and gender. The reason is that these leading principal 
components are confounded with population stratification or cryptic relatedness. Add-
ing these covariates could correct for these effects so the adjusted effect of each variant 
may not be biased.

Yet, the R2 value of the resultant PRS following this practice is usually only around 
0.64–1.1% [7] in alcohol use behaviors, although in neuropsychiatric diseases up to 5–6% 
has been reported [22]. In fact, recent studies have shown the range of R2 to be 0.5–3% 
[23–26]. These relatively small R2 values raise a legitimate concern that the estimation 

(1)Si =
m
∑

j=1

β̂jgij .
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of marginal effects of variants may not adequately reflect the polygenic contribution to 
the phenotypes. Specifically, the estimation may have been over-adjusted. For exam-
ple, if the principal components derived from the genotypes of the discovery sample 
are highly correlated with race and ethnicity that happens to be a strong predictor of 
the phenotype, adjusting for the principal components would eliminate not only the 
effect of ethnicity but also the power to predict the phenotype using the adjusted vari-
ant effects. Furthermore, because the number of variants is much larger than the sample 
size, including more variants does not necessarily increase the prediction accuracy of the 
PRS estimate [27]. Thus, how to choose an informative subset of variants is critical. The 
present study proposes a new PRS method to deal with these issues.

The proposed PRS method based on principal component projection
Polygenic model

Suppose the discovery genotype data are organized as a n×m matrix A with each row 
corresponding to an individual and each column to a variant. Thus, the cell gij(∈ A) rep-
resents the genotype of Individual i on Variant j. For SNP data, gij is coded as 0, 1, or 2 to 
reflect the number of the effect allele. Before calculating the principal components, gij is 
normalized as (gij − 2pj)/

√

2pj(1− pj) , where pj is the allele frequency of each variant 
[28]. Missing values are imputed with 0. The resulting normalized matrix of A is denoted 
by Z.

The effects of genotypes on the phenotypes of n subjecs y = (y1, . . . , yn)
T can be char-

acterized using the following linear random effect model:

where µ is the intercept, Z is the normalized matrix of genotypes, b ∼ N (0, σ 2
a I) is the 

random effect, and e ∼ N (0, σ 2
e I) is the error. The genetic similarity matrix (or genetic 

relatedness matrix) among the n individuals is defined as K = ZZT /m . Equation (2) can 
then be written as

where g ∼ N (0, σ 2
g K ) ; and σ 2

g = mσ 2
a  is the variance of all the additive genetic effects. 

When the matrix K is known or can be derived from the pedigree of the n individuals, 
we can estimate the parameters in Eq. (2) or (3) based on the genotypes and phenotypes. 
However, when the matrix K needs to be estimated from the genotypes, the number of 
unknown parameters is larger than the number of data points so the proposed linear 
random effect model ends up overfitting the data [29]. Therefore, when the matrix K 
needs to be estimated from the same data, the estimates of parameters in Eq.  (3) are 
biased.

Using the singular value decomposition (SVD), the matrix Z can be expressed as 
Z = U�VT , where U and V are both orthogonal matrices and � is a rectangular diago-
nal matrix with non-negative singular values (�1, �2, . . .) on the diagonal. In practice, we 
rearrange the column vectors of U, V, and � ’s so that �1 ≥ �2 ≥ . . . . Following the con-
vention of GWAS analysis, we define the principal components of Z as the column vec-
tors of the left singular matrix U and the eigenvalues of Z as the square of singular values 
of Z. Equation (2) can thus be written as

(2)y = µ+ Zb + e

(3)y = µ+ g + e
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If we define β = �VTb , then we have

Hence, the linear random effects model (Eq.  3) can be written as a linear regression 
model on the principal components U (Eq.  4). In addition, modeling all the principal 
components in Eq.  (4) as either random or fixed effects shares the same underlying 
regression model [30].

To address the issue of more parameters than data points in Eq. (4), we propose to use 
a subset of principal components in the regression model to approximate the full model 
as follows:

The details about how to select the indexes in the set S and the variants used to esti-
mate uk are described in the following sections. We also demonstrate how to estimate 
the parameters in Eq. (5) based on the discovery data and apply them to the target data.

Variant selection

The SVD of the genotype matrix Z does not require information about the phenotypes. 
Since we propose to use the principal components (i.e., the left singular vectors) as pre-
dictors of the phenotypes, choosing variants significantly associated with the pheno-
types and using these variants to derive the principal components would increase the 
association in Eq (5). For this reason, we propose a two-step approach to select variants 
based on the marginal p value of each variant’s linear association with the phenotype via 
a simple linear regression. The first step, LD-based clumping, selects the most significant 
variant in a region and removes other variants in the same region that are in LD with 
the the chosen variant. This process is repeated for all regions. After clumping, the final 
set of variants are in approximate linkage equilibrium with each other. The above proce-
dure is carried out by the plink program with command options –clump-kb 500–
clump-p1 1 –clump-r2 ρ (where ρ is the LD threshold) so that variants within 500 
kb are in linkage equilibrium after clumping. In the second step, a subset of variants is 
chosen if their p values are smaller than the threshold θ . In this study, we evaluate differ-
ent values of ρ and θ in terms of the prediction power of PRS (see details in the results 
section).

Principal component selection

Once the variants are selected, the next critical step is to determine the number of prin-
cipal components (left singular vectors) used in Eq. (5). The minimum requirement for 
a model to be estimable is that the number of principal components is smaller than the 
sample size. However, too many principal components may increase the variance in the 
estimates. The common practice is to choose the number based on a fixed number (e.g., 
10) or based on the eigenvalues greater than a fixed threshold. These methods, however, 

y = µ+ U�VTb + e

(4)y = µ+ Uβ + e.

(5)y = µ+
∑

k∈S
ukγk + e
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do not consider the correlation between each principal component and phenotype. We 
propose an alternative approach that takes this into account.

Define eigen-correlation (EigenCorr) as the correlation between a principal compo-
nent ( uk ) and the phenotype ( y ) multiplied by the corresponding singular value ( �k ): 
EigenCorrk = cor(uk , y)�k . Lee et  al. [31] showed that the sum of all squared correla-
tions between each variant and the phenotype is equal to the sum of all squared Eigen-
Corr’s. Since the majority of principal components are uncorrelated with the phenotype, 
cor(uk , y) approximately follows t/

√
n− 2+ t2 where t is a t-distribution with n− 2 

degrees of freedom. In PRS studies, the sample size n is usually 1000 or larger in the 
training data so the 95% confidence interval for cor(uk , y) is within (−0.062, 0.062) when 
the principal component and the phenotype are uncorrelated. Among singular values 
calculated from the normalized genotype matrix, the largest singular value depends on n 
and m. We simulated GWAS data with a common setting of n = 1000 and m = 100, 000 
and found that the largest singular value is less than 5 and the majority of values are 
around 1 or smaller. Thus, the square of eigen-correlations are less than 0.1 ( 0.0622 × 52 ) 
for most principal components. Based on these results, we propose to select the indexes 
in the set of S in Eq. (5) when their corresponding squared EigenCorr is above 0.1.

Principal component projection

The SVD of Z is Z = U�VT where Z is an n×m matrix. When m is larger than n, 
a direct calculation of SVD is time consuming. However, if the purpose is to find the 
first few columns of U matrix, we can first calculate � = ZZT and then use the spectral 
decomposition on � to calculate its eigenvectors (u1,u2, . . .) and eigenvalues (σ1, σ2, . . .) , 
where σ1 ≥ σ2 ≥ . . . . Given these eigenvectors and eigenvalues, the left singular matrix 
is U = (u1,u2, . . .) and the singular values of Z are �k = √

σk  (k = 1, 2, . . .) . Thus, the 
right singular matrix V = (v1, v2, . . .) can be derived as:

for k = 1, 2, . . ..
Equation  (6) can be written, equivalently, as uk = Zvk/�k , which indicates that the 

eigenvector uk can be derived from the discovery data Z by projecting Z through vk and 
weighting it by 1/�k . Following this idea, we propose to derive the corresponding eigen-
vector in the target genotype data, say B, by projecting B through vk and �k (both are 
calculated from Z) as follows:

PRS construction

The eigenvector uk derived from the discovery genotype data Z is used to estimate the 
effect size of the principal component, whereas the corresponding eigenvector in the 
target genotype data B, u(B)

k
 , is employed to construct the PRS. Specifically, given y and 

uk from the discovery data A, we can use Eq.  (5) to derive the least squared estimates 
γ̂k , which is then used as the effect size to calculate the PRS for the subject in the target 
sample as:

(6)vk = ZTuk/�k

(7)u
(B)
k = Bvk/�k ,
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Secondary data analysis
Databases

In this study, we used three sources of genomic data to demonstrate the applications 
of the proposed PRS method and evaluate its performance relative to the conventional 
method. The 1000 Genome Project Phase 3 reference panel was used as our reference 
genomic data. This publicly accessible database (http://​bioin​fo.​hpc.​cam.​ac.​uk/​downl​
oads/​datas​ets/​vcf/​index_.​html) contains genetic data from 2504 individuals who were 
classified based on 5 super populations: African (AFR), Ad Mixed American (AMR), 
East Asian (EAS), European (EUR), and South Asian (SAS). We used these five super 
populations to represent 5 distinct genetic ancestries.

The discovery (training) database was distributed by the Study of Addiction: Genetics 
and Environment (SAGE) (dbGaP study accession: phs000092.v1.p1; https://​www.​ncbi.​
nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​analy​sis.​cgi?​study_​id=​phs00​0092.​v1.​p1). The SAGE 
aggregated data containing common measures from three large scale studies in the sub-
stance abuse field: the Collaborative Study on the Genetics of Alcoholism (COGA), the 
Family Study of Cocaine Dependence (FSCD), and the Collaborative Genetic Study of 
Nicotine Dependence (COGEND). There were 4094 participants in this database.

The target (testing) database came from the National Longitudinal Study of Adoles-
cent to Adult Health (Add Health) (dbGaP study accession: phs001367.v1.p1; https://​
www.​ncbi.​nlm.​nih.​gov/​proje​cts/​gap/​cgi-​bin/​study.​cgi?​study_​id=​phs00​1367.​v1.​p1). The 
Add Health (Harris et al. 2013) collected GWAS data and health behavior data from a 
large sample of U.S. adolescents who were followed from grades 7–12 into adulthood. 
Genetic data were available for 9974 participants with the primary race groups being 
Black and White.

Imputation

The genomic data from 1000 Genome Project, SAGE, and Add Health were genotyped 
from different types of SNP genotype arrays. The genomic data from Add Health have 
been imputed, whereas the SAGE did not provide imputed data. To ensure that all the 
three databases cover the same variants, we conducted imputation on the SAGE data 
using the imputation service provided by the Michigan Imputation Center (https://​
imput​ation​server.​readt​hedocs.​io/​en/​latest/).

While the genomic data of 1000 Genome Project and Add Health were both based 
on GRCH37/hg19, the genomic data of SAGE were based on NCBI Build 36.1. Because 
the Michigan Imputation Center can only impute genomic data built on GRCh37/
hg19 or GRCh38/hg38, we first converted the genome coordinate of the SAGE data to 
GRCH37/hg19 genomic build using the liftover program [32]. A quality control 
procedure (removing variants with the MAF < 0.01 , the p value of Hardy–Weinberg 
Equilibrium test < 10−6 , the missing rate < 0.05 ) was also conducted before the impu-
tation. We chose the Eagle v2.4 for phasing and the Minimac4 for imputation with the 
reference panel for both procedures being the 1000 Genomes Phase 3 (Version 5). After 

(8)PRS =
∑

k∈S
γ̂ku

(B)
k

http://bioinfo.hpc.cam.ac.uk/downloads/datasets/vcf/index_.html
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the imputation, we conducted further quality control by keeping those variants with the 
imputation R-square value being greater than 0.3 for data analysis.

Participant selections

After the imputation, we extracted the common variants across the three data sources 
for data analysis. In the SAGE and Add Health databases, we focused the analysis on 
those participants with the majority of genomic compositions being either AFR or EUR 
ancestry because the sample sizes of participants with other ancestries were very small 
in both studies.

We used the ethnic information of the 1000 Genome participants to infer the ances-
tries of the SAGE and Add Health subjects. We first merged the three databases and then 
conducted principal components analysis on the merged data using the PLINK software 
[33, 34]. A Fisher linear discriminant function was built by using the top twenty princi-
pal components in the 1000 Genome data as predictors and their ethnicity as outcomes. 
Applying this Fisher linear discriminant function to the SAGE and Add Health data, 
we were able to calculate the posterior probabilities corresponding to the five ancestry 
groups (i.e., the five super-populations defined by the 1000 Genome Project). The par-
ticipants in SAGE and Add Health were then chosen if their posterior probabilities in 
either AFR or EUR were above 0.9. This process identified 3394 SAGE participants and 
8588 Add Health participants.

Quality control for calculating PRS

Although both the SAGE and Add Health genomic data were imputed using the 1000 
Genome Project reference panel, it is still necessary to eliminate the ambiguous SNPs 
which have complementary alleles (either A/T or C/G). This is a recommended qual-
ity control procedure for PRS as it eliminates the potential canceled effects when com-
paring the proposed method and the conventional method. After the removal, the three 
databases shared 2,993,682 variants in common.

Phenotype selection

Both the SAGE and Add Health studies measured many substance use related pheno-
types. In this study, we focused on the number of lifetime alcohol use disorder symp-
toms because both studies adopted the DSM IV criteria. SAGE provided the number 
of alcohol dependence symptoms (0–7), whereas Add Health measured the number of 
alcohol use disorder symptoms (0–11).

Method comparison

We applied the following three PRS methods to analyze the imputed data of SAGE (dis-
covery) and Add Health (target): 

The conventional method	� PRS =
∑

j∈S1 β̂jgj
The Bayesian method	� LDpred2
The proposed method	� PRS =

∑

k∈S2 γ̂ku
(B)
k
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 The conventional method summed up the effects of variants selected in the discov-
ery data ( j ∈ S1 ), with the effect size for each variant ( β̂j ) being derived from marginal 
regression with 10 principal components as covariates. The LDpred2 method was 
implemented in the bigsnpr package (https://​github.​com/​prive​fl/​bigsn​pr). The pro-
posed method was described in details in “The proposed PRS method based on principal 
component projection” section. The former two methods were chosen for method com-
parison because (1) the conventional method which was based on clumping and thresh-
olding of p values was relatively straightforward and yet performed comparably to other 
existing PRS methods [17]; and (2) the LDpred2 method represented a newer alterna-
tive method based on the Bayesian paradigm. Both are popular PRS methods.

Results
We used the method described in “Participant selections” section to identify ancestrally 
homogeneous subgroups of AFR and EUR for both SAGE and Add Health datasets using 
the 1000 Genome Project as the reference genomic data. In the SAGE dataset, 1308 AFR 
and 2675 EUR were identified, whereas in the Add Health dataset, 1362 AFR and 3959 
EUR were found. The analysis was restricted for these participants in order to evaluate 
the PRS for either ancestrally homogeneous or diverse groups.

The summary statistics (means and standard deviations) of the phenotype variables 
described in “Phenotype selection” section are shown in Table 1. The high average num-
ber of alcohol dependence symptoms in the SAGE dataset (about 3 out of 7) reflected 
the nature of high-risk samples. Conversely, the average number of alcohol use disorder 
(AUD) symptoms (0.80–2.10 out of 11) in the Add Health dataset was low because the 
sample represented the general population. The two-sample t-tests examining racial dif-
ferences indicate that there was no significant difference between AFR and EUR par-
ticipants in the SAGE study. However, in the Add Health study, EUR tended to have a 
higher level of AUD symptomatology than AFR. This is again consistent with prevalence 
data in the general population.

In this study, we constructed PRS for Add Health participants using SAGE partici-
pants as the discovery sample. Three PRS methods were applied to analyze the data: 
the conventional method, the Bayesian method, and the proposed method. For each 
method, the analysis was conducted on the AFR only, the EUR only, and the AFR and 
EUR together. Based on the conventional method, the effect size of each variant was 
estimated using linear regression with 10 principal components as covariates. The PRS 
was then constructed following the clumping and thresholding procedure with various 
clumping cut-off values ( r2 = 0.01, 0.1, 0.2 ) and thresholding cut-off values (at 0.0001, 0
.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1). The coefficient of determination ( R2 ) was calculated 

Table 1  Summary statistics of alcohol phenotypes in SAGE and Add Health

AFR EUR p value

SAGE n = 1308 n = 2675

Alcohol dependence symptoms 2.88 (2.55) 2.77 (2.55) 0.188

Add Health n = 1362 n = 3959

Alcohol use disorder symptoms 0.80 (1.89) 2.10 (2.84) < 0.001

https://github.com/privefl/bigsnpr
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for each combination of cut-off values to indicate the proportion of variance in AUD 
symptoms explained by the PRS. This statistic was also used to evaluate the performance 
of PRS. Figure 1 shows the largest R2 value (among all combinations of cut-off values) 
for AFR only, EUR only, and AFR+EUR, indicating that the conventional method per-
formed poorly across the three samples (all R2 values were less than 0.005).

The results using the Bayesian method, LDpred2, are shown in Fig. 2. All the R2 val-
ues in AFR only, EUR only, and AFR+EUR were smaller than 0.001. In comparison to 
the conventional method (Fig. 1), this Bayesian method actually performed worse.

The proposed method was also used to conduct PRS analysis so the performance can 
be compared with that of the conventional method. An important step of the procedure 
is to calculate EigenCorr for identifying which of the principal components were more 
correlated with the phenotype. Based on ρ = 0.2 to select variants in linkage equilibrium 
(i.e., the sample linkage correlation between each pair of variants is less than 0.2), we 
calculated SVD of the SAGE dataset and ranked the squared EigenCorr. The distribution 
of squared EigenCorr is presented in terms of its rank in Fig. 3, showing that the largest 
squared EigenCorr were derived from the 13th and 8th principal components. Although 
the first principal component had the largest eigenvalue, it was ranked 5th. In addition, 
based on the cut-off value of 0.1 (the dashed line), we identified six large EigenCorr’s 
corresponding to the 13th, 8th, 3rd, 12th, 1st, 2nd principal components, which were 
used for PRS construction. If we used eigenvalues to choose principal components, we 
would end up choosing only the 1st principal component (with the eigenvalue value of 
159) because the 2nd (eigenvalue = 3.8), the 3rd (eigenvalue = 2.1), and the remaining 
principal components (all with eigenvalues being close to or less than 1) all had very 
small eigenvalues in comparison.
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Fig. 1  Barplots of R2 values for predicting AUD symptoms of Add Health participants using the PRS 
calculated from SAGE discovery data based on the conventional method. AFR: conducted PRS on AFR 
ancestral group only. EUR: conducted PRS on EUR ancestral group only. AFR+EUR: conducted PRS on AFR 
and EUR ancestral groups
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We evaluated the performance of PRS based on the R2 under different values of the 
LD threshold ( ρ = 0.2, 0.1, 0.01 ) and the p-value threshold ( θ = 0.1, 0.5, 1 ). The results 
are shown in Fig. 4 using barplots. The R2 was calculated for AFR only, EUR only, or the 
two combined. While all the R2 values corresponding to AFR only and EUR only were 
smaller than 0.01, the R2 values were above 0.03 across different values of ρ and θ if we 
used participants from the mixture of AFR and EUR. This set of analyses also informs 
the choice of the values of ρ and θ . For large ρ values, the selected variants are likely to be 
in linkage disequilibrium. On the other hand, for small ρ values, we may eliminate vari-
ants that are informative. The value of ρ at 0.1 is thus a good compromise. In terms of 
the θ , we recommend to set it at 0.1 to increase information contents in driving principal 
components. Another advantage of choosing ρ at 0.1 and θ at 0.1 is to reduce computa-
tional time during SVD and principal component projection because it involves a small 
number of variants. Under ρ = 0.1 and θ = 0.1 , the R2 values for the AFR and EUR com-
bined is 0.037, indicating that the proposed method can explain 3.7% of the variation in 
AUD symptoms with the PRS built upon the 2nd, 3rd, and 1st principal components.

Discussion
Our proposed method did not attempt to fit the random effect model in Eq.  (3) 
directly for the following reasons: (1) the estimates are likely to be inconsistent 
because the number of unknown parameters is larger than the sample size; (2) the 
procedure would be very time-consuming; and (3) how to apply the fitted model 
to the genotypes of participants in the target sample is an open research question. 
We, instead, proposed to fit Eq.  (6) so it can be applied to the discovery data by 
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Fig. 2  Barplots of R2 values for predicting AUD symptoms of Add Health participants using the PRS 
calculated from SAGE discovery data based on the Bayesian method. AFR: conducted PRS on AFR ancestral 
group only. EUR: conducted PRS on EUR ancestral group only. AFR+EUR: conducted PRS on AFR and EUR 
ancestral groups.
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value in the second step for variant selection used for SVD.

AFR EUR AFR+EUR

ρ = 0.01,θ = 0.1

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.01,θ = 0.5

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.01,θ = 1

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.1,θ = 0.1

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.1,θ = 0.5

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.1,θ = 1

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.2,θ = 0.1

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.2,θ = 0.5

0.
00

0.
01

0.
02

0.
03

0.
04

AFR EUR AFR+EUR

ρ = 0.2,θ = 1

0.
00

0.
01

0.
02

0.
03

0.
04

R
2

Fig. 4  Barplots of R2 values for predicting AUD symptoms of Add Health participants using the PRS 
calculated from SAGE discovery data based on the proposed method. AFR: conducted PRS on AFR ancestral 
group only. EUR: conducted PRS on EUR ancestral group only. AFR+EUR: conducted PRS on AFR and EUR 
ancestral groups.
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projecting the observed genotypes to the axes of principal components. In this way, 
we have dealt with all the above issues.

Although the conventional PRS method can be implemented easily and it only 
requires the summary statistics of the discovery data instead of the original geno-
type data, it has a critical issue. Adjusting the first few principal components while 
deriving the effect of each variant is actually equivalent to estimating the variant 
effect from the remaining principal components. Although this procedure may 
adjust for the large structure effect, the derived effects of variants may still depend 
on other confounding factors such as demographic or socio-economic status [35]. In 
fact, adding large PCs in the regression model may over-adjust the estimates of mar-
ginal variant effects. Particularly, given the purpose of PRS is to build a prediction 
model for the phenotype based on genotypes, adding even 1 principal component as 
a covariate is expected to reduce the prediction accuracy [27].

Unlike the conventional method that only requires summary statistics from the 
discovery data, our approach requires availability of the singular values and right sin-
gular matrix of the discovery data. Nevertheless, users would not be able to recover 
the original genetic data based on these available information. Thus, the confidenti-
ality of participants in the discovery data can still be kept. Moreover, although this 
study only dealt with two ancestry groups because they were the majority in the 
discovery and target samples, the proposed method can be easily applied to more 
ancestry groups.

Conclusions
This study makes a unique contribution to the literature by proposing a new PRS method 
that has several strengths. First, the proposed method has higher prediction power than 
the conventional method that tends to commit over-adjustment during estimation 
of marginal effects of variants. Second, our approach based on principal components 
that are linear transformations from the genotype matrix conforms to the commonly 
accepted theory of additive genetic variance for complex traits [36]. Third, the principal 
components selected by the proposed method can facilitate our understanding of the 
structure of genetic effects on the phenotype. Fourth, our approach can handle partici-
pants from different ancestry backgrounds as long as the ancestries of participants in the 
target sample are a subset of those in the discovery sample.
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