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Abstract 

Background:  Investigation of outbreaks to identify the primary case is crucial for the 
interruption and prevention of transmission of infectious diseases. These individuals 
may have a higher risk of participating in near future transmission events when com-
pared to the other patients in the outbreak, so directing more transmission prevention 
resources towards these individuals is a priority. Although the genetic characterization 
of intra-host viral populations can aid the identification of transmission clusters, it is 
not trivial to determine the directionality of transmissions during outbreaks, owing 
to complexity of viral evolution. Here, we present a new computational framework, 
PYCIVO: primary case inference in viral outbreaks. This framework expands upon our 
earlier work in development of QUENTIN, which builds a probabilistic disease transmis-
sion tree based on simulation of evolution of intra-host hepatitis C virus (HCV) variants 
between cases involved in direct transmission during an outbreak. PYCIVO improves 
upon QUENTIN by also adding a custom heterogeneity index and identifying the sce-
nario when the primary case may have not been sampled.

Results:  These approaches were validated using a set of 105 sequence samples from 
11 distinct HCV transmission clusters identified during outbreak investigations, in 
which the primary case was epidemiologically verified. Both models can detect the 
correct primary case in 9 out of 11 transmission clusters (81.8%). However, while QUEN-
TIN issues erroneous predictions on the remaining 2 transmission clusters, PYCIVO 
issues a null output for these clusters, giving it an effective prediction accuracy of 
100%. To further evaluate accuracy of the inference, we created 10 modified transmis-
sion clusters in which the primary case had been removed. In this scenario, PYCIVO 
was able to correctly identify that there was no primary case in 8/10 (80%) of these 
modified clusters. This model was validated with HCV; however, this approach may be 
applicable to other microbial pathogens.

Conclusions:  PYCIVO improves upon QUENTIN by also implementing a custom 
heterogeneity index which empowers PYCIVO to make the important ‘No primary case’ 
prediction. One or more samples, possibly including the primary case, may have not 
been sampled, and this designation is meant to account for these scenarios.
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Background
Hepatitis C virus (HCV) infection affects nearly 3% of the world’s population and is a 
major cause of liver disease worldwide [1]. In the United States, HCV infection is an 
important public health problem, being the most common chronic blood-borne infec-
tion as well as the leading cause for liver transplantation [2]. Since 2007, HCV surpasses 
HIV as a cause of death in the US [3]. Outbreaks of HCV infections are associated with 
unsafe injection practices, drug diversion, and other exposures to blood and blood 
products.

RNA viruses such as HCV exist as a heterogeneous population of closely related but 
genetically distinct variants, known as quasispecies [4]. When a transmission event 
occurs between an infected person and a susceptible person, the target patient will not 
receive the entire intra-host HCV population from the infected individual, but only 
some of the variants. These variants may or may not be representative of the infected 
individual’s HCV population as a whole [5].

Owing to this, methodologies which rely on one consensus sequence per patient are 
not effective in detection of the primary case. A better alternative is to obtain a large 
sample of viral variants that adequately represent intra-host viral sub-populations and 
thus improve accuracy of genetic detection of transmissions. This is achieved through 
sampling intra-host variants using amplicon-based deep sequencing technology of a 
highly variable region of the viral genome [6].

We previously developed the Global Hepatitis Outbreak and Surveillance Technology 
(GHOST), a cloud-based bioinformatics suite that can infer HCV transmission clus-
ters by analyzing intra-host HCV populations [7]. However, given a transmission clus-
ter, GHOST lacked the functionality to identify the likely primary case: the individual 
who was infected the longest and has the greatest chance to have infected other persons 
in the outbreak. Given that the identification of the primary case can help in the inter-
ruption and prevention of outbreaks, we present PYCIVO, a model that evaluates the 
strength of the molecular evidence available to identify the potential primary case for 
any given recent transmission cluster.

Methods
Given a transmission cluster of several samples with available sequence, PYCIVO 
utilizes a consensus methodology from 2 independent models to identify a potential 
primary case. All HCV sequences are in FASTA format. Two primary case indication 
values are computed for each patient in the outbreak from each model. We call the 
first indication value V1; this is estimated using data from a population-based evolu-
tionary simulator. The second indication value, named V2, is a composite heteroge-
neity score which is generated using an ensemble of different metrics. Identification 
of the likely primary outbreak case in a cluster improves with application of both 
values over only one of them.

Evolutionary simulations

To generate V1, an evolutionary distance is determined between every pair of samples in 
the transmission cluster and stored in a matrix MT. In order to obtain these distances, we 
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utilize an evolutionary simulation method proposed in our earlier paper [8]. Briefly, evolu-
tionary-based random processes are simulated over a graph G = (V, E), in which the nodes 
are haplotypes (unique or distinct sequences), and edges exist between two haplotypes at 
hamming or edit distance equal to 1. In each simulation, one population is designated as a 
potential infector and the other as a possible infectee. The distance measure between popu-
lations is defined as the analogue of the cover time for the random process.

For this evolutionary simulator to function, it is important to reconstruct unsampled var-
iants that were likely present between the time of transmission and the time of sampling 
and were linking both samples. This reconstruction is done using maximum parsimony, 
assuming the minimal number of mutation steps to reach from primary case to target 
sequences. To achieve this, we first construct a k-step network [6, 9–12], i.e. the union of all 
minimum spanning trees of the complete graph on the set of haplotypes with edge weights 
corresponding to hamming distance between two given sequences. Next, each edge of 
length r is subdivided by r − 1 vertices. These vertices represent unsampled haplotypes and 
form "bridges" between connected components of observed haplotypes. This procedure is 
outlined in Fig. 1. The result of the procedure is a connected graph whose edges represent 
single mutations and whose nodes are haplotypes of three types: those present in the poten-
tial infector, those present in the possible infectee, and simulated intermediate sequences 
which likely were present at some point between the time of transmission and the time of 
sampling. Evolutionary simulations are conducted on this constructed graph.

Simulations are performed using a model from [8], which is essentially a quasispecies 
model with logistic growth, depicted in Fig.  2. The model is described by the following 
equation:

Here xt = (x1
t, …, xn

t)T is a vector of abundances of haplotypes corresponding to the 
nodes of the graph G at time t, K is the maximum population size, E is an identity matrix 
and A is an adjacency matrix of G, and replication probability r and mutation probability 
q are defined as functions of the position-wise mutation rate ε and genome length L:

xt =

((

1−

n
∑

i=1

xt−1

i

K

)

(1+ r)E + qA

)

xt−1

Fig. 1  Example of a bridge reconstruction using maximum parsimony. If the red variant A were to mutate 
to the green variant B the gray intermediate variants would represent the most parsimonious path between 
these two variants
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The evolutionary distance measure for a pair of populations (i, j) is defined as the time 
needed by the process from equation 1 to cover all nodes from the target j when starting 
only from the vertices of the potential infector i. This distance is considered to be infinite 
if the simulation takes longer than a threshold Tmax. The simulations are carried out for 
all pairs of patients and the calculated distances are stored in the distance matrix MT. 
Figure  3 depicts the relationship between this evolutionary simulation distance T and 
the minimum hamming distance between samples which has been shown to be a robust 
measure of relatedness [6].

The matrix MT is used to construct a directed genetic relatedness graph, GT, with 
nodes corresponding to patients, edges corresponding to pairs of patients with geneti-
cally related viral populations and their directions representing possible transmission 
directions. Using the minimal evolution principle, patients i and j are connected by an 
arc whenever MT [i, j] = min(MT [i, j], MT [j, i]) < ∞.

If GT does not form a connected component with all members of the input, we can-
not make any prediction about the primary case. A recent outbreak in which the entire 
transmission network was sampled should yield a connected component with the 
PYCIVO evolutionary distance metric [8]. Among all input in this component, the can-
didate primary case a is selected based on the parameter V1(a) defined as follows:

r = (1− ε)L, q =
ε

3
(1− ε)L−1

Fig. 2  Visualization of evolutionary simulation. Dots represent unique variants. The simulation is a random 
walk that starts from the green potential infector variants with the gray intermediate variant dots and red 
potential infectee variant dots being unexplored. As the simulation carries out, dots turn blue as they are 
explored. The simulation is complete when all potential infectee variant dots are reached, or when all the red 
dots have turned blue. The top 3 frames show sample A evolving into sample B. The bottom 3 frames show 
sample B evolving into sample A. We can see that it is easier for A to evolve into B as it finishes faster, so we 
would estimate that A transmitted the virus to B rather than vice versa



Page 5 of 14Gussler et al. BMC Bioinformatics           (2022) 23:62 	

where n is the number of samples present, the numerator represents the ’in-evolution’ 
times, or the total time it took for all the samples to evolve to this one. The denominator 
represents the ’out-evolution’ times, or the time it took for this sample to evolve into all 
the others. If this ratio is high, then that is indicative of a patient being a likely primary 
case candidate, as they were able to evolve to others more successfully than the other 
way around in simulations. If the ratio is low, that sample is not considered as a candi-
date for the primary case. For each sample, this value is the output for this portion of 
the algorithm. These values average to 1, with the best primary case candidates having 
higher values.

Measures of heterogeneity

The second method for primary case candidate determination within a transmission 
cluster works by selecting the infected individual with the highest amount of hetero-
geneity according to a custom index. We use several different measures to generate a 
composite score. Genetic heterogeneity has been shown to be higher for primary out-
break cases than other individuals sampled in an outbreak [6]. For each sample, 8 values 
are measured as shown below. A denotes the clinical sample of interest, where F(Ai) and 
H(Ai, Aj) are shorthand for frequency and hamming distance, respectively. The chosen 
heterogeneity values are as follows:

(1)	 Maximum intra-patient Hamming distance: the largest Hamming difference 
between two of the haplotypes

V1(a) =

∑n
i=1MT [a, i]

∑n
i=1MT [i, a]

max
(

H
(

Ai,Aj

))

∀i, j ∈ A

Fig. 3  Distribution of PYCIVO distance measurements among our dataset. Most sample pairs fall either well 
below or above the empirically derived Tmax value of 2000. Evolutionary distances used in PYCIVO versus the 
minimum hamming distances between samples. The threshold for transmission is indicated by vertical and 
horizontal lines. Only 827 out of 5460 cases in our study were linked by the PYCIVO distance metric, 817 of 
these are also linked by minimum hamming distance
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(2)	  Mean intra-patient Hamming distance: the arithmetic mean of all the pairwise 
Hamming distance between pairs of sequences within the sample.

(3)	  Nucleotide diversity: degree of polymorphism in a sample.

(4)	  K-mer entropy: Shannon entropy over the set of 8-mers in the sample. Let Ak = {k1 
…, kn} be the set of k-mers.

(5)	 Haplotype entropy: Shannon entropy over the set of haplotypes in the sample. Let 
Ah = {h1 …, hn} 

(6)	 Average nucleotide entropy: Shannon entropy over the set of nucleotides in the 
sample. If we consider the alphabet N = {A, T, C, G} and amplicon sequence length 
L, where individual nucleotides are ni

(7)	 One step component entropy: Let A0 = {o1…on} be the set of one-step hamming 
distance of connected components present in the sample 

(8)	 Mutation Frequency: Let M be the viral variant with the highest frequency

We chose these eight values because they were empirically shown to be higher for 
chronically infected individuals than acute ones, as shown in Table  3. We combine 
them into a single scalar composite index for each sample. Using a matrix in which 
rows represent patients and columns represent each of the 8 features, each feature 
is ranked among patients in such a way that a more heterogeneous sample receives a 
lower rank. To obtain V2 from this matrix, we compute the ranks in descending order 
along each index, then calculate the reciprocal of the harmonic mean of these ranks 
for each sample.

We choose this method rather than sorting in ascending order and using the arith-
metic mean because we value a sample that is the most heterogeneous over most of 
the indices rather than being second or third among all indices. Using the reciprocal 

mean
(

H
(

Ai,Aj

))

∀i, j ∈ A

∑

F(Ai)F
(

Aj

)

H
(
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)
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n
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of the harmonic mean rewards samples which score the highest among a given index 
disproportionately.

Implementation

PYCIVO uses data generated by the GHOST system, which processes genomic data gen-
erated by the Illumina MiSeq sequencer using several specially developed procedures 
[7]. There are some pre-processing requirements associated with this model. The input 
data should be a multiple sequence alignment in FASTA format, split into one file for 
each patient. Additionally, all reads in analysis must be same in length; length normali-
zation can optionally be performed by PYCIVO using MAFFT with the -a option. Addi-
tionally, each file should not contain duplicate sequences. If there are two reads which 
have the same sequence, they are collapsed together into one haplotype with an associ-
ated frequency. This frequency should be at the end of the sequence ID following an 
underscore character.

Results
PYCIVO was validated using data from 11 transmission clusters containing 105 samples 
and 1936 unique sequences [13–19]. In all cases, the primary case was epidemiologically 
identified. In addition, we used 10 modified transmission clusters in which the known 
primary case sample was removed in order to test PYCIVO specificity. One transmission 
cluster included only 2 cases and could not be used effectively as a modified cluster.

The cover times of simulated evolution from intra-host viral variants sampled from 
patient A to intra-host variants from patient B (out-evolution time) and from patient B 
to patient A (in-evolution time) are asymmetric; i.e., the time of evolution from A to B 
and from B to A are different. A good primary case candidate would have overall high 
in-evolution and low out-evolution times. This concept is illustrated in Fig. 2. In con-
trast, a simpler metric such as minimal or average hamming distance does not inform 
on which direction is more likely. The evolutionary time, however, correlates positively 
(r = 0.65, p < 10–200) with hamming distances, as shown in Fig. 3.

Both primary case indication values were calculated to issue primary case predictions 
for each outbreak. We aim to achieve accurate detection of the primary case only when 
one was actually sampled in an outbreak investigation. We recognize that the sample size 
for validation fo this software is very small. However, epidemiologically labeled complete 
outbreak clusters are exceedingly difficult to find. We aim to make our software specific 
at the cost of sensitivity. With this in mind, PYCIVO issues a “No Primary Case” (NPC) 
prediction when the primary case was not sampled or was removed from the data set.

This category of output is enabled by discrepancy between the two independent pre-
diction methods, or when the genetic relatedness graph GT is not connected. In this 
case, PYCIVO informs the user that there is not a good candidate for the primary case 
within this group, claiming that they were likely not present in the samples given.

If there is no discrepancy between prediction methods and GT forms a connected 
component, then the V1 and V2 vectors were used to determine the confidence of 
the prediction. We get a distribution over the input samples for these two metrics: 
one from V1 and another from V2. Two levels of PYCIVO prediction were empiri-
cally established based off these distributions: High Confidence (HC) when a sample 
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has the highest value along both identification metrics, and both of their z-scores are 
above 2; Low Confidence (LC) when a sample has the highest value for both primary 
case indication values but one or both z-scores are below 2. We chose the z-score of 2 
because this is analogous to being in the 95th percentile for each metric. This is a very 
stringent criteria by design, as we care more about avoiding false positives than false 
negatives. Table 1 shows that LC predictions are much more common than NPC and 
HC predictions. This is an intentional feature of the software to give more veracity to 
NPC and HC predictions. This model is still in its early stages and was validated on a 
small amount of data, so LC predictions at this point are prone to error and have little 
value without supporting epidemiological information.

Tables  1 and 2 summarize the PYCIVO results obtained using the data from 11 
known transmission clusters. The main results are as follows: (1) PYCIVO made pri-
mary case predictions in 9/11 clusters while the others were classified as NPC; (2) 
HC predictions (n = 3) were all accompanied by NPC when the primary case was 
removed; (3) LC predictions (n = 5) were accompanied by 3 NPC predictions as well 
as 2 erroneous LC predictions in the modified dataset, and the remaining outbreak 
did not have enough cases to conduct this analysis; (4) the 2 cases in the modified 
dataset which issued LC predictions were outbreaks of only 2 patients; (5) NPC pre-
dictions were always accompanied by NPC predictions in the modified dataset.

Table 3 shows how each feature performed for the collection of outbreaks for which 
we had access. This table also lists 5 metrics which were removed due to low positive 
predictive value as well as high correlation to other metrics within the dataset. Many 
of the features correctly highlight the intended sample despite having distinct biologi-
cal meaning, except for the indices at the bottom of Table 3 which were excluded due 

Table 1  Results per outbreak

The last two columns show the predicted label

Id n of cases n of features Primary present Primary absent

1 33 0 NPC NPC

2 19 7 HC NPC

3 15 8 HC NPC

4 9 0 NPC NPC

5 7 8 LC NPC

6 6 7 HC NPC

7 4 8 LC NPC

8 4 8 LC NPC

9 3 8 LC LC

10 3 7 LC LC

11 2 8 LC N/A

Table 2  Results per label

Label Primary present Primary absent

HC 3/11 0/10

LC 6/11 2/10

NPC 2/11 8/10
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to their lack of accuracy and high correlation to more efficacious metrics within the 
set.

Using this multitude of indices rather than just one of them produces a system which 
is more robust. This is so because artifacts in HCV evolution which reduce the primary 
case’s heterogeneity along one index will not be equally reflected in the other indices.

Discussion
Genetic characterization of intra-host viral populations is often used for the detection of 
transmission clusters and for the investigation of outbreaks [6]. However, these genetic 
approaches, although highly effective in uncovering transmissions, are infrequently 
applied to tracking transmissions, owing to complexity of intra-host [20] and inter-host 
[5] viral evolution. Here, we present a new computational framework for the identifi-
cation of the likely primary case in HCV outbreaks. The presented approach is based 
on simulation of evolution of intra-host HCV variants between cases involved in direct 
transmission during an outbreak, assessment of 2 identification values and statistical 
evaluation.

These methods enable PYCIVO to make the important NPC distinction, as well as 
preventing from making HC predictions on small outbreaks. This is so because the max-
imum z-score among a small set of random numbers will likely be less than 2, producing 
a LC prediction. It is difficult to determine the veracity of a source prediction for smaller 
outbreaks.

Three of the analyzed clusters are made up of three or less patients, which tend to 
produce LC predictions. In contrast, larger outbreaks make HC or NPC predictions 
more often. In agreement with this observation, there is a very high correlation between 
the minimum z-score used for prediction and the number of samples in the cluster 
(r2 = 0.9322, p = 2.4e−5). This is advantageous for most outbreaks as majority of them 
have more than three patients, which steers PYCIVO towards the more conclusive NPC 
and HC prediction classes.

PYCIVO evaluates the strength of the molecular evidence available to identify the 
likely primary case of a recent transmission cluster. Our method considers the infor-
mation provided by both inter-host and intra-host evolution, showing an accuracy 

Table 3  Feature performance

K-mer entroppy 9/11

Average nucleotide entropy 9/11

Mean hamming distance 9/11

Max hamming distance 9/11

Nucleotide diversity 8/11

Haplotype entropy 8/11

Mutation frequency 8/11

1-step component entropy 8/11

Epistasis coefficient 6/11

Frequency entropy 3/11

Hill numbers 3/11

Mean consensus 2/11

Simpson index 2/11
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of 81.8% when the primary case is present. The part of the method that deals with 
inter-host evolution uses the cover times of evolutionary simulations as an analog of 
evolutionary distance. If intra-host viral variants in one patient have higher out-evo-
lution times, that means that they are unlikely to evolve to variants in other patients. 
If intra-host viral variants in a patient have higher in-evolution times, that means that 
they are unlikely to be evolved to. Intra-host variants of a likely primary case candi-
date should have a high in-evolution time and low out-evolution time. The part of 
the method that deals with intra-host evolution uses a composite heterogeneity score, 
which is generated via an ensemble of different metrics. The rationale for this second 
value is that, in general, HCV accumulates mutations during intra-host evolution and 
becomes more genetically heterogeneous over time [20]. Given that the primary case 
must have been infected for a longer time than all other incident cases, we can use 
this difference in duration of infection to infer the transmission direction. Indeed, our 
previous HCV analyses showed that the primary case is infected with a much more 
diverse HCV population than any incident case from the corresponding transmission 
cluster [5, 6]. This finding is supported with our earlier observation that, on average, 
the intra-host HVR1 nucleotide diversity is 1.8 times greater in patients with chronic 
than acute HCV infection [21].

Identification of the primary case is only possible with these methods if genetic 
samples from that patient are available. Otherwise, the incident case with the highest 
value may be erroneously classified as a source of infection in a transmission cluster. 
These problems of transmission-direction detection have been noted earlier [22, 23]. 
Therefore, our goal in developing this model was twofold: in addition to being able to 
predict the primary case, we aimed to be sensitive to input in which the primary case 
is neither known nor sampled. To achieve this goal, output was suppressed if there 
was uncertainty about who the primary case may have been, or if it appeared that 
they were not present among the samples. Output suppression thresholds were deter-
mined in via empirical thresholds outlined in the previous section.

PYCIVO is based on knowledge of intra-host and inter-host evolutionary dynam-
ics of HCV shortly after a transmission event. Thus, the method’s performance will 
likely be less reliable if all the sampling times were not both close to the transmission 
event and close to each other. Over time, intra-host HCV populations from infected 
cases will both evolve away from one other and the population will grow more het-
erogeneous over time. The performance of this type of algorithm is impacted when 
one or more individuals experience superinfection, inflating the intra-host heteroge-
neity, which results in loss of association between the heterogeneity and duration of 
infection.

The previously published QUENTIN model [8] showed the same performance as 
PYCIVO when the transmission cluster does include the primary case. However, 
QUENTIN always chooses one sample among the input members as the primary case 
regardless of whether they are actually present in the input group of samples. In con-
trast, PYCIVO can issue the important NPC prediction on outbreaks, which do not 
have a clear primary case. The ability for PYCIVO to suppress erroneous output via 
this mechanism represents the major advantage of this model, as we cannot expect 
sequences from the primary case to always be available. Another difference is that 
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in QUENTIN the network linking all the sequences of every pair of samples was a 
median-joining network rather than the k-step network used here, a change moti-
vated by obtaining almost identical results with a considerably lower computational 
burden.

Our work has two major limitations. First, the datasets used in this study are lim-
ited in size. However, data on well-defined transmission clusters is exceedingly difficult 
to obtain. These data become available only after comprehensive epidemiological and 
molecular investigations. Second, the genomic data used here to devise and evaluate 
PYCIVO were not all obtained by deep sequencing but mainly by an older technology 
based on end-point limiting-dilution PCR and Sanger sequencing [20]. Both methods 
produce a population of variants, however, deep sequencing yields orders of magnitude 
more sequences. Although we previously found that statistical comparisons between 
these two methods on the same set of samples showed equivalent inter- and intra-host 
levels of heterogeneity [24], the use of PYCIVO with deep sequencing data needs to be 
further validated and updated. The results obtained in our study warrant research to fur-
ther improve accuracy of the model to increase potential benefits of its application in 
the field. Utilization of differences in inter- and intra-host variability will likely continue 
as a core component of the model, but there are several avenues for modification in the 
future. The simplest way to improve upon the model is to accrue additional data from 
epidemiologically characterized outbreak investigations, which will either further vali-
date the model or present opportunity to adjust parameters accordingly. We expect that 
our GHOST platform [7] developed to assist in identification of transmission clusters 
during outbreak investigation or similar technologies will provide ample data to improve 
the accuracy of this model in the future. Additionally, we plan further improvement of 
the model by updating the current strategy for calculating V2 to include a feature vec-
tor based on predictions of infection duration by PHACELIA [25]. We may introduce 
new methodologies to the way in which V1 is computed as well when novel data become 
available.

The epidemiological identification of outbreak sources is a very complex task. The 
genetic detection of a likely primary case can greatly facilitate investigation of outbreaks, 
assisting in identification of new cases and routes of transmission in specific epidemio-
logical settings, and, thus, in guiding public health interventions for interruption and 
prevention of disease spread. However, it should be noted that although genetic test-
ing can help detect the source of infection, it does not reveal the actual mechanism of 
transmission operating during outbreaks. Identification of such mechanisms and routes 
of transmission as well as the primary case role in an outbreak can be accomplished 
only through epidemiological investigation. For example, inadequate infection control, 
unsafe injection practices or drug diversion may be responsible for HCV transmission in 
healthcare settings rather than actions of source cases [26].

Understanding transmission of infections is crucial for effective public health inter-
ventions. The utility of transmission networks to public health interventions was dem-
onstrated in simulation experiments [27–29]. Further improvement of accuracy will 
enhance potential benefits of the PYCIVO application to prevention and to develop-
ment of more targeted interventions. However, genetic contact tracing and identifica-
tion of primary cases present complex ethical issues associated with legal and social 
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implications [30, 31]. Resolution of these issues is fundamentally related to data security. 
In this respect, it is important to note that the model reported here cannot collect, use, 
or produce personally identifiable information and is based exclusively on using genetic 
viral data.

Conclusion
Here we present PYCIVO, a model that evaluates the strength of the molecular evidence 
available to identify the primary case for a transmission cluster. Our method takes into 
account the information provided by both inter-host and intra-host evolution, showing 
an accuracy of 81.8% when the primary case is present and with the important ability to 
issue ‘No Primary Case’ predictions in 80% of modified transmission clusters in which 
the epidemiologically verified primary case was removed.
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