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Abstract 

Background:  Given the economic and environmental importance of allopolyploids 
and other species with highly duplicated genomes, there is a need for methods to 
distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.e. 
single copy sequences that pair at meiosis. The ratio of observed to expected heterozy-
gosity is an effective tool for filtering loci but requires genotyping to be performed 
first at a high computational cost, whereas counting the number of sequence tags 
detected per genotype is computationally quick but very ineffective in inbred or poly-
ploid populations. Therefore, new methods are needed for filtering paralogs.

Results:  We introduce a novel statistic, Hind/HE, that uses the probability that two 
reads sampled from a genotype will belong to different alleles, instead of observed 
heterozygosity. The expected value of Hind/HE is the same across all loci in a dataset, 
regardless of read depth or allele frequency. In contrast to methods based on observed 
heterozygosity, it can be estimated and used for filtering loci prior to genotype calling. 
In addition to filtering paralogs, it can be used to filter loci with null alleles or high 
overdispersion, and identify individuals with unexpected ploidy and hybrid status. We 
demonstrate that the statistic is useful at read depths as low as five to 10, well below 
the depth needed for accurate genotype calling in polyploid and outcrossing species.

Conclusions:  Our methodology for estimating Hind/HE across loci and individuals, as 
well as determining reasonable thresholds for filtering loci, is implemented in polyRAD 
v1.6, available at https://​github.​com/​lvcla​rk/​polyR​AD. In large sequencing datasets, we 
anticipate that the ability to filter markers and identify problematic individuals prior to 
genotype calling will save researchers considerable computational time.

Keywords:  Polyploidy, Single nucleotide polymorphism (SNP), Heterozygosity, Next 
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Background
Highly duplicated genome sequences are common throughout the plant kingdom. 
These include recent allopolyploids such as wheat, cotton, canola, strawberry, and cof-
fee, as well as species with evidence of ancient whole genome duplication such as maize 
and legumes [1]. This phenomenon is also present in the animal kingdom, for example 
allopolyploidy in the model frog Xenopus, as well as an ancient tetraploidization event 
followed by diploidization in salmonid fishes [2, 3]. For species in which paralogous 
sequences no longer pair at meiosis, accurate separation of paralogs in DNA and RNA 
sequence analysis, including reference genome assembly, remains challenging [4]. This 
separation of paralogs is especially important in variant calling, because SNPs and indels 
will not behave in a Mendelian fashion if the reads originate from more than one locus 
yet are erroneously attributed to a single locus [5]. Accurate variant calling therefore 
impacts all downstream analysis that assumes Mendelian inheritance, including linkage 
and QTL mapping, association studies, genomic selection, population genetics, and par-
entage analysis. For example, failure to remove paralogs from downstream analysis has 
been demonstrated to bias estimates of allele frequency and inbreeding as well as popu-
lation structure [4, 6–8].

Due in part to the difficulty of assembling highly duplicated reference genomes, sev-
eral methods have been published for filtering collapsed paralogous loci from genotyp-
ing-by-sequencing (GBS, including restriction-site associated DNA sequencing (RAD) 
approaches) datasets without the need for a reference genome. The most straight-
forward approach is to call genotypes and then determine if observed heterozygosity 
exceeds expected heterozygosity [9–11]. However, sampling error at low read depth can 
confound this filtering step by causing heterozygotes to be miscalled as homozygotes, 
lowering the observed heterozygosity. Moreover, estimating observed heterozygosity 
becomes complicated when polysomic inheritance is expected, due to the challenge of 
estimating allele copy number. Bayesian genotype calling methods mitigate the under-
estimation of observed heterozygosity, but at substantial computational cost [12–14]. 
Another approach is to filter loci that have read depth above an arbitrary threshold [15], 
although due to differences in amplification efficiency based on fragment size and GC 
content, this method could fail to filter some paralogs while filtering other non-paral-
ogous loci. Peterson et al. [16] developed a method, extended by Willis et al. [17], that 
involved counting the number of unique haplotypes per individual for a putative locus, 
with the idea that in a collapsed paralog, the number of haplotypes would exceed the 
ploidy. However, this method can be confounded by sequencing error and cross-con-
tamination among samples, and its sensitivity depends on allele frequencies, inbreed-
ing, and ploidy. Other approaches have examined read depth ratios within individual 
genotypes [18] as well as read depth ratios in combination with observed heterozygosity 
[19]. Lastly, multiple methods identify putative paralogs based on networks of similarity 
among sequence tags [6, 20].

We present a novel statistic, Hind/HE, for evaluating marker quality, in particular for 
assessing whether a marker represents one Mendelian locus or multiple collapsed par-
alogous loci, based upon read depth distribution in a population. For a Mendelian locus, 
the statistic has the same expected value regardless of number of alleles, allele frequency, 
and total read depth. As a result, the distribution of the statistic can be visualized across 
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loci in order to identify threshold values for filtering. The expected value can be calcu-
lated from ploidy (assuming disomic or polysomic inheritance) and the inbreeding coef-
ficient, or the mode value of the statistic in a population can be used to estimate ploidy 
or inbreeding. Notably, because genotype calls are not needed in order to estimate this 
statistic, it can be used for filtering loci before any genotype calling is performed, sav-
ing computation time. Technical parameters such as sequencing error and overdisper-
sion can influence estimates, but are explored here using simulated data so that they can 
be accounted for. We extend our Bayesian genotype calling software polyRAD [12] to 
implement the novel statistic and determine appropriate cutoffs.

Results
The Hind statistic

Here we describe a novel statistic, Hind, that is based on sequence read depth across all 
alleles at a given locus and sample, and is agnostic of genotype calls, inheritance mode, 
and ploidy. It is related to observed heterozygosity, HO, which in a diploid can be thought 
of as a matrix of ones and zeros indicating whether the genotype at each sample*locus is 
heterozygous. Hind is instead a number ranging from zero to one, indicating the probabil-
ity that if two sequencing reads were sampled without replacement at that sample*locus, 
they would represent different alleles. The abbreviation “ind” stands for “individual”, as 
it is calculated for each individual before averaging across a population. It can be calcu-
lated for SNP loci or for multiallelic haplotype- or tag-based loci, as long as allelic read 
depth is available.

The expected value for Hind in a natural population of diploids or polysomic polyploids 
is:

where k is the ploidy, HE is the expected heterozygosity at the same locus, and F is the 
inbreeding coefficient. HE is the probability that two alleles drawn at random from the 
population will be different, (1 – F) is the probability that two alleles randomly drawn 
from an individual will not be identical by descent, and (k – 1)/k is the probability that 
two sequencing reads originated from different chromosome copies. Multiplied together, 
these three terms yield the probability that two sequence reads from one sample at one 
locus will be different from each other.

If we divide Hind by HE:

we now have a statistic that is only dependent on ploidy and inbreeding, two parameters 
that we will assume to be consistent across samples and loci.

In a mapping population, the term HE * (1 – F) must be replaced by the probability, for 
a given locus, that two locus copies in a progeny will be different alleles. This requires 
knowledge of the ploidy, parental genotypes, and population design including number of 
generations of backcrossing and self-fertilization. This probability, which we will call HE.

map, can be estimated by simulation of the cross. The expectation is then:

(1)Hind =
k − 1

k
HE(1− F)

(2)Hind/HE =
k − 1

k
(1− F)
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Common factors that influence Hind/HE are listed in Table 1, and explored in subsequent 
sections.

Empirical estimation of Hind/HE

Say that we have sequence read depths, 
{

d1m . . . djm
}

 , across a set of j alleles at a sin-
gle locus in an individual m. Total read depth in one individual is

As long as there are two or more reads, we can estimate Hind within that individual 
using the Gini-Simpson index [21]:

For a population of n individuals with sequencing reads, allele frequencies are esti-
mated from average within-individual read depth ratios:

(3)Hind/HE.map =
k − 1

k

(4)Dm =

j
∑

i=1

dim

(5)Ĥind,m =



1−

j
�

i=1

�

dim

Dm

�2





Dm

Dm − 1

Table 1  Biological and technical parameters that influence the expected value and variance of 
Hind/HE

Parameter Effect

Ploidy Expected value increases with ploidy

Inbreeding (including population structure) Expected value decreases as inbreeding increases

Hybridization Value increases with increase in heterozygosity from hybridization 
across species or divergent populations

Paralogy Value increases if multiple loci are collapsed into one

Overdispersion Expected value decreases as read depth ratios deviate further from 
allelic dosage

Sequencing error Value is biased upward by sequencing error, especially at low minor 
allele frequencies

Null alleles (e.g., restriction site polymor-
phisms, deletions)

Expected value decreases with increasing null allele frequency

Minor allele frequency Variance decreases at increased minor allele frequency. Overdisper-
sion, sequencing error, or very low read depth in combination with 
low minor allele frequency bias the value upward

Sample size Variance decreases at increased sample size

Number of alleles Multiallelic loci have lower variance than biallelic SNPs

Read depth Low read depth loci tend to have low values due to the presence 
of null alleles. High read depth loci tend to have high values due to 
paralogy. Genome-wide increases in read depth (e.g., larger library 
size) reduce variance in the statistic, as well as reducing upward 
bias at low minor allele frequencies

Polyploid mapping populations Variance is lower at markers with higher heterozygosity in the 
progeny
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And expected heterozygosity is estimated as

Averaged across n individuals with two or more reads at a given locus in a natural 
population, the expectation is then:

In a mapping population, Ĥind,m is estimated in the same way. HE.map is estimated from 
parental genotypes and population design, and the expected average ratio within a locus 
is given in Eq. 3.

Utility of Hind/HE for detecting collapsed paralogs in a diversity panel

To compare the distribution of Hind/HE values for Mendelian loci versus collapsed para-
logs, we aligned Miscanthus sacchariflorus tag sequences to the M. sinensis reference 
genome, in which they should align to the correct paralog most of the time, and to the 
Sorghum bicolor reference genome, in which two paralogs from Miscanthus correspond 
to one alignment location. We found that loci with a mean read depth less than five had 
very low estimates of Hind/HE, likely due to restriction site polymorphisms or other tech-
nical issues (Fig. 1 and Additional file 1: Fig. S1). As mean read depth increased above 
100 in our dataset, however, loci tended to have Hind/HE values above the expectation for 
a Mendelian locus, suggesting that most loci at this depth and higher were in fact col-
lapsed paralogs (Fig. 1, and Additional file 1: Figs. S1 and S2).

When a mean depth of five was used as a cutoff and the M. sinensis genome was used 
as a reference, the peak Hind/HE value was slightly below the expected values of 0.5 for 
diploids and 0.75 for tetraploids (Fig. 2), indicating some inbreeding, likely due to popu-
lation structure [22]. A second peak was observed at a higher value of Hind/HE (Fig. 2), 
likely representing sets of tags that belonged to different Mendelian loci despite align-
ing to the same location (i.e., misalignments). When S. bicolor was used as the refer-
ence genome, the opposite trend was observed, where most loci had a Hind/HE above the 
expected value, indicating collapsed paralogs, but a second peak was observed closer to 
the expected value, indicating regions in the S. bicolor genome that may only have syn-
teny with one region of the M. sinensis genome (Fig. 2). Although the peaks overlapped 
somewhat, they were distinct enough that a reasonable threshold for identifying putative 
collapsed paralogs could be visually determined (Fig. 2). Moreover, although the diploid 
and tetraploid datasets were processed separately, they were largely in agreement about 
which loci were Mendelian and which were collapsed paralogs (Additional file  1: Fig. 
S2), suggesting that the filtering performed in one population can be applied to another 
population, which could be especially useful for populations that are too small for accu-
rate estimation of Hind/HE.

(6)p̂i =

∑n
m=1

dim
Dm

n

(7)ĤE = 1−

j
∑

i=1

p̂2i

(8)Ĥind/ĤE =

∑n
m=1 Ĥind,m/ĤE

n
∼=

k − 1

k
(1− F)
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In both the diploid and tetraploid datasets, the distribution and peak values of 
Hind/HE were similar regardless of whether biallelic SNPs or multiallelic, haplotype-
based markers were used (Additional file 1: Fig. S3). However, the variance of Hind/HE 
was approximately 20% higher when SNPs were used, suggesting that the higher infor-
mation content of multiallelic markers improves the precision of Hind/HE estimates.

Fig. 1  Relationship between Hind/HE statistic and mean sequence read depth per locus. Loci were called 
across 356 diploid and 268 tetraploid Miscanthus sacchariflorus based on alignments to the M. sinensis 
reference genome. The number of loci in each depth category is indicated. Additional file 1: Fig. S1 provides 
justification for the depth thresholds for categories. The expected value for a Mendelian locus in Hardy–
Weinberg equilibrium is shown with a dashed line

Fig. 2  Effect of reference genome and ploidy on Hind/HE per locus in Miscanthus sacchariflorus. Loci with a 
mean read depth below five were omitted, leaving 11,516 loci aligned to the M. sinensis reference and 8820 
loci aligned to the Sorghum bicolor reference. Expected values for Mendelian loci under Hardy–Weinberg 
equilibrium are shown with dashed lines
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The ExpectedHindHe function in polyRAD was used to set thresholds for filtering the 
diploid and tetraploid datasets. Based on results from the TestOverdispersion function, 
the overdispersion parameter was set to 11 for diploids and 10 for tetraploids. Based on 
the observed distribution of Hind/HE in the dataset, the inbreeding coefficient was set 
to 0.35 for diploids and 0.25 for tetraploids. Based on these parameters, as well as read 
depth and allele frequencies in the datasets, the ranges for retaining 95% of Mendelian 
loci were 0.175–0.584 in diploids and 0.356–0.716 in tetraploids as estimated by Expect-
edHindHe, resulting in 40.2% and 42.3% of loci being filtered, respectively (Table  2). 
Markers within genes were underrepresented among markers that were filtered for hav-
ing Hind/HE below the lower threshold, and overrepresented among markers that were 
filtered for having Hind/HE above the upper threshold, significant in Fisher’s Exact Test at 
P < 0.0005 (Table 2). Markers that were filtered having Hind/HE above the upper thresh-
old tended to have minor allele frequencies that were very low, consistent with the mark-
ers representing sequencing error rather than true alleles, or very high, consistent with 
the markers representing collapsed paralogs (Fig. 3).

By individual, Hind/HE reflects ploidy and hybrid status

In addition to evaluating the mean Hind/HE within loci, we also obtained the mean statis-
tic within individuals in order to assess the utility of the statistic for determining ploidy. 
We found that Hind/HE increased with ploidy, largely independent of read depth (Fig. 4). 
Although the distributions overlapped too much for Hind/HE to be a conclusive indica-
tor of ploidy, it could still potentially be used to identify outlier individuals whose ploidy 
should be confirmed by other means (e.g., flow cytometry). Additionally, because our 
empirical dataset included many natural interspecific (M. sacchariflorus × M. sinensis) 
F1 hybrid and backcross individuals, we were also able to observe that Hind/HE values 
were considerably higher in hybrids than in non-hybrids, reflecting higher heterozygo-
sity (Fig. 4).

Variance and bias in the Hind/HE statistic using simulated data

Using simulated data resembling a diversity panel or natural population, the mean 
Hind/HE estimate decreased as inbreeding increased, with diploid and tetraploid loci 
being indistinguishable at an inbreeding coefficient of 0.8 or higher (Fig. 5). Sequencing 
error had little effect on the estimate at a minor allele frequency of 0.05, but caused an 
inflated estimate at a minor allele frequency of 0.01, particularly as inbreeding increased 
(Fig. 5). Variance and bias in the statistic were minimized if there were at least 500 sam-
ples, minor allele frequency was 0.05 or higher, and read depth was at least 5 (Fig. 6). 

Table 2  Contingency tables of number of markers retained and filtered for being above or below 
Hind/HE thresholds in Miscanthus sacchariflorus, by whether or not the marker was within a gene

Diploids Tetraploids

In a gene Not in a gene In a gene Not in a gene

Filtered; too low 337 950 588 1727

Retained 2201 3654 2419 3500

Filtered; too high 1361 1287 1091 930
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Fig. 3  Filtering by Hind/HE vs. minor allele frequency in Miscanthus sacchariflorus. A dataset of 10,458 SNP loci 
was tested across 356 diploid and 268 tetraploid individuals. Blue dashed lines indicate filtering thresholds to 
retain 95% of Mendelian loci based on simulated distributions

Fig. 4  Relationship between ploidy, sequence read depth, hybrid ancestry, and Hind/HE among 620 M. 
sacchariflorus individuals. Ploidy and proportion of ancestry from M. sinensis (hybrid ancestry) were 
determined previously [22]. Read depth and Hind/HE were averaged across 10,000 loci. The expected value for 
Hind/HE under Hardy–Weinberg equilibrium is shown with the dashed line
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Ploidy had negligible impact on variance and bias (Fig. 6). Read depth and minor allele 
frequency influenced the estimates for collapsed paralogs, but not enough to interfere 
with distinguishing them from Mendelian markers (Fig. 6). As expected, overdispersion 
(deviation of read depth ratios from allelic dosage ratios) reduced the mean Hind/HE esti-
mate, with the effect of overdispersion being greater at higher minor allele frequencies 
(Additional file 1: Fig. S4). The Hind/HE estimate also decreased linearly as null allele fre-
quency increased (Additional file 1: Fig. S5).

In simulated F1 mapping populations, the standard deviation of the Hind/HE ranged 
from 0.012 to 0.076 depending on the marker type (Fig.  7). In tetraploids, marker 
types with high expected heterozygosity in the progeny, such as triplex × nulliplex and 
triplex × simplex, had lower variance in the estimate than marker types with lower 
expected heterozygosity in the progeny, such as simplex × nulliplex and simplex × sim-
plex (Fig. 7). A few rare markers had Hind/HE estimates that deviated very far from the 
expected value, indicating that the parents were incorrectly genotyped (Fig. 7).

Comparison with other approaches

To compare effectiveness at filtering paralogs between Hind/HE and other approaches, 
1000 Mendelian loci and 1000 collapsed paralogs were simulated in 200 diploid and 200 
tetraploid individuals at three levels of inbreeding. The median allele frequency was 
0.026 and median read depth per Mendelian locus was 21. For each statistic, the 95th 
percentile for Mendelian loci was determined, and the proportion of collapsed paral-
ogs that would be filtered at that threshold was estimated. The Hind/HE approach and 
observed over expected heterozygosity (HO/HE) performed best, with HO/HE having 
the disadvantage that genotyping must be performed before it can be estimated, thus 
increasing processing time two orders of magnitude over Hind/HE (Table 3). The Hind/HE 
thresholds used for filtering were 0.58, 0.41, and 0.17 in diploids and 0.76, 0.48, and 0.17 

Fig. 5  Combined effects of inbreeding, ploidy, minor allele frequency (MAF), and sequencing error on mean 
estimates of Hind/HE using simulated data. At each combination of parameters, 20,000 biallelic loci were 
simulated with a read depth of 20 and overdispersion parameter of 20. The x-axis indicates the inbreeding 
coefficient (the probability that two alleles in an individual are identical by descent) while the y-axis indicates 
the Hind/HE estimate
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Fig. 6  Effect of sample size, read depth, and minor allele frequency on variance and bias of estimates of 
Hind/HE. For each combination of ploidy, sample size (N), read depth, and minor allele frequency (MAF), 
5000 biallelic Mendelian loci were simulated under Hardy–Weinberg Equilibrium with an overdispersion 
parameter of 20 and sequencing error rate of 0.001. Additionally, 5000 collapsed paralogs, each consisting of 
two Mendelian loci, were simulated under each set of the same parameters. A Standard deviation of Hind/HE 
estimates. B Mean Hind/HE estimates. Expected values are 0.5 for diploids and 0.75 for tetraploids; deviations 
from these values indicate bias in estimation

Fig. 7  Distribution of Hind/HE estimates in simulated F1 mapping populations. For each cross type, 5000 
biallelic loci with a read depth of 20, overdispersion parameter of 20, and sequencing error rate of 0.001 were 
simulated across 500 individuals
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in tetraploids at inbreeding levels of 0.1, 0.5, and 0.9, respectively. The haplotype count-
ing approach [17] and allelic depth ratio Z-score approach [19] both performed reason-
ably well in diploids but were much less effective in tetraploids, with haplotype counting 
being useless in tetraploids at high inbreeding, while the Z-score approach addition-
ally suffered in terms of computational time due to the need for genotyping. However, 
haplotype counting used two- to threefold less computational time than Hind/HE, and 
thus could be advantageous in diploids when millions of loci are being processed. Lastly, 
filtering on read depth alone was not very effective given the variation in read depth 
among loci.

Discussion
Properties of the Hind/HE statistic

While Hind/HE can be used, in combination with other metrics, to assess locus quality, 
this should be performed with an understanding of what biological and technical phe-
nomena can cause it to deviate from the expected value. Inbreeding from any source 
will lower the expected value below (k – 1)/k, where k is the ploidy; this includes not only 
self-fertilization and preferential mating with relatives, but also population structure, 
which is why we observed values below (k – 1)/k even in self-incompatible, wind-pol-
linated M. sacchariflorus (Figs. 1, 2, 3, 4). A benefit of this, however, is that as long as 
ploidy is known and overdispersion can be reasonably estimated (e.g., with the TestO-
verdispersion function in polyRAD), Hind/HE can be used to estimate inbreeding, either 
at the population or individual level, directly from sequence read depth. Given that we 
observed Hind/HE to be inflated at low minor allele frequencies, we recommend using 
the mode Hind/HE at markers with minor allele frequency of at least 0.05 for estimat-
ing inbreeding. Additionally, individuals that are hybrids between species or between 
highly diverged populations, as well as DNA samples that are an accidental mix of two or 
more individuals, may have Hind/HE above the expected value (Fig. 4). Strong selection 
for homozygotes or heterozygotes at particular loci would be expected to lower and raise 
Hind/HE, respectively.

Table 3  Effectiveness of various statistics for identifying paralogs, using simulated data across three 
levels of inbreeding

Standard error is shown for proportion paralogs filtered

Statistic Ploidy Proportion paralogs filtered Median processing 
time (s/1000 loci)

F = 0.1 F = 0.5 F = 0.9

Hind/HE Diploid 0.988 ± 0.003 0.998 ± 0.001 1.000 ± 0.000 0.17

Tetraploid 0.905 ± 0.009 0.994 ± 0.002 1.000 ± 0.000 0.16

HO/HE Diploid 0.993 ± 0.003 0.989 ± 0.003 0.997 ± 0.002 17.90

Tetraploid 0.976 ± 0.005 0.935 ± 0.008 0.897 ± 0.010 50.42

Proportion individuals with 
more haplotypes than expected

Diploid 0.985 ± 0.004 0.982 ± 0.004 0.948 ± 0.007 0.07

Tetraploid 0.564 ± 0.016 0.163 ± 0.012 0.001 ± 0.001 0.05

Absolute value of Z-score for 
read depth ratio

Diploid 0.878 ± 0.010 0.888 ± 0.010 0.851 ± 0.011 18.00

Tetraploid 0.642 ± 0.015 0.542 ± 0.016 0.511 ± 0.016 52.15

Mean read depth Both 0.396 ± 0.015 0.00
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At the locus level, a Hind/HE that exceeds the expected value can be an indication 
that alleles are derived from paralogous loci rather than a true Mendelian locus. More 
broadly, if all alleles truly belong to a single locus, then the expected value is (1 – F)
(k – 1)/k. However, if a set of random, independent alleles were assigned to one putative 
locus, the expected value of Hind/HE would be one, because the probability of sampling 
reads from two different alleles within one individual would be the same as the prob-
ability of sampling reads from two different alleles in the general population. In the M. 
sacchariflorus dataset, markers within genes were overrepresented among markers that 
were filtered for having Hind/HE above the expected value, likely due to high sequence 
conservation between paralogs (Table 2). A Hind/HE of zero could indicate a cytoplasmic 
marker, because while there may be variation in the population, each individual would 
only be expected to possess reads from one allele. Loci with highly overdispersed read 
depth distributions due to technical issues such as differential fragment size or variation 
in library preparation would also be expected to have Hind/HE below expectations; it may 
be advantageous to filter these from the dataset as they will tend to yield poor-quality 
genotype calls. Lastly, loci with common null alleles have lower than expected Hind/HE 
(Additional file 1: Fig. S3), resulting in a tendency to filter loci that are not within genes 
as these regions are less conserved (Table  2). Null alleles can be the result of restric-
tion cut site polymorphism in RAD-based techniques, primer binding site mutations in 
amplicon sequencing, or deletion mutations using any genotyping method. Because they 
are a common problem, Hind/HE can be used to identify and filter loci with null alleles.

The expected value of Hind/HE is independent of read depth, number of individuals 
sampled, and the allele frequency. However, all of these factors influence the variance of 
the estimate, and low minor allele frequency especially can bias it upwards (Figs. 5, 6). As 
there is no generalized formula to estimate the variance of a ratio, the variance of Hind/HE 
cannot be estimated mathematically. Moreover, sequencing error inflates the estimate at 
low minor allele frequency (Fig. 5), and polyRAD cannot account for sequence quality 
scores or alignment quality scores since it only imports allelic read depth. We therefore 
recommend simulating data for Mendelian loci given the ploidy, inbreeding, sample size, 
sequencing error rate, and distribution of read depth and allele frequency observed in 
the dataset of interest. The distribution of Hind/HE across simulated loci then can be used 
to determine cutoff values for filtering loci in the empirical dataset. The ExpectedHindHe 
and ExpecteHindHeMapping functions are available in polyRAD for this purpose, and 
suggest cutoffs for filtering loci in order to retain 95% of Mendelian loci. Depending on 
the downstream application, we recommend considering the number of markers needed 
versus the importance of marker quality when determining thresholds for read depth, 
allele frequency, and Hind/HE.

Hind/HE is more useful for detecting paralogs when haplotypes are treated as alleles 
(i.e., loci can be multiallelic), as opposed to when all loci are treated as biallelic SNPs, 
simply due to the fact that multiallelic markers are more information-rich than bial-
lelic markers for the same distribution of minor allele frequencies. We observed that, 
for the same set of SNPs in M. sacchariflorus, the median value of Hind/HE per locus was 
very similar regardless of whether they were phased into haplotypes within the span of 
a single RAD tag, but the variance in Hind/HE was about 20% higher for SNPs vs. haplo-
types (Additional file 1: Fig. S3). This improved power and information content is why 
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polyRAD generally imports multiallelic, haplotype-based genotypes rather than SNPs as 
the default. Other methods for marker calling in highly duplicated genomes have also 
benefitted from the use of haplotype information [11, 23], and multiallelic markers have 
been found to be advantageous over biallelic SNPs for linkage mapping in polyploids 
[24]. It should be noted that in this study we only phased SNPs that were certain to have 
originated from the same sequencing reads based on physical linkage and read depth. 
The Hind/HE statistic cannot be estimated using haplotypes spanning longer distances, 
given that read depth will vary from locus to locus within haplotype.

Uses of the Hind/HE statistic

We anticipate locus-filtering to be the most common application of the Hind/HE statistic, 
with major advantages being that it is not biased by read depth or allele frequency and 
can be estimated prior to genotype calling. We demonstrate that it is similar to HO/HE 
in effectiveness for filtering paralogs, with substantial savings on computational time 
(Table 2). We should note that our HO/HE estimates used Bayesian genotype calls from 
polyRAD, which mitigate the underestimation of observed heterozygosity as compared 
to naïve genotype calls [12]. Stringency of filtering should depend on the genotype qual-
ity needed for downstream analysis; for example, parentage analysis and QTL mapping 
are sensitive to genotyping errors, whereas genome-wide association studies and esti-
mations of population structure from principal components analysis are less sensitive. 
Missing data rate, median read depth, and minor allele frequency are common crite-
ria that should be used in combination with Hind/HE to determine which loci to retain 
for downstream analysis. In our empirical dataset, we found the loci ranging in depth 
from five to 100 had the best distribution of Hind/HE (Fig.  1), but a higher minimum 
depth may be required for applications that require accurate genotype calling, and the 
optimal maximum depth used in filtering depends on the overall depth of the dataset. 
The use of observed heterozygosity, read depth ratios within genotypes, and number of 
haplotypes per individual are redundant with Hind/HE and unnecessary if it has already 
been used for filtering. In addition to its use for detecting paralogs in highly duplicated 
genomes, Hind/HE can be used for marker filtering in less duplicated genomes where 
occasional paralogs are still an issue. Additionally, in any species, markers with low val-
ues of Hind/HE (e.g., below the 95% confidence interval generated by simulated data) are 
likely to have null alleles, high overdispersion, or other technical issues and should gen-
erally be removed from the dataset. We found that using Hind/HE to filter our M. sac-
chariflorus dataset impacted minor allele frequency and proportion of markers in genes 
in ways consistent with the removal of markers with null alleles, collapsed paralogs, or 
false alleles due to sequencing error (Table 2 and Fig. 3).

Although less accurate for determining ploidy than techniques such as flow cytome-
try, when averaged within individuals, Hind/HE can be used to identify individuals whose 
ploidy might deviate from expectations and should be confirmed. If flow cytometry is 
not an option, several other tools exist for the estimation of ploidy directly from next-
generation sequencing data [25]. Lastly, Hind/HE could be potentially useful for improv-
ing reference genome assemblies, increasing the value of complementing a de novo 
assembly with a resequencing or genotyping-by-sequencing effort in a large population 
or diversity panel. Regions of the reference genome that contain collapsed paralogs are 
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expected to have inflated Hind/HE values, which could be visualized in a smoothed plot 
of Hind/HE versus alignment position.

At a minor allele frequency of 0.05, a read depth of five or higher is sufficient to esti-
mate Hind/HE with minimal variance (Fig. 6). It is notable that a read depth of five is too 
low to call genotypes with confidence, to some extent in diploids but especially in poly-
ploids. However, using the Hind/HE statistic, such low depth data are useful for a variety 
of applications such as identification of outlier individuals in terms of ploidy and hybrid-
ity, estimation of inbreeding, identification of loci with technical issues, and assessment 
of reference genome quality. This in turn can enable researchers to reduce sequencing 
costs by generating preliminary, low-depth datasets to evaluate these issues before (or 
instead of ) sequencing more deeply.

Conclusions
Here we introduce the Hind/HE statistic, which can be used for evaluating marker and 
sample quality in genotyping-by-sequencing datasets for a variety of downstream appli-
cations. We demonstrate that reads from paralogous loci cause the statistic to be above 
the expected value, whereas technical issues such as overdispersion and null alleles cause 
the statistic to be below the expected value. In typical datasets (hundreds of individuals, 
read depth above five) the statistic has sufficiently low variance to be useful for filtering 
loci. The polyRAD R package can estimate Hind/HE, suggest filtering cutoffs based on 
simulated data, and perform genotyping after filtering.

Materials and methods
Implementation in polyRAD

Functions for estimating Hind/HE and Hind/HE.map are available in polyRAD v1.2 and 
later, and are named HindHe and HindHeMapping, respectively. Both utilize an internal 
Rcpp function for fast calculation, take a RADdata object as input, and return a matrix 
of values, with samples in rows and loci in columns. The mean value across rows can 
then be used to get a per-sample estimate, for identifying individuals that are interspe-
cies hybrids or unexpected ploidies. The mean value across columns can be used to get 
a per-locus estimate for filtering loci. Additionally, polyRAD v1.5 and later includes the 
ExpectedHindHe and ExpectedHindHeMapping functions, which simulate data to emu-
late the sample size, allele frequency distribution or parental genotypes, and read depth 
distribution of an empirical dataset, and return the distribution of Hind/HE as if all loci 
were Mendelian, giving the user reasonable thresholds to use for filtering loci.

PolyRAD v1.6 is currently available on CRAN, and can be installed using install.
packages("polyRAD").

Datasets for testing

Two types of datasets were used to test Hind/HE: (1) empirical data from a diversity panel 
of Miscanthus sacchariflorus, and (2) simulated datasets of diversity panels and of bipa-
rental F1 mapping populations. Previously published RAD-seq data for an M. sacchari-
florus diversity panel [22] were used for the empirical tests. All species in the Miscanthus 
genus share an ancient genome duplication, increasing the chromosome number to 19 
from the base of 10 in the Andropogoneae tribe [26–28]. Moreover, some populations 
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of M. sacchariflorus display autotetraploidy in addition to this genome duplication 
(4x = 76) [22, 29], allowing us to test our algorithm in situations where tetrasomic inher-
itance is expected, in addition to the more typical disomic inheritance. Miscanthus is 
also highly heterozygous due to being wind-pollinated and self-incompatible [30], thus 
heterozygosity cannot be used to identify paralogs as easily as it could in an inbred crop 
species. Together, these factors make M. sacchariflorus an ideal test case.

To compare values of Hind/HE in putatively Mendelian markers versus collapsed paral-
ogs, markers were called from the same dataset using either Miscanthus sinensis or Sor-
ghum bicolor as a reference because M. sinensis has a whole genome duplication with 
respect to S. bicolor. Raw sequence reads from M. sacchariflorus were processed by the 
TASSEL-GBSv2 pipeline [31] to identify unique tag sequences and their depths in all 
individuals. Tag sequences were then aligned to the Miscanthus sinensis v7.1 reference 
genome [32] and the Sorghum bicolor v3.1.1 reference genome [33] using Bowtie 2 [34]. 
The tag manager feature of TagDigger [35] was used to process the SAM files, recording 
the alignment location of each tag in both reference genomes. Tag alignment locations 
within the S. bicolor reference were retained for further analysis if they corresponded 
to two alignment locations in the M. sinensis reference matching the known synteny 
between chromosomes. Under this filtering, 239,501 tags were retained at 18,402 S. 
bicolor alignment locations corresponding to 36,804 M. sinensis alignment locations, in 
a set of 356 diploid and 268 tetraploid individuals. Hind/HE was then estimated per-locus 
in polyRAD for both the M. sinensis and S. bicolor alignments.

To compare the variance of Hind/HE when biallelic SNPs were used versus multial-
lelic, haplotype-based markers, the TASSEL-GBSv2 pipeline was used to call SNP vari-
ants from M. sacchariflorus and export them to VCF. Markers from chromosome 1 were 
imported to polyRAD using VCF2RADdata, with and without the option to phase SNPs 
into haplotypes, yielding 3710 and 10,458 loci, respectively. The phasing performed by 
VCF2RADdata only phases SNPs that are certain to have originated from the same 
reads based on allelic read depth and physical distance. Hind/HE was then estimated by 
locus in polyRAD separately for diploids and tetraploids.

Simulated diversity panel datasets were generated in order to assess the effect of minor 
allele frequency, sample size, read depth, sequencing error, overdispersion, inbreeding, 
ploidy, and null alleles on variance and bias of the Hind/HE statistic, using the SimGeno-
types and SimAlleleDepth functions in polyRAD v1.6. See Clark et  al. [12] (Eq.  2) for 
a definition of the overdispersion parameter; lower values result in allelic read depths 
that deviate further from the ratios expected based on allelic dosage. Three sets of data 
were simulated. (1) Minor allele frequencies of 0.01, 0.05, and 0.1; sample sizes of 100, 
500, and 1000; and genotype read depths of 2, 5, 10, 20, 50, and 100 were simulated in 
all combinations under diploidy and tetraploidy, with no inbreeding, a sequencing error 
rate of 0.001, and an overdispersion parameter of 20. For each combination, 5000 bial-
lelic loci were simulated, as well as 5000 collapsed paralogs that each consisted of two 
Mendelian loci combined. (2) Minor allele frequencies of 0.01 and 0.05, overdispersion 
spanning all integers from 5 to 20, sequencing error rates of 0 and 0.001, and inbreeding 
(F; the probability that two locus copies in an individual are identical by descent) span-
ning all intervals of 0.1 from 0 to 1 were simulated in all combinations under diploidy 
and tetraploidy, with a sample size of 500 and a read depth of 20. For each combination, 
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20,000 biallelic loci were simulated. (3) Minor non-null allele frequencies of 0.01 and 
0.05 and null allele frequencies of 0.01, 0.05, 0.1, and 0.2 were simulated in all combi-
nations under diploidy and tetraploidy, with a sample size of 500, a read depth of 20, a 
sequencing error rate of 0.001, overdispersion of 20, and no inbreeding. For each combi-
nation, 5000 triallelic (with one allele being null, i.e. having all of its reads discarded) loci 
were simulated.

Simulated F1 mapping population datasets were generated in order to assess 
the effect of ploidy and marker type on variance of the Hind/HE statistic. For dip-
loids, testcross (homozygote × heterozygote) and F2 (heterozygote × heterozy-
gote) markers were evaluated. For tetraploids, simplex × nulliplex (AAAB × AAAA), 
duplex × nulliplex (AABB × AAAA), triplex × nulliplex (ABBB × AAAA), sim-
plex × simplex (AAAB × AAAB), simplex × duplex (AAAB × AABB), simplex × triplex 
(AAAB × ABBB), and duplex × duplex (AABB × AABB) markers were evaluated. For 
each marker type, 5000 biallelic markers were simulated in a population with 500 off-
spring, with a read depth of 20, a sequencing error rate of 0.001, and overdispersion 
parameter of 20.

To evaluate effectiveness of various approaches for filtering paralogs, 1000 Mendelian 
loci and 1000 collapsed paralogs were simulated in 200 diploid and 200 tetraploid indi-
viduals each at three levels of inbreeding. Number of alleles was evenly distributed from 
two to eight in Mendelian loci. Allele frequency was sampled from a gamma distribution 
with shape of 0.3 and scale of 1, divided by 10 and added to 0.01 to ensure a minimum 
minor allele frequency, given that allele frequency filtering is typically performed during 
variant calling and/or data import. One allele frequency at each locus was generated as 
one minus the sum of all other allele frequencies, to emulate the typical situation of one 
common allele and one or more rare alleles. Genotypes were simulated from the allele 
frequencies assuming an inbreeding coefficient (F) of 0.1, 0.5, or 0.9. Mean read depth 
per locus was drawn from a gamma distribution with a shape of 3.2 and scale of 8. Read 
depth at individual genotypes was then drawn from a gamma distribution with the locus 
depth/10 as the shape, and a scale of 10. Allelic read depth was simulated assuming an 
overdispersion parameter of 20 and a sequencing error rate of 0.001. Collapsed paralogs 
were simulated in the same way, but with number of alleles per locus ranging from one 
to eight, and two random loci being combined to form a collapsed paralog.

Comparison with other approaches

To call genotypes for the HO/HE and Z-score [19] approaches, the IterateHWE function 
in polyRAD was used with default parameters to obtain genotype probabilities, and then 
GetProbableGenotypes was used to get discrete genotypes, with genotypes set to missing 
if allele copy numbers did not add up to the ploidy. To extend its use to polyploids, HO was 
estimated as the probability that two alleles sampled from a genotype without replacement 
would be different from each other, averaged across individuals within a locus. The Z-score 
approach [19] was originally only defined for biallelic markers in diploids. To extend it for 
multiallelic markers and polyploid species, for each marker genotypes with ploidy – 1 cop-
ies of the most common allele (i.e., the heterozygous genotype class expected to be most 
common) were identified, and allelic read depth summed across those samples. Deviation 
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of read depth of the most common allele from the expected ratio was then estimated as a 
Z-score:

where N is the total read depth across all samples in the given heterozygous genotype 
class, and NA is the read depth of the common allele summed across those same sam-
ples. The number of haplotypes per genotype was counted as the number of haplotypes 
with read depth of three or higher, following Willis et al. [17].
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