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Abstract 

Background:  Cis-regulatory regions (CRRs) are non-coding regions of the DNA that 
fine control the spatio-temporal pattern of transcription; they are involved in a wide 
range of pivotal processes such as the development of specific cell-lines/tissues and 
the dynamic cell response to physiological stimuli. Recent studies showed that genetic 
variants occurring in CRRs are strongly correlated with pathogenicity or deleterious-
ness. Considering the central role of CRRs in the regulation of physiological and patho-
logical conditions, the correct identification of CRRs and of their tissue-specific activity 
status through Machine Learning methods plays a major role in dissecting the impact 
of genetic variants on human diseases. Unfortunately, the problem is still open, though 
some promising results have been already reported by (deep) machine-learning based 
methods that predict active promoters and enhancers in specific tissues or cell lines by 
encoding epigenetic or spectral features directly extracted from DNA sequences.

Results:  We present the experiments we performed to compare two Deep Neural 
Networks, a Feed-Forward Neural Network model working on epigenomic features, 
and a Convolutional Neural Network model working only on genomic sequence, 
targeted to the identification of enhancer- and promoter-activity in specific cell lines. 
While performing experiments to understand how the experimental setup influences 
the prediction performance of the methods, we particularly focused on (1) automatic 
model selection performed by Bayesian optimization and (2) exploring different data 
rebalancing setups for reducing negative unbalancing effects.

Conclusions:  Results show that (1) automatic model selection by Bayesian optimiza-
tion improves the quality of the learner; (2) data rebalancing considerably impacts the 
prediction performance of the models; test set rebalancing may provide over-optimis-
tic results, and should therefore be cautiously applied; (3) despite working on sequence 
data, convolutional models obtain performance close to those of feed forward models 
working on epigenomic information, which suggests that also sequence data carries 
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informative content for CRR-activity prediction. We therefore suggest combining both 
models/data types in future works.

Keywords:  Neural networks, Deep learning, Prediction of cis-regulatory region, 
Bayesian optimization

Background
Non-coding DNA regions, which account for 98% of the whole human genome, were 
regarded as “junk DNA” in the past. However, their importance is now established in the 
scientific community, given the discovery of non-coding cis-regulatory regions (CRRs) 
that regulate the transcription of neighbouring genes, therefore determining spatio-tem-
poral patterns of gene expression [1, 2].

Indeed CRRs are involved in the development of different tissues and/or cell types, 
in the definition of gene expression patterns during the cell life, e.g. by determining the 
precise moment of transcription and its intensity, and in the dynamical response to 
changes in physiological conditions [3].

Genome-wide association studies (GWAS) discovered thousands of variants asso-
ciated with diseases and traits enriched in non-coding sequences [4, 5]. These results 
have been confirmed and refined by recently proposed machine learning methods for 
the detection of deleterious and pathogenic variants in non coding regions [6–8], as well 
as by other research works that showed that cis-regulatory variants are involved in both 
common and rare human diseases [9–11].

Based on the aforementioned studies, an essential research question for understand-
ing the functional impact of genetic variants on human diseases, as well as the mecha-
nisms underlying the modulation of gene expression, regards not only the identification 
of CRRs, but also their activation status, which is specific to each cell type [12, 13] and 
is one of the key mechanisms for cell type differentiation [14]. In other words, genetic 
variants in tissue-specific CRRs show a different effect depending on the activity of the 
CRRs where they are located. Indeed, variants occurring in active CRRs can exert their 
full potential deleterious or pathogenic effect when they are located in tissue-specific 
active regulatory regions.

To advance knowledge about the identification of cis-regulatory elements in differ-
ent cell types or tissues [15, 16], and to map TF binding sites and histone modifications 
across cell types and tissues, several lines of research have been proposed, which exploit 
multiple high-throughput technologies [17–21]. These experiments resulted in notable 
projects (the ENCODE project [19], the FANTOM project [22], and the Roadmap Epig-
enomics Project [23], see “Related work” section) specifically aimed at identifying CRRs 
in different tissues and cells lines, mapping their epigenomic landscape.

However, the experimental identification of CRRs requires approaches that are 
expensive and time-consuming, and researchers are still far from obtaining a compre-
hensive map of CRRs across all cell types, disease statuses and developmental stages. 
This problem paved the way to a novel research line, where machine learning (ML) 
techniques are specifically developed to identify the location of enhancers and pro-
moters and their activity status (active versus inactive). ML techniques represent a 
crucial tool for this task, given the successful results obtained by ML models in prob-
lems where human reasoning has difficulties in reaching a promising solution [24]. 
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In a first attempt to tackle these tasks, initial approaches applied unsupervised learn-
ing techniques [25, 26], driven by the limited availability of reliable annotations that 
were insufficient to guide a supervised learning approach. Unfortunately, the simplic-
ity of the exploited techniques did not allow to achieve acceptable enhancer predic-
tion results (accuracy around 26% ) [27], so that the interest switched towards boosted 
supervised learning models [28], and random-forest classifiers [29]. Subsequently, 
when the FANTOM5 Consortium [30] published large-scale and high-resolution 
CRRs locations [31], ensembles of support vector machines were proposed [32], and 
opened the way to the usage of more advanced models such as deep neural networks 
(see e.g. [33, 34]) which are able to uncover the underlying information and high-level 
patterns hidden by complex multi-dimensional manifolds.

In this study, we extend our preceding work [35], and build upon two relevant 
state-of-the-art works (see “Related work” section), named DECRES [34] and Deep-
Enhancer [33], respectively. In DECRES [34] authors applied deep learning models 
[36] to CRR-activity prediction tasks, and reduced negative effects due to high data 
unbalancing by a peculiar data re-sampling strategy, where also the test set is re-bal-
anced (“Effect of different dataset-balancing setups” section).

DeepEnhancer [33] leverages Convolutional Neural Networks (CNN, “Meth-
ods” section), and obtained promising performance by processing one-hot-encoded 
sequence data for recognizing enhancers against background sequences, which high-
lighted the feasibility of sequence-based deep learning classifiers.

Our experiments on CRRs activity prediction are primarily aimed at: (1) investi-
gating the influence of the model selection phase on the obtained performance; (2) 
understanding whether genomic sequences allow to obtain reasonable CRR activ-
ity prediction results; (3) understanding the effects of different data re-balancing 
strategies.

Indeed, as clarified at the beginning of “Methods” section, the design, development 
and training of deep neural networks is a challenging task driven by a high number of 
(architectural, as well as training) hyperparameters [36, 37] whose setting influence not 
only the models’ computational complexity but also their performance [37]. Therefore, 
the model selection phase is a crucial step in the design of deep neural models, and sev-
eral automatized optimization algorithms have been proposed (“Related work” section), 
among which “Bayesian Optimization” proved its efficiency and effectiveness [38–40].

In particular, we applied Bayesian optimization to find the optimal architecture and 
hyperparameters of two deep neural network meta-models (a Feed-Forward Neu-
ral Network—FFNN-model, and a CNN model) and we comparatively evaluated: (1) 
the optimized models versus their fixed counterparts; (2) the FFNN models versus 
the CNN models; (3) the CNN models and their most related literature model (Deep-
Enhancer [33]); (4) the results obtained when performing/avoiding train and/or test set 
re-balancing.

Our results show that: (1) model selection by Bayesian optimization has the poten-
tial of improving performance, when using both genome version hg19 (GRCh37) and 
genome version hg38 (GRCh38); (2) sequence data analyzed through CNN models 
achieve results close to those obtained by FFNN trained on epigenomic data, there-
fore suggesting that also sequence data carries fundamentally informative content; (3) 
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training and test set balancing should be cautiously performed since they can introduce 
biased or overoptimistic results.

The paper is organized as follows: in “Related work” section we report state-of-the-art 
methods strongly related to our approach; in “Results” section we report results com-
puted by the deep learning models described in the “Methods” section when applied 
to the datasets detailed in the “Datasets” section, and by using the experimental setup 
described in the “Experimental setup” section. The “Discussion” section summarizes and 
critically analyzes the main results of our research. Concluding remarks and future per-
spectives are reported in the “Conclusions” section.

Related work

In the last years, several projects highlighted that cell differentiation in humans is heavily 
controlled by the complex interaction of promoters and enhancers (jointly referred to as 
CRRs), which generally act by the binding of regulatory proteins (transcription factors).

Given their key role in human diseases [41], CRRs have been object of thorough 
investigation by genomic studies and biochemical experiments using high-throughput 
technologies. More precisely, experimentation in this field involves the detection of epi-
genomic features (e.g. TFs binding, presence of histone modifications, open chromatin 
regions, etc) which are associated with functional non-coding regions for inferring can-
didate cis-regulatory elements. Thanks to a fast and consistent decrease of the cost of 
these analytic methods, several consortia, including ENCODE [19], collected and aggre-
gated the results of biochemical assays that used a wide range of high-throughput tech-
nologies. This resulted in large publicly available databases which now contain over one 
million putative enhancers over 147 cell types. These resources raised the research inter-
est devoted to the development of new in-silico methods for the identification of CRRs, 
as well as their tissue-specific activity level and the possible impact of variants occurring 
in them. In particular, the FANTOM Project used CAGE (Cap Analysis of Gene Expres-
sion) technologies to map transcription initiation sites in 1816 human and 1016 mouse 
samples [22, 31]. The ENCODE and FANTOM projects differ for the kind of data they 
provide. ENCODE leveraged a massive array of genomic assays to capture transcrip-
tomic and epigenomic data. Conversely, FANTOM focused mainly on the transcriptome 
by exploiting CAGE assays, relying on other published works to infer features like chro-
matin status [42]. Another important project, the Roadmap Epigenomics [23] consid-
ered 111 representative primary human tissues and cells and provided their epigenomic 
description, similarly to the ENCODE effort. A list of currently available databases for 
learning and understanding gene expression regulation is available in [15].

Recently, several deep learning models achieved state-of-the-art prediction results 
in different studies regarding regulatory regions in the human genome [33, 34, 43]. In 
particular, DeepEnhancer [33] (see “DeepEnhancer” section) uses CNNs to identify 
cell-specific enhancers from only sequence data; BiRen [44] similarly uses a hybrid deep 
learning architecture that integrates a gated recurrent unit-based bidirectional recurrent 
neural network and a CNN to predict human and mouse enhancers from sequence data.

Considering that approaches employing only DNA sequence do not take into 
account the regulatory mechanisms encoded in the epigenomic data (e.g. the state of 
the chromatin structure), PEDLA [43] predicts enhancers by using an extensive set of 
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heterogeneous data, comprising different epigenomic, sequence, and conservation data, 
and a novel hybrid architecture integrating a deep neural network and a hidden Markov 
model. Interestingly, PEDLA iteratively learns from 22 training cell types/tissues and 
achieves high accuracy when predicting across 20 independent test cell types/tissues, 
showing high and consistent generalization performances across samples.

To improve the aforementioned methods by explicitly taking into account whether 
CRRs are active in the considered cell-lines/tissues, DECRES [34] labels the activity of 
CRRs by using annotation data extracted from FANTOM [30], and uses a wide set of 
epigenomic features from ENCODE [19], CpG islands, and phastCons evolutionary 
conservation scores [45] as input of several deep learning models, among which FFNN 
models, to identify not only the presence of enhancers and promoters, but also if they 
are active in a specific human cell-line. DECRES not only outperformed state-of-the-art 
unsupervised methods in all the considered tasks, but also allowed extending the FAN-
TOM enhancer atlas by adding 16,988 bidirectionally transcribed loci, which allowed 
creating the so far most complete collection of CRRs in the human genome. Though 
interesting, DECRES exploits an experimental set-up where both the training and the 
test sets are balanced, which is quite uncommon. Indeed, when treating highly unbal-
anced sets, the training set is generally balanced to avoid the creation of a model which 
overfits the over-represented class, but the test set is kept unbalanced to avoid biasing 
the performance estimation.

When developing a classifier model and, in particular, a neural network, a crucial step 
regards the model selection task, that is, the choice of the specific neural network archi-
tecture (the number of hidden layers, their respective number of neurons, and the acti-
vation functions for each layer) and the setting of the learning hyperparameters (e.g. the 
optimizer algorithm, batch size, learning rate, and so on).

Though different automatic model selection techniques have been presented in liter-
ature (e.g. greedy search [46], sequential search [47], random search [48], grid search 
[49], particle swarm optimization approaches [50], genetic programming approaches 
[51], “Spectral approach” [52]), no well-accepted and unified method has been defined. 
For this reason, model selection is generally performed manually, by relying on past 
experiences, or empirically by consecutive tests, or automatically, by applying one 
of the aforementioned approaches to explore the hyperparameter space in a bounded 
domain, i.e. to search for the setting that minimizes (or maximizes) a user-defined objec-
tive function estimating the learner performance. One such approach is “grid search” 
which exhaustively evaluates the objective function for every possible hyperparameter 
combination in the bounded domain of the search space. Although being effective and 
highly parallelizable, grid search suffers from major drawbacks such as high compu-
tational costs exponentially increasing with the dimensionality of the hyperparameter 
space. For this reason, alternative approaches have been proposed in recent years. For 
instance, “random search” [48] efficiently explores the hyperparameter space by evaluat-
ing a sequence of randomly extracted points. The “spectral approach” [52] applies the 
Fourier transform to search the maximum or minimum of the objective function in the 
frequency domain.

Another well-known approach is Bayesian optimization [38–40], which efficiently 
exploits Bayes theorem to direct the search towards a (local) minimum/maximum of an 
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objective function (the a posteriori estimation) that is often expensive to be optimized. 
Briefly, Bayesian optimization assumes a prior distribution of the loss function, and this 
prior is constantly updated by evaluating new observations. New points are selected 
by a proper pivot function called “Acquisition function” which regulates the criteria of 
“exploration versus exploitation”, so that the evaluation of the new point will provide a 
better overlook of the loss function (exploration) or a better identification of a maxi-
mum/minimum (exploitation). More details about Bayesian optimization are reported 
in “Bayesian optimization” section.

Due to the promising results achieved by applying Bayesian optimization to complex 
black box optimizations [53–55], and given its lower computational time when com-
pared to grid search or random search, we have used it for the automatic selection of our 
classification models, which are described in the following sections.

Results
In this Section we firstly overview the experiments using the FFNN models (Sec-
tion  fixed-FFNN and Bayesian-FFNN) and the CNN models (Section  fixed-CNN and 
Bayesian-CNN) processing the dataset for genome version hg19/GRCh37 (hg19 data-
set, detailed in the “Hg19-dataset” section, Table 1-top), which allowed to: (1) show that 
model selection through Bayesian optimization improves performance (“Bayesian opti-
mization improves prediction of active regulatory regions" section) and that CNN mod-
els trained on sequence data obtain promising performance; (2) perform a comparison 
between our Bayesian CNN model trained on DNA sequence data and with the Deep-
Enhancer [33] state-of-the art model (“Bayesian CNN is competitive with DeepEnhance” 
section); (3) show the effect of different balancing setups (“Effect of different dataset-
balancing setups” section). Next, in “Bayesian optimization also improves performance 
on hg38-dataset" section  we report the FFNNs and CNNs performance obtained by 

Table 1  For each dataset (on columns) we report the number of samples per class, as well as the 
cardinality of the dataset composed solely by enhancers and promoters (rows “Total E+P”) for 
genome version hg19 (Top table) and genome version hg38 (Bottom table)

Column “Total” allows comparing the total cardinality of CRRs across the hg19 and the hg38-datasets. Since we also have 
non-CRRs regions for genome version hg19, row “Total” in the top table reports the total number of samples per cell line in 
the hg19 dataset

Genome version Labels HepG2 K562 GM12878 Total HelaS3

hg19 Active enhancer (AE) 1465 894 2878 5237 1847

Inactive enhancer (IE) 34,556 34,392 28,156 97,104 32,179

Active promoter (AP) 11,467 10,076 10,816 32,359 10,759

Inactive promoter (IP) 96,184 82,829 73,891 252,904 79,004

Total E + P 143,672 128,191 115,741 387,604 123,789

Active exon (AX) 9931 9033 8226 9123

Inactive exon (IX) 19,071 20,261 19,078 22,071

Unknown (UK) 79,417 78,081 80,004 81,502

Total 25,209 235,566 223,049 236,485

hg38 Active enhancer (AE) 7177 5524 11,589 24,290

Inactive enhancer (IE) 56,108 57761 51,696 165,565

Active promoter (AP) 14,092 12,524 14,036 40,652

Inactive promoter (IP) 85,789 87,357 85,845 258,991

Total E + P 163,166 163,166 163,166 489,498
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experiments on the dataset for genome version hg38/GRCh38 (hg38-dataset, detailed 
in “Hg38-dataset” section, Table 1-bottom), which allows validating the model selection 
effectiveness on a wider sample set available for this genome assembly.

In the remaining part of this work, the regions considered in the following experi-
ments, and detailed in “Datasets” section will be denoted as IE and AE for inactive and 
active enhancers, IP and AP for inactive and active promoters, and ELSE for regions 
which are either active (AX) or inactive exons (IX) or unknown/uncharacterized regions 
(UK), respectively.

Experimental setup

In our experiments, we used both the hg19 and hg38 human genome reference assem-
bly. We firstly run our experiments on the hg19 datasets provided by the authors of [34] 
(“Hg19-dataset” section) to allow a fair comparison with respect to their state-of-the-art 
work. Next, considering that several works in the biomedical field have transitioned to 
the hg38 assembly, and wishing to provide a more robust and reliable evaluation of the 
methods we are proposing, we also analyzed the hg38 datasets (“Hg38-dataset” section).

Following the above-mentioned notation, the three experiments on the hg19 dataset 
replicate the five binary classification tasks proposed in [34]: (1) IE versus IP, (2) AP ver-
sus IP, (3) AE versus IE, (4) AE versus AP, (5) AE + AP versus ELSE, by using FFNN 
models processing the epigenomic features provided by the authors [34], and CNN 
models processing one-hot-encoded sequence data. We then replicated the same experi-
ments with the hg38-dataset, using sequence, epigenetic and labelling data for the hg38 
human genome assembly. In this last setting, the fifth prediction task (AE + AP versus 
ELSE) was modified, so as to use only CRRs (AE + AP versus IE + IP) and avoid using 
regions very different from CRRs (AX, IX and UK), to potentially ease the recognition 
task.

Table 2 shows the unbalancing ratios for each prediction task on hg19 datasets (top), 
with average over the four classes ranging from 2.57 (IE versus IP) to 22.32 (AE versus 
IE), which differ from those for the hg38-dataset (bottom), with an average unbalance 
over the three classes from 1.57 (IE versus IP) to 7.58 (AE versus IP).

All the models were trained and tested by using random stratified holdouts with an 
80/20 split, that is, 80% of each class was used as the training set and the remaining 20% 
was reserved for the test set. We have executed 10 holdouts for the experiments on the 
hg19 dataset and extended the holdouts number to 20 for the experiments on the hg38 
dataset. Where not otherwise stated, the prediction tasks were executed without execut-
ing data-balancing steps, where neither the training set nor the test set were re-balanced, 
so that their original distribution is maintained. The data-balancing is used exclusively 
when reproducing the experimental setup from [34].

Model selection through Bayesian optimization was performed on the training set by 
using additional stratified internal holdouts, with a train/validation ratio of 80/20 . With 
this setting, Bayesian Optimization aims at maximizing performance (measured by 
AUPRC) on the validation sets.

Before processing, the epigenomic data are normalized using “MinMax” scaling 
between 0 and 1.
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We measured performance by using the Area Under the Receiver-Operating Curve 
(AUROC) [56] and the Area Under the Precision-Recall Curve (AUPRC) [57] over all the 
test sets in the holdouts. While AUROC is a standard performance evaluation metrics in 
machine learning, AUPRC was added because this performance metric is more appro-
priate when dealing with unbalanced datasets [58–60].

The statistical validation of the performance comparison (AUROC or AUPRC) of two 
different models, when applied to the same train/test holdouts, was performed by using 
the one-sided Wilcoxon signed rank-test at a 0.01 significance level (i.e. 99% confidence 
level or p value p < 0.01 ) [61–63].

To further gain insights into the separability of the data in the different prediction tasks 
and in the two genome versions, we projected the test sets for both the FFNN models 
(epigenomic features) and CNN models (sequence data), and for all the cell lines and 
genome versions, on the first two components of the lower dimensional space computed 
by t-SNE [64].1 As an example, the projections of the test matrices with holdout from 
the cell line GM12878 are shown in Figs. 1,  2, and  3 for genome version hg19 (a, c, e, g) 
and genome version hg38 (b, d, f, h), respectively. Comparing all the t-SNE projections of 
epigenomic data (a, b, e, f ) to those of sequence data (c, d, g, h), epigenomic data always 

Table 2  Top Table: Unbalanced setup (first to fifth column): for each dataset and each task (first to 
fifth row from top to bottom) executed on data from genome version hg19, we report the class 
unbalancing ratio, computed as the ratio between the cardinality of the most-represented class and 
the cardinality of the less-represented class.  Bottom table: the unbalancing ratios describing the 
unbalancing for data in hg38 are shown

The fifth column (Average) shows the average unbalancing ratio over all the four cell lines, when the unbalanced setup 
is used. Task AE versus IE and task AE + AP versus else are, on average, the most unbalanced. Full-balanced setup (sixth 
column): the unbalancing ratio in each task is equal for all the cell lines. The comparison between the averages (over each 
cell lines) of the unbalancing factors (fifth and sixth columns) shows the striking difference between the two unbalancing 
modes.

Genome version Task Unbalancing ratios for different setups

Unbalanced setup Full-
balanced 
setup [34]

HepG2 HelaS3 K562 GM12878 Average All cell lines

hg19 IE versus IP 2.78 2.46 2.41 2.62 2.57 1

AP versus IP 8.39 7.34 8.22 6.83 7.70 2

AE versus IE 23.59 17.42 38.47 9.78 22.32 2

AE versus AP 7.83 5.83 11.27 3.76 7.17 1

AE + AP versus else 18.49 17.76 20.47 15.29 18.00 8

Avg per cell line 12.22 10.16 16.17 7.66  11.55 2.8

Unbalanced setup

HepG2 K562 GM12878 Average

hg38 IE versus IP 1.53 1.51 1.66 1.57

AP versus IP 6.09 6.98 6.12 6.39

AE versus IE 7.82 10.46 4.46 7.58

AE versus AP 1.96 2.27 1.21 1.81

Avg per cell line 4.35 5.30 3.36 4.34

1  For computing the t-SNE we used the tsne-Cuda implementation available at https://​github.​com/​Canny​Lab/​tsne-​cuda.

https://github.com/CannyLab/tsne-cuda
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shows a higher separability than sequence data. For hg19-data, the highest class overlap 
is visible for both epigenomic and sequence data in the task IE versus IP (see Fig. 1a, c), 
suggesting that this task will be the most difficult for both FFNN and CNN models. On 
the other side, the largest class separability (for both epigenomic and sequence data) is 
observed on hg38-data for tasks involving the separation of promoters from enhancers 
(IE versus IP in Fig. 1b, d, and AE versus AP in Fig. 1f, h). The other tasks involving the 

Fig. 1  Top row: t-SNE projections of task IE versus IP: epigenomic data (a, b) and sequence data (c, d) for, 
respectively, hg19 dataset (a, c) and hg38-dataset (b, d) on one hold-out of the GM12878 cell line. Bottom 
row: t-SNE projections of task AE versus AP: epigenomic data (e, f) and sequence data (g, h) for, respectively, 
hg19 dataset (e, g) and hg38-dataset (f, h) on one hold-out of the GM12878 cell line

Fig. 2  Top row: t-SNE projections of task AP versus IP: epigenomic data (a, b) and sequence data (c, d) for 
hg19 dataset (a, c) and hg38-dataset (b, d) on one hold-out of the GM12878 cell line, respectively. Bottom 
row: t-SNE projections of task AE versus IE: epigenomic data (e, f) and sequence data (g, h) for hg19 dataset 
(e, g) and hg38-dataset (f, h) on one hold-out of the GM12878 cell line, respectively
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separation of active  from non-active regulatory regions (AP versus IP—Fig. 2-b, d, and 
AE versus IE—Fig. 2f, h, and AE + AP versus IE + IP in Fig. 3b, d) show a higher class 
overlap with respect to data for hg19, for both epigenomic and sequence data.

Bayesian optimization improves prediction of active regulatory regions

Our first goal was to investigate the effect of model selection on FFNN and CNN mod-
els’ generalization performance and inspect whether a systematic exploration of the 
hyperparameter space leads to better classification results. To this end, we compared the 
fixed FFNN model, fixed-FFNN,  to the optimized FFNN model, Bayesian-FFNN, and, 
similarly the fixed CNN model, fixed-CNN , to the optimized CNN, Bayesian-CNN, by 
performing the five classification tasks reported in “Experimental setup” section and [34] 
on the hg19 dataset (Tables 1, 2). For each of the five classification tasks, and each of the 
four models (fixed-FFNN  versus  Bayesian-FFNN  and  Bayesian-CNN  versus Bayesian-
FFNN), the mean AUPRC and AUROC computed over the testing holdouts (see “Exper-
imental setup” section) and over the cell lines are shown, respectively, in the left and in 
the right Fig. 4. Paired Wilcoxon rank-signed test (at the 0.01 significance level) [61–63] 
was applied to detect statistically significant differences between the distributions of the 
AUPRC and AUROC values obtained by the fixed and optimized models.

Concerning FFNN, the Bayesian-FFNN outperforms the fixed-FFNN   in all the con-
sidered tasks and cell lines, achieving a statistically significant difference for the AUPRC 
metric (Wilcoxon test, p− value < 0.01 ). Similarly, also the Bayesian-CNN outperforms 
the fixed-CNN, achieving a statistically significant difference for the AUPRC metric 
(Wilcoxon test, p− value < 0.01).

Likewise, for the AUROC metric performance, the Bayesian-FFNN  and Bayesian-
CNN consistently outperform their fixed counterpart (Wilcoxon test, p− value < 0.01 ), 
except for the “AE + AP versus else” task, where the fixed-FFNN  achieves performance 

Fig. 3  Top row: t-SNE projections of task AE + AP versus IE + IP: epigenomic data (a, b) and sequence data 
(c, d) for, respectively hg19 dataset (a, c) and hg38-dataset (b, d) on one hold-out of the GM12878 cell line. 
Bottom row: t-SNE projections of task AE + AP versus ELSE: epigenomic data (e) and sequence data (g) 
shown only for hg19 dataset
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statistically indistinguishable from the Bayesian-FFNN. The overall results show that 
model selection through Bayesian optimization boosts both AUPRC and AUROC per-
formance in most of the considered tasks.

CNN models achieve performance close to FFNN models

When comparing the performance of the Bayesian-FFNN models to those of the Bayes-
ian-CNN  models, Wilcoxon test confirmed the superiority of AUPRC and AUROC 
achieved by Bayesian-CNN  models in one task (IE versus IP), on two tasks (AE ver-
sus AP, AE + AP versus ELSE for AUPRC, and AP versus IP, AE + AP versus ELSE for 
AUROC) the two models showed not statistically significant differences, while in the 
other two tasks (AP versus IP, AE versus IE for AUPRC; AE versus IE, AE versus AP for 
AUROC) the Bayesian-FFNN models showed a better performance.

Bayesian CNN is competitive with DeepEnhancer

Interestingly, Bayesian-CNN  model working on sequence data showed promising 
results. To validate its effectiveness in CRR-activity prediction, we compared them to 
our implementation of the best performing DeepEnhancer model (the 4conv2pool-
4norm net, see “DeepEnhancer” section). In [33] the authors state that, though the 
DeepEnhancer networks have been developed for recognizing enhancers against back-
ground genome, they may be used for similar tasks; thus we tested Bayesian-CNN and 

Fig. 4  Comparison between fixed learning models and Bayesian models on data for genome version hg19. 
The plotted AUPRC (left) and AUROC (right) values are averaged over all the four cell lines and the multiple 
holdouts. Black bars represent standard deviations
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DeepEnhancer (4conv2pool4norm) by using the four cell lines for hg19 to perform only 
the three classification tasks directly involving enhancers (IE versus IP, AE versus IE, and 
AE versus AP).

Both the models were assessed by using 10 holdouts over all the 4 datasets for hg19. 
Figure  5 shows, for each of the three tasks, the mean AUPRC (left) and the mean 
AUROC (right). One-sided Wilcoxon test confirmed that the differences visible in Fig. 5, 
for both AUPRC and AUROC, are statistically significant. Such performance further 
supports the results from the first experiment (“Bayesian optimization improves pre-
diction of active regulatory regions" section), showing that model selection by Bayesian 
optimization allows to outperform state-of-the-art models. Further, these results show 
that a CNN model trained on genomic sequence alone may achieve an accurate classifi-
cation performance for CRR activity prediction.

Effect of different dataset‑balancing setups

To solve the class unbalance problem, Li et al. [34] implemented a fully-balanced setup, 
where the construction of the training and test set (with train/test ratio 80%/20%) is fol-
lowed by an under-sampling step of both the train and test splits, to decrease the effect 
of class unbalancing. In particular, each class in the training and test set must have no 
more than 3000 examples, while a specific proportion among classes is enforced accord-
ing to these ratios: (AE:AP:AX:IE:IP:IX:UK=1:1:1:2:2:1:10). Note that, in this way the 
class imbalance reported in the top of Table 2 is significantly reduced.

To understand the effect of such peculiar re-balancing, in this Section we trained and 
tested Bayesian-FFNN and Bayesian-CNN on the hg19 dataset by using the same exper-
imental setting described for the previous experiments and by repeating all the predic-
tion tasks under: (1) the aforementioned fully-balanced setup, (2) a balanced setup, 
where only the training set is balanced to have classes with equal cardinality (set to 3000 
samples here to obtain an objective comparison), and (3) the unbalanced setup, where 
no re-sampling is performed to maintain the original class distribution.

For a detailed comparison of the achieved performance, the top (bottom) of Table 3 
reports the average (over all the cell lines and the two Bayesian FFNN and CNN meth-
ods) of the AUPRC (AUROC) values achieved for each task (on rows) by using differ-
ent balancing modes (on columns). In the last row the average AUPRC (AUROC) values 
over all the tasks are reported for each balancing set-up. The statistical significance of 
the difference in the average AUPRC (and AUROC) values between different balancing 
set-ups was assessed by the Wilcoxon rank-signed test with p < 0.01 . In the last column 

Fig. 5  Comparison between Bayesian-CNN and DeepEnanhcer models on data for genome version hg19. 
AUPRC (left) and AUROC (right) values are averaged over the 10 multiple holdouts and the four cell lines. 
Black bars represent standard deviations



Page 13 of 32Cappelletti et al. BMC Bioinformatics  2022, 23(2):154	

of Table 3, we report the Wilcoxon p value computed when comparing AUPRCs where 
the difference is not statistically significant. Precisely, for each task in Table 3, character 
* marks not significantly different values (AUPRC or AUROC) according to a Wilcoxon 
test, while bold text highlights the highest AUPRC (AUROC). Figure 6 summarizes the 
comparison between the different balancing set-ups.

Observing the AUPRCs in Table 3 (see also Fig. 7), we note that the balanced experi-
mental set-up is the one obtaining the worst performance in all the tasks; a similar 
behaviour is visible in the AUROCs (bottom table), though in this case the differences 
are often not statistically significant. On the AUPRC, the Wilcoxon test confirms that, 
on average, the full-balanced setup produces higher AUPRC scores (AE versus IE, AE 
versus AP, AE + AP versus ELSE) or, anyway, scores that are comparable to the best per-
forming setup (IE versus IP and AP versus IP).

Bayesian optimization also improves performance on hg38‑dataset

Figure  8 compares the AUPRC and AUROC performance of the Bayesian models 
(Bayesian-FFNN  and Bayesian-CNN) with their fixed counterparts (fixed-FFNN  and 
fixed-CNN), averaged over 20 holdouts, trained and evaluated on the hg38 dataset. The 
Wilcoxon signed-rank test ( p < 0.01 ) confirmed that the Bayesian models always out-
perform their fixed counterparts in both the AUPRC and AUPRC metrics, in all the con-
sidered tasks and cell lines, confirming the results obtained with hg19 data.

By comparing Figs. 8 and 4, we observe that we obtain better results with the hg38-
dataset than those achieved with hg19 data when we classify promoters versus enhanc-
ers (i.e. IE versus IP and AE versus AP tasks), but worse results when we classify active 
versus inactive CRRs (i.e. AP versus IP, AE versus IE and AE + AP versus ELSE).

Table 3  For each balancing (columns) and task (rows), we report the average AUPRCs (top table) 
and average AUROCs (bottom table) obtained by the two Bayesian classifiers (the average is 
computed over the four cell lines)

Character * marks not statistically different pairs and, in this case, the last column reports the computed p value > 0.01. Bold 
text highlight the best performance, when this is statistically different from all the other values

Task Balanced Full-balanced Unbalanced Wilcoxon

AUPRC
IE versus IP 0.627 0.787* 0.791* 0.251

AP versus IP 0.745 0.884* 0.901* 0.066

AE versus IE 0.660 0.885 0.814

AE versus AP 0.834 0.945 0.856

AE + AP versus else 0.671 0.882 0.824

All tasks 0.707 0.877 0.837

AUROC
IE versus IP 0.82* 0.819* 0.903 0.046

AP versus IP 0.919 0.931 0.960
AE versus IE 0.893* 0.921 0.9205* 0.052

AE versus AP – 0.960* 0.956* 0.249

0.952* – 0.956* 0.035

AE + AP versus else 0.929* 0.956 0.925* 0.066

All tasks 0.903 0.917 0.933
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The optimal Bayesian-FFNN architectures chosen for the task AE versus IE for cell line 
GM12878, for both the hg19 and hg38 datasets, are visualized, respectively in Fig. 10a, c. 
The two models look similar in their pyramidal shape (the number of units in each dense 
layer decreases from input to output); however, as noted in section fixed-FFNN and 
Bayesian-FFNN, while the pyramidal shape is constrained in the Bayesian-FFNN meta-
model developed for the hg19 dataset, that for the hg38 dataset could allow building 
both pyramidal and rectangular architectures.

The optimal Bayesian-CNN  architectures selected for the task AE versus IE for cell 
line GM12878, for both the hg19 and hg38 human genome assemblies, are visualized in, 
respectively, Fig. 10b, d.

Fig. 6  Comparison between different balancing set-ups on data for genome version hg19. The AUPRC (top) 
and mean AUROC (bottom) values obtained by Bayesian-FFNN (right) and Bayesian-CNN (left) when the three 
balancing set-ups are used are averaged over the four cell lines and the ten holdouts. Black bars represent 
standard deviation
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Fig. 7  Comparison between the three balancing setup on hg19 dataset. The barplot on the left shows the 
mean AUPRC averaged over the Bayesian models (Bayesian-FFNN and Bayesian-CNN), the four cell lines, and 
the ten holdouts. On the right, mean AUROC is averaged over the Bayesian models, cell lines, and holdouts. 
Black bars represent standard deviations

Fig. 8  Comparison between fixed and Bayesian models on the data for genome version hg38. AUPRC values 
(left) and AUROC values (right) are averaged over the 10 multiple holdouts and the three available cell lines. 
Black bars represent standard deviations



Page 16 of 32Cappelletti et al. BMC Bioinformatics  2022, 23(2):154

Discussion
The present work aims at providing further knowledge in the field of CRR activity pre-
diction. More precisely, the experiments presented in “Results” section have been 
designed to: (1) compare the performance obtained by using FFNN models process-
ing epigenomic features to that obtained by CNN models working on sequences; (2) 
understand whether model tuning can improve the prediction performance; (3) provide 
insights about the different rebalancing procedures exploited at the state-of-the-art to 
handle the data imbalance issue; (4) validate the results obtained with the two genome 
datasets: the first one based on the hg19/GRCh37 genome version while the second on 
the hg38/GRCh38 version.

In particular, results reported in “CNN models achieve performance close to FFNN 
models” section show that the analysis of sequence data through CNN leads to results 
comparable to those obtained with FFNN and epigenomic features, and suggests that a 
multimodal approach integrating the information carried by both the data types could 
achieve increased performance.

Further, experimental results achieved on both the hg19 and hg38 datasets show that 
a proper choice of the model hyper-parameters through Bayesian optimization allows 
improving the model generalization capability by systematically increasing the perfor-
mance of non optimized fixed models.

The different results obtained with hg19 and hg38 data sets can be explained by 
their different distributions. Indeed t-SNE plots reveal that active versus inactive CRRs 
(Figs.  2,  3) in hg38 data show larger overlaps than in hg19 data. This can be in turn 
explained by the fact that hg38 on the one hand includes more CRR samples and on 
the other hand the FANTOM5 labeling (active versus inactive) significantly changed 
between the two human genome assemblies (see “Datasets” section for more details).

Moreover, with the hg38-dataset, differently from the hg19 dataset, the Bayesian-
FFNN  approximately doubles the AUPRC performance of the Bayesian-CNN  in the 
active versus inactive tasks (Figs. 4, 8). This behaviour is expected, since it is well-known 
that epigenetic data are more informative than sequence data in distinguishing AP ver-
sus IP or AE versus IE.

Figure 9 shows the distribution of the validation AUPRC values achieved by the FFNN 
and CNN models generated during the Bayesian optimization process for the different 
considered tasks and cell lines. The performance of the different deep neural network 
models can quite largely vary dependently of the choice of the hyperparameters, thus 
confirming that Bayesian optimization is crucial to improve performance. Moreover, 
observing the obtained plots, we may note that the Bayesian-FFNN distributions (Fig. 9, 
continuous line) have a unique local maxima, while those computed while optimizing 
the Bayesian-CNN meta-model (Fig. 9, dashed line) contain up to three local maxima. 
This may partially motivate the slower convergence we observed when optimizing 
the Bayesian-CNN  meta-model. On the other side, Bayesian-FFNN  generally rapidly 
reaches convergence to a local maxima.

The best parameters selected by the Bayesian optimization procedure depend on 
the task and the considered cell line, which suggest the existence of different under-
lying structures. Examples of the Bayesian-FFNN   and Bayesian-CNN   architec-
tures selected by Bayesian optimization for the task AE versus IE applied to cell line 
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GM12878 on the hg19 and the hg38 datasets are shown in Fig. 10. Full results about 
the best selected hyperparameters for each task and cell line are available in the 
github site (see Availability of data and materials).

The potentials of Bayesian models trained on sequence data have also been con-
firmed by the comparison with DeepEnhancer, a state-of-the-art approach for active 
enhancer region prediction [33] which similarly leverages CNNs trained on sequence 
data.

It has to be finally pointed out that results are also strongly dependent on the cho-
sen experimental setup. Indeed, crucial experimental choices, such as the dataset 
rebalancing technique, may positively bias the obtained results, therefore produc-
ing optimistic estimates of the model performances. In particular results reported in 
“Effect of different dataset-balancing setups” section show that (1) training set rebal-
ancing should be carefully designed in order to avoid loosing discriminative informa-
tion, which would result in decreased performance; (2) test set rebalancing should not 
be performed since it produces over-optimistic, unreliable results.

Regarding training set rebalancing, referring to Table 3 and Fig. 7, we believe that 
the low performance of the balanced setup may be due to the fact that the training 
set re-balancing is performed by sub-sampling, which discards a (sometimes) large 
amount of training samples. This reduces the information made available to the 
learner for training; as a result, the learner has difficulties in effectively learning the 

Fig. 9  Distributions of the Validation AUPRC sampled during Bayesian optimization of the 
Bayesian-FFNN meta-models (continuous lines) and Bayesian-CNN meta-models (dashed lines), when trained 
on the hg38 dataset. Different colors correspond to different cell lines. a Active Enhancers versus Active 
Promoters (AE versus AP); b Active Enhancers versus Inactive Enhancers (AE versus IE); c Active Promoters 
versus Inactive Promoters (AP versus IP); d Inactive Enhancers versus Inactive Promoters (IE versus IP); e Active 
Enhancers and Promoters versus Inactive Enhancers and Promoters (AE + AP versus IE + IP)
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inter- and intra-class variability, therefore resulting in a reduced generalization capa-
bility. Though this reduction affects both balanced and full-balanced modes, in the 
latter case the test set is also reduced in size, hence minimizing the impact of misclas-
sification. Moreover, since the unbalanced setup works on all the available training 
cases, the learner sees all the training set variability and this may be the reason why 
the unbalanced mode scores sometimes better than the full-balanced, and always bet-
ter than the balanced mode (Figs. 6, 7).

Test set balancing may be responsible for the high scores registered by the fully-bal-
anced setup; hence, we believe that more realistic results are obtained by a complete 
unbalanced setup, since in a real-world setting there is no way to balance the test set, as 
labels to be predicted are not known.

Conclusions
In this work we presented experiments aimed at investigating the usage of deep neural 
network models for predicting CRR activity.

In particular, we implemented a FFNN, which works on CRRs annotated with epig-
enomic features and conservation scores, and a CNN, which processes the same CRRs 
coded by their genomic sequence.

Given such setting, we firstly showed that model selection through Bayesian optimiza-
tion has the potential for improving the classification results computed by both archi-
tectures. This result was proved on the CRRs dataset provided by the authors of [34], 
and validated on epigenomic and sequence data from genome version hg38/GRCh38. 
Bayesian optimization is also fundamental to improve CNN results, as shown by our 

Fig. 10  Models selected by Bayesian optimization for the AE versus IE task, cell line GM12878, for genome 
assembly hg19: a FFNN; b CNN, and for genome assembly hg38: c FFNN; d CNN. Group 2 in c and groups 1, 3 
and 4 in d are void since no hidden layers have been selected by the Bayesian optimization procedure
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experimental comparison of Bayesian-CNN with the current state of the art Deep-
Enhancer model [33]. To the best of our knowledge, this is the first time that the Bayes-
ian optimization approach is used to tune deep learning models to predict CRRs.

To analyze the effect of the dataset balancing performed in the DECRES [34] work, 
we experimented different rebalancing techniques, showing that balancing the test set 
may lead to an over-optimistic estimation of the generalization performances of the 
model. From the experimental results, we infer that balancing set-ups must be carefully 
designed to avoid incurring misleading model evaluations due to biases induced in the 
data distributions.

Results obtained with hg38 show that the task of predicting active versus inactive 
regions, for both promoters and enhancers, is still an open problem. We obtained an 
average AUPRC greater than 0.5 and an AUROC grater than 0.8 for the AE versus IE 
task, showing that there is room to further improve performance.

Since the promising results achieved with genomic sequences suggest that also this 
data type carries salient information, we plan to develop multimodal architectures where 
two specialized neural branches, a Bayesian-FFNN branch and a Bayesian-CNN branch, 
will separately extract the information from, respectively, epigenomic and sequence 
data, and their resulting embedded data representations will be integrated at a higher 
level by a merging fully connected neural module producing the final output.

Methods
To detect active CRRs using either epigenomic data or genomic sequences we developed 
two (deep [65, 66]) neural network models: FFNN models are applied to one dimen-
sional vectors containing epigenomic features, while CNN models are applied to process 
a two-dimensional sparse vector representing the one-hot-encoded genomic sequence 
data.

In particular FFNN models [36] are a class of weighted acyclic graphs composed of 
layers of neurons (an input layer, a number of hidden layers, and an output layer) inter-
connected by weighted edges, where the weight of each edge is learnt during the training 
phase.

FFNN operate by feed-forward propagating the signals from the input layer, to all the 
consecutive hidden layers, and then to the output layer. In more detail, while the input 
layer, is used to ingest the input vectors and diffuse them to the next hidden layer, each 
neuron in the generic hidden layer performs a weighted sum of the signals it receives 
from the preceding layer, where the weights are those relative to the edges transporting 
the signal itself. The weighted sum is then input to an activation function (e.g. ReLU, sig-
moid, tanh [67]), which computes the neuron activation by normalizing the computed 
value and introducing non-linearity. In the output layer each neuron is associated to a 
prediction (class) and its activation defines the neuron response for that prediction.

The aforementioned structure (architecture) of FFNN models is characterized by 
(architectural) hyperparameters that define the network depth (number of hidden lay-
ers) and its extent (the number of neurons for each layer). In neural networks, the model 
parameters (i.e. the weights) are automatically learnt from the data through the back-
propagation algorithm, while all the other parameters, i.e. the number of hidden layers 
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and the number of hidden neurons, or the learning rate, that are not directly learnt dur-
ing backprogation are usually called model hyperparameters.

CNNs [36] are neural networks that use convolutions instead of full vector and matrix 
multiplication as in FFNNs, and are designed to work on n-dimensional signals, e.g. 
images, where the relationship between neighboring elements must be accounted for.

CNNs essentially apply consecutive filtering operations to the input signals and their 
strength is due to their ability to automatically infer the optimal filter weights, that is the 
weights maximizing performance on the training data. In the context of DNA sequence 
processing this means that CNNs are able to identify motifs in a fully automated way, 
thus allowing to find binding sites of transcription factors that regulate the expression of 
genes. More details on CNNs are available, e.g. in [36].

Both models basically apply the backpropagation algorithm to learn the weights, in 
order to optimize an objective function that in classification problems is typically rep-
resented by Binarized or Multi-class cross-entropy [68]). To this aim, several optimizing 
algorithm may be chosen (e.g. Stochastic Gradient Descent—SGD, Root Mean Square 
Propagation—RMSProp, Adaptive Moment Estimation—Adam, Nesterov-accelerated 
Adaptive Moment Estimation—Nadam, and many others [69]), which are guided by a set 
of hyperparameter values (e.g. learning rate, momentum, batch-size, maximum number 
of epochs, early stopping patience), which are often manually set to suggested default 
values or are set based on previous experience.

In this work, the Nadam optimizer [70] is used to find the weight values optimizing 
the binary cross-entropy (BCE) loss over the training set, which is computed as:

where yi is the true label for sample i and ŷi is the predicted label.
The aforementioned description clarifies that the design and development of deep 

neural network models is not trivial, since a high-number of (architectural and training) 
hyperparameters must be properly set.

In this section we describe the models we developed in order to assess the usage of 
Bayesian optimization (“Bayesian optimization” section) in the model selection phase for 
the task of CRR activity classification.

In particular we firstly developed FFNN and CNN models defined by fixed hyperpa-
rameters, whose values are chosen according to previous state-of-the-art studies [34], 
which will be referred to as “fixed” models. Starting from the fixed models, we devel-
oped “Bayesian” models whose “optimized” hyperparameter values are chosen by 
Bayesian optimization in a search space that includes the points corresponding to the 
hyperparameters of the fixed FFNNs. In this way, we obtained two “fixed” models, i.e. 
fixed-FFNN and fixed-CNN, and two “Bayesian” models, i.e. Bayesian-FFNN and Bayes-
ian-CNN, fully described in Sections fixed-FFNN and Bayesian-FFNN and fixed-CNN 
and Bayesian-CNN.

While the fixed-FFNN models have been developed based on previous research works 
[34] and may be used as baseline models for comparison with their Bayesian version, 
to provide an exhaustive evaluation of CNN models trained on raw sequence data we 
exploited the best performing DeepEnhancer model, described in “DeepEnhancer” 
section.

BCE(yi, ŷi) = −(y log(ŷi)+ (1− y) log(1− ŷi))
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All the models were developed using Keras [71] with TensorFlow backend [72].

Bayesian Optimization

The idea behind Bayesian optimization is that a function (the “objective function”), 
characterized by high cost for the evaluation of each point of a bounded domain, can 
be approximated by building a probabilistic model (the “Surrogate function”) which is 
cheaper to query. Optimization can then be performed by substituting the objective 
with the surrogate function providing at the same time a possible minimum or maxi-
mum for the latter.

As the surrogate function represents an “a priori” distribution of the objective func-
tion, given some observation points obtained by evaluation of the objective, it is possible 
to exploit Bayes’s rule to generate an “a posteriori” estimation of the (objective) function 
and then update the probabilistic model (surrogate function). Candidates of observation 
points are suggested through an appropriate “Acquisition function” which uses the infor-
mation gained by the probabilistic model (estimated by the already observed points) for 
suggesting the next candidate.

Depending on the task, different acquisition functions may be used, but their com-
mon trait is that they all act upon the criteria of “exploration versus exploitation”, so that 
the sequence of suggested points will provide a better overlook of the objective function 
(exploration) or a better identification of its maximum/minimum (exploitation). A com-
prehensive review of possible acquisition functions is available at [73].

We used the Python packages Ray [74] and HyperOpt [75] to implement Bayesian 
optimization in our deep neural network framework available at https://​github.​com/​
Anacl​etoLAB/​meta_​models.

fixed‑FFNN and Bayesian‑FFNN

We initially addressed the prediction of active regulatory regions by developing a fixed-
FFNN  model, whose architecture and learning hyperparameters have been chosen by 
considering the work described in [34], where authors developed a successful neural 
network and applied grid search to automatically select the architecture and learning 
hyperparameters.

Precisely, in our fixed-FFNN  (schematized in Table 4A) the neural network architec-
ture is composed by cascading three fully-connected layers composed of 16, 4 and 2 neu-
rons with ReLU [76] activation function, respectively. A final layer structured as a single 
neuron with sigmoid activation function acts as output layer, computing the final binary 
predictions. During network training, weight values were adjusted by Stochastic Gradi-
ent Descent technique with fixed learning rate of 0.5, learning rate decay of 0.1, l2 regu-
larizer of 0.0, no momentum and a maximum of 64 epochs. While the number of layers, 
the activation functions, and the optimization technique are those selected by grid 
search in [34], the values of the learning rate, the learning rate decay, and l2 regularizer 
were chosen by performing a brief manual tuning of the learning hyperparameters, since 
in [34] the exact ratings for such parameters were not reported. Moreover, after con-
sidering both the suggestions reported in [34] and the research works reported in [77, 
78], where authors observed that high ratings for batch-size decrease the generalization 

https://github.com/AnacletoLAB/meta_models
https://github.com/AnacletoLAB/meta_models
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Table 4  FFNN hyperparameter space explored with hg19 and hg38 data through Bayesian 
optimization. A. Architecture and learning hyperparameters of the fixed-FFNN; B. Architecture and 
hyperparameter space of the Bayesian-FFNN  models trained on the hg19 dataset; C. Architecture 
and hyperparameter space of the Bayesian-FFNN models models trained on the hg38 dataset

In Tables B and C, for each otpimized hyperparameter, the search hyperparameter space is shown, where square brackets 
are used for continuous hyperparameter spaces, while curly brackets are used for discrete ones. “Dense” refers to fully 
connected layers

Layers Units Activation

A: fixed-FFNN
Dense 16 ReLU

Dense 4 ReLU

Dense 2 ReLU

Output 1 Sigmoid

Learning parameters
   Learning rate 0.5

   Learning rate decay 0.1

   l2 regularizer 0.0

   Batch size 32

   Optimizer SGD

   Max no. of epochs 64

Layers Hyperparameter space Activation

B: Bayesian-FFNN (hg19 dataset)

No. of dense layers {0, 1, 2, 3}

No. of units layer 1 {256, 128, 64, 32, 16, 8, 4, 2} ReLU

No. of units layer 2 {128, 64, 32, 16, 8, 4, 2} ReLU

No. of units layer 3 {64, 32, 16, 8, 4, 2} ReLU

Output 1 Sigmoid

Learning parameters
   Learning rate [0.1, 0.5]

   Learning rate decay [0.01, 0.2]

   l2 regularizer [0, 0.1]

   Batch size [32, 256]

   Optimizer SGD

   Max no. of epochs [32, 1000]

C: Bayesian-FFNN (hg38 dataset)

Groups n = 4

No. of hidden layers, composing the group {0, . . . , 3}

No. of units of the dense layer {0, . . . , 256} ReLU

Dropout [0, . . . , 0.5]

Output 1 Sigmoid

Learning parameters
   Learning rate [0.1, 0.5]

   Learning rate decay [0.01, 0.2]

   l2 regularizer [0, 0.1]

   Batch size [32, 256]

   Optimizer SGD

   Max no. of epochs [32, 1000]
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capability of the network, we chose a fixed and relatively small value for the batch size 
parameter (32).

Exploiting the knowledge derived from experiments performed with the fixed-
FFNN, we initially performed experiments on the hg19 dataset by developing a Bayes-
ian-FFNN  whose strength lies in the automatic model selection through Bayesian 
optimization.

To attain a fair comparison with the deep neural networks proposed in [34], Bayesian-
FFNN adopted a similar hyperparameter space (Table 4B). We substituted the compu-
tationally expensive grid search with Bayesian optimization [79], which maximizes the 
mean AUPRC computed over the validation sets of 10 internal holdouts (see “Experi-
mental setup” section).

According to the experiments on the hg19 dataset, the architecture chosen by Bayes-
ian optimization for the Bayesian-FFNN was often at the higher boundary of the search 
space. Indeed, the chosen models were often composed by three fully connected layers 
each composed by the maximum allowable number of units (256, 128, and 64). On the 
other side, the learning parameters were selected in the lower spectrum of the continu-
ous search interval for all parameters but for the maximum number of epochs.

These results suggested to explore a larger hyperparameter space and to this end for 
the hg38 data, we decided to develop more complex Bayesian-FFNN  models, which 
could allow exploring a wider search space (Table 4C).

In more detail, the novel meta-model is composed till to n = 4 groups having each one 
from 0 to 3 hidden layers, where a value equal to 0 means that the layer will be removed. 
Each dense hidden layer has batch normalization and ReLU activation, its width is cho-
sen by Bayesian optimization in the discrete range {0, 256} , and the considered layer is 
dropped if the optimal width equals 0. Finally a dropout layer is added to regularize the 
output of each group, and also the dropout rate is chosen (in the range [0, 0.5] ) by Bayes-
ian optimization; again, if the chosen rate value equals 0, the dropout layer is removed.

Note that the described Bayesian-FFNN meta-model architecture for the hg38 data-
set allows to span a wide search space, which includes the search space of the Bayes-
ian-FFNN meta-model for hg19 as a subset. In particular, while the hg19 meta-model 
constraints the final architecture to have a pyramidal shape, with decreasing number of 
neurons from the input to the output layer, the meta-model for hg38 may also allow to 
build a rectangular shape, where consecutive layers have the same width.

fixed‑CNN and Bayesian‑CNN

Similar to the experiments run on FFNN, for CNN we experimented with the usage of a 
fixed architecture, to assess whether this approach may effectively recognize active regu-
latory regions, and an optimized architecture with hyperparameters chosen by Bayes-
ian optimization, to discover whether Bayesian optimization may improve performance 
obtained by processing genomic sequences.

The fixed-CNN model is outlined in Table 5A. The core of the network is composed by 
three consecutive blocks, each composed by three (consecutive) convolutional layers fol-
lowed by one 1-dimensional max/average pooling layer. The number of units in the three 
convolutional layers of each block, as well as the filter sizes, are fixed. A filter size of 5 for 
the first three convolutional layers was chosen as this represents a reasonable motif size 
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Table 5  CNN hyperparameter space explored with hg19 and hg38 data through Bayesian 
optimization. A. Architecture and learning hyperparameters of the fixed-CNN; B. Architecture and 
hyperparameter space of the Bayesian-CNN models trained on the hg19 dataset; C. Architecture and 
hyperparameter space of the Bayesian-CNN models models trained on the hg38 dataset

Layers Type Units Kernel Activation Notes

A: fixed-CNN 
3 Convolutional 64 5 ReLU –

1 Max pooling 1D – – – size 2

3 Convolutional 128 3 ReLU –

1 Max pooling 1D – – – size 2

3 Convolutional 128 3 ReLU –

1 Average pooling 1D – – – –

1 Dropout – – – Probability 0.5

2 Dense 10 – ReLU –

1 Dropout – – – Probability 0.5

1 Dense 1 – Sigmoid –

Learning param-
eters

   Learning rate 0.002

   Batch size 256

   Optimizer Nadam

   Epochs 100

Layers Type Units Kernel Activation Notes
 
Hyperparameter 
space

Hyperparameter 
space

B: Bayesian-CNN (hg19 dataset)
3 Convolutional + 

batch norm
{32, 64, 128} 5 ReLU –

1 Max pooling 1D – – – Size 2

1 Convolutional + 
batch norm

{32, 64, 128} {5, 10} ReLU –

1 Max pooling 1D – – – Size 2

1 Flatten – – – –

1 Dense {10, 32, 64} – ReLU –

1 Dropout – - - – Probability 0.1

1 Dense {10, 32, 64} – ReLU –

1 Dropout – – – Probability 0.1

1 Dense 1 – Sigmoid –

   Learning 
parameters

   Learning rate 0.002

   Batch size 256

   Optimizer Nadam

   Epochs 100

 Layers Hyperparameter 
space

Activation

C: Bayesian-CNN (hg38 dataset)
No. of convolutional 
groups

[0 . . . 2]

No. of hidden convolu-
tional layers, compos-
ing the group

{0, . . . , 3} ReLU
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[80]. All neurons in each layer have ReLU activation function with the exception of the 
output layer where the output neuron has sigmoid activation. The Nadam algorithm [70] 
adjusts the weight values, the learning rate is set to 0.002, and the batch size equals 256 
examples.

Bayesian optimization was firstly experimented by using the hg19 dataset to perform 
model selection. Precisely, Bayesian optimization was used to choose the best architec-
ture (number of convolutional groups from 1 to 3, and, for each layer, a number of filters 
lower than that of the fixed-CNN model) that maximizes the mean AUPRC computed 
over the validation sets of the 10 internal holdouts (“Experimental setup” section). The 
resulting Bayesian-CNN  has a meta structure shown in the bottom of Table  5B. The 
meta-model uses the default Nadam learning learning rate (0.002) and batch size (256).

When running experiments on the hg38 dataset, in line with the experiments on 
the FFNN models, we re-designed the Bayesian-CNN  meta-model to allow exploring 
a wider search-space. The novel meta-model and the wider hyperparameter space are 
schematized in Table 5C; the meta-model allows developing models with nconv ∈ {0, 2} 
convolutional blocks and ndense ∈ {0, 2} dense blocks, where both the values of nconv and 
ndense are chosen by Bayesian optimization. Each convolutional block is composed from 
0 to 3 convolutional layers with batch normalization and ReLU activation, followed by a 
2D max pooling layer and a dropout layer. The dense blocks are composed by a fully con-
nected layer with batch normalization and ReLU activation, followed by a dropout layer. 
The hyperparameter space explored by the Bayesian-CNN is detailed in Table 5C.

Table 5  (continued)

 Layers Hyperparameter 
space

Activation

No. of filters in the 
convolutional layer

[0 . . . 128]

2D kernel size in the 
convolutional layer

[2 . . . 8] × [1, 2]

Max pooling 2D [1 . . . 8] × [1, 2]

Dropout [0 . . . 0.5]

No. of dense groups [0 . . . 2]

No. of hidden dense 
layers, composing the 
group

{0, . . . , 3} ReLU

No. of units in dense 
layer

[0 . . . 64]

Dropout [0 . . . 0.5]

Output 1 Sigmoid

Learning parameters
   Learning rate 0.002

   l1 regularizer 0.0001

   l2 regularizer 0.0001

   Batch size 256

   Optimizer Nadam

   Epochs 100

In Tables B and C, for each otpimized hyperparameter, the search hyperparameter space is shown, where square brackets 
are used for continuous hyperparameter spaces, while curly brackets are used for discrete ones. “Max Pooling 1D” and “Max 
Pooling 2D” refer, respectively, to max-pooling 1D and 2D layers, “Average Pooling 1D” refers to average-pooling 1D layer, 
“Dropout” refer to dropout layers, and “Batch Norm” refers to batch normalization layer
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DeepEnhancer

To compare the Bayesian-CNN  model to a state-of-the-art model, we implemented 
the 4conv2pool4norm DeepEnhancer network [33]. 4conv2pool4norm recognizes 
enhancers from background sequences by processing, one-hot-encoded genomic 
sequences through a 1D-CNN with four convolutional layers, where the input 
sequence has a window size W = 300, the first two convolutional layers have 128 
1D-kernels (window size = 1× 8 ) while the third and fourth layers have 64 1D-ker-
nels (window size = 1× 3 ); all layers are followed by a batch normalization layer, 
while a max-pooling layer is applied only after the second and the fourth layers. After 
the fourth layer, two dense layers with ReLU activation (256 and 128 neurons, respec-
tively), and interleaved with a dropout layer (ratio 0.5), perform the processing that 
brings it to an output layer with two neurons and softmax activation, so that each neu-
ron is regarded as a probability score predictor for one class (enhancer versus back-
ground sequences). Of note, to prove the effectiveness of the proposed architecture, 
in [33] authors present experiments by using new DeepEnhancer models obtained by: 
removing the batch normalization layer (4conv2pool model); removing the batch nor-
malization and the max-pooling layer (4conv model); adding two more convolutional 
layers with 16 1D kernels (window size = 1× 2 ) to both the 4conv2pool4norm and 
the 4conv2pool, therefore obtaining 6conv3pool6norm and 6conv3pool. All the com-
parison showed that 4conv2pool4norm is the best performing architecture.

In our experiments, the implemented 4conv2pool4norm model was used to process 
the same one-hot encoded sequence data (“Datasets” section) used to train and test 
our CNN models, and the 2-way output layer was substituted with an output layer 
composed by a single neuron with sigmoid activation, in line with our FFNN and 
CNN models. The implemented 4conv2pool4norm model was then trained and tested 
for each of the CRR activity prediction tasks detailed in “Experimental setup” section 
where training exploited the hyperparameters detailed in [33] for the 4conv2pool-
4norm: Adam optimizer [81], an initial learning rate set to 10−4 , which decreases 
according to learning rate decay, a maximum of 30 epochs with an early stopping 
strategy to speed up the training.

Datasets
In this Section, we detail the datasets for genome version hg19/GRCh37 (hg19-data-
set, “Hg19-dataset” section) and for genome version hg38/GRCh38 (hg38-dataset, 
“Hg38-dataset” section).

Hg19‑dataset

The dataset for genome version hg19 contains regions belonging to GM12878, 
HelaS3, HepG2, K562 cell lines, where enhancers and promoters were labeled based 
on tags per million (TPM) data in the Cap Analysis of Gene Expression (CAGE) data-
set downloaded from FANTOM5 [31]. In particular, the following labels were set, 
which refer to transcriptionally active or inactive enhancers and promoters:
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•	 AE and IE indicate that the regions is, respectively, an active or inactive enhancer, 
where active means that the enhancer is transcribed with (TPM>0).

•	 AP and IP are assigned to active or inactive promoters, where an active (inactive) pro-
moter is defined when TPM > 5 (TPM=0).

•	 AX and IX identify active or inactive exons, respectively. The class of the exon was 
defined based on exon transcription levels from RNA-seq data downloaded from 
ENCODE. In particular, if the peak-max of the exon is greater than 400 the label is 
AX, the exon is inactive (IX) if it is equal to zero.

•	 UK is the label for unknown/uncharacterized exons and DNase I open regions not 
contained in FANTOM5.

Under this setting, epigenomic data for training FFNN models were extracted from the 
ENCODE project [19], and CpG islands and phastCons scores were extracted by com-
puting the mean value of the feature signal which falls within a 200 bps bin centered at 
each labelled region. Since the activity of CRRs is strongly influenced by chromosome 
accessibility (regulated through the interplay between histone modifications and binding 
of specific TFs) [82], histone and TFs ChIP-seq profiles, open chromatin (DNase-seq, 
FAIRE-seq) data and chromatin conformation (ChIA-PET) data were used as epig-
enomic features in this study (see ENCODE Data Standards2 for an overview about the 
mentioned high-throughput technologies). Moreover, phastCons and CpG island scores 
were considered because CRRs are known to be evolutionary conserved [83] and levels 
of DNA methylation are predictive of CRRs [84]. Such data is the same used by DECRES 
FFNN [34] and were provided by DECRES authors themselves.3

The CNN models (“Methods” section) were trained and tested by using genomic 
sequence data obtained for genome version hg19 from the UCSC repository dataset4 In 
particular, each genomic region is represented by a sequence of 200 nucleotides, which 
might be the usual A, C, G, and T nucleotides, or an unknown nucleotide (identified by 
N). The obtained 200 bps sequences were encoded using the one-hot encoding scheme.

To provide an overview of the unbalanced class distribution in each cell line, the top 
part of Table 1 shows the overall cardinality and the class distribution for each cell line 
from hg19. The available cell lines differ in sample cardinalities, with class AE being 
always the less represented (cardinality of AE is 5% of the cardinality of IE, 16% of AP, 
and 2% of IP).

Hg38‑dataset

To validate our results on genome version hg38, we used a pipeline similar to that pre-
sented for hg19 (“Hg19-dataset” section) and downloaded only regions catalogued 
as enhancers and promoters from FANTOM5 for three of the cell lines used for hg19 
(GM12878, HepG2, K562). We discarded the HelaS3 cell line, whose epigenomic features 
in ENCODE were mostly deprecated. In this case, we downloaded epigenomic data from 
ENCODE reflecting again the need to use data describing histone and TFs (ChIP-seq) 

2  ENCODE Data Standards at https://​www.​encod​eproj​ect.​org/​data-​stand​ards/.
3  ENCODE Data at ftp://​hgdow​nload.​cse.​ucsc.​edu/​golde​nPath/​hg19/​encod​eDCC; ENCODE Fold-Change Data is 
described here https://​sites.​google.​com/​site/​anshu​lkund​aje.
4  UCSC repository dataset at https://​genome.​ucsc.​edu/.

https://www.encodeproject.org/data-standards/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC
https://sites.google.com/site/anshulkundaje
https://genome.ucsc.edu/
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profiles, open chromatin states (DNase-seq, ATAC-seq) and DNA methylation informa-
tion (WGBS). Unfortunately, FAIRE-seq, ChIA-PET, CpG and phastCons data were not 
available from ENCODE for the hg38 genome version, however we added to our dataset 
further profiles describing open chromatin regions (ATAC-seq) and DNA methylation 
(WGBS). Interested readers can refer to ENCODE Data Standards  [2] for details about 
the mentioned omics technologies. To label activity in the downloaded CRRs, similar 
to the hg19 dataset, we thresholded the TPM values. In line with the hg19 dataset [34], 
active (inactive) enhancers were defined as enhancers with TPM > 0 (TPM = 0 ). Active 
(inactive) promoters were defined as promoters with TPM > 5 (TPM ≤ 5 ), which differs 
from the thresholding strategy used for the hg19 dataset, where regions with 0 < TPM 
≤ 5 had undefined activity (“Hg19-dataset” section). In this way, we obtained active 
enhancers (AE), active promoters (AP), inactive enhancers (IE), and inactive promoters 
(IE) for genome version hg38. Under this setting, epigenomic features for genome ver-
sion hg38 were downloaded from ENCODE,5 while the genomic sequence was down-
loaded from the UCSC repository.6

To provide an overview of the new class distribution for the available cell lines, we 
show the total sample cardinality and the cardinality of each class (AE, AP, IE, IP) for 
each cell line at the bottom of Table 1. Differently from hg19, the cell lines in hg38-data-
set have equal sample cardinalities.

In particular hg19 dataset has, on average, the 79% of enhancers and promoters with 
respect to hg38-dataset (comparison between rows “Total E+P” in Table  1). Further, 
Wilcoxon signed-rank test (p value p < 0.01 ) confirmed the statistically significant dif-
ference between the distributions of TPM values (tags per million, “Datasets” section) 
composed by samples present in both datasets, which is reflected in differences in the 
sample-activity labeling. In particular, when considering samples active in one or both 
datasets, 12% of them have opposite activity labels.

To automate the genome assembly retrieval process, we developed a GitHub package 
available at https://​github.​com/​LucaC​appel​letti​94/​ucsc_​genom​es_​downl​oader, which is 
also available through the UCSC repository at https://​genome-​euro.​ucsc.​edu/​util.​html.
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t-SNE	� t-distributed Stochastic Neighbor Embedding

5  ENCODE Data at ftp://​hgdow​nload.​cse.​ucsc.​edu/​golde​nPath/​hg38/​encod​eDCC.
6  UCSC repository dataset at https://​genome.​ucsc.​edu/.
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https://genome-euro.ucsc.edu/util.html
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/encodeDCC
https://genome.ucsc.edu/
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