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Background
Anti-cancer drugs have played important roles in cancer therapy in recent years. How-
ever, the occurrence of drug resistance limits the effectiveness of anti-cancer drugs [1]. 
It is essential to fully explore the cancer drug response (CDR) underlying comprehensive 
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biological systems.
Cancer drug response can be studied with cancer cell line models. Drug response on 

these models is quantitatively described by the half-maximal inhibitory concentration 
(IC50). The IC50 depicts the amount of drug needed to inhibit cancer cell growth by 
half. A smaller IC50 indicates that the drug is relatively more powerful. Comprehensive 
genetic and pharmacologic characterizations of cancer cell line models are collected by 
projects such as Cancer Cell Line Encyclopedia (CCLE) [2], Catalogue of Somatic Muta-
tions in Cancer (COSMIC) [3], and Genomics of Drug Sensitivity in Cancer (GDSC) [4]. 
Such data enable researchers to develop predictive machine learning models of anti-
cancer drug sensitivity [5–9]. These models consist of two parts that are responsible for 
encoding drugs and cell lines separately. Drugs are represented through one-hot encod-
ing using simplified molecular-input line-entry system (SMILES) data [7, 8]. Genomic 
mutations have been reported to have significantly different patterns across cell lines [4]. 
They are widely used as features of cancer cell lines, and are encoded by models such 
as multilayer perceptrons (MLP) [7] and convolutional neural networks (CNN) [8, 9]. 
However, drug resistance could not be fully discovered using these in vitro cancer cell 
lines. It has been revealed that tumors are highly heterogeneous [10], and tumor micro-
environments have essential influences on tumor progression [11–13]. Such heterogene-
ity and interaction could not be reflected with in vitro cancer cell lines only. Emerging 
single-cell data and clinical data show the potential to decipher complex tumor microen-
vironments and to unlock drug response [14–16]. Transferring knowledge studied from 
in vitro cancer cell lines to single-cell and clinical data is a promising avenue [14].

There are some limitations in current methods to be generalized to single-cell and 
clinical data. First, most existing methods include SNVs as features to improve the pre-
dictive ability on cancer cell lines. However, it has been revealed that calling SNVs relia-
bly from cancer samples cannot always be reached. High-frequency genomic aberrations 
and aneuploidy are common in cancers, and these variations reduce SNV detection 
efficiency [17]. Similarly, detecting reliable SNVs covering all hotspots simultaneously 
from single-cell data is unattainable. Both sequencing coverage and sequencing depth 
in single-cell data are too low to detect SNVs completely from the data [18, 19]. Second, 
current methods encode gene features as separate units. However, recent evidence from 
single-cell studies shows that the tumor microenvironment is a complex system [11]. 
Tumor cells interact with surrounding cells. Such interactions form a biological network, 
and the whole ecosystems contribute to drug response simultaneously [20–22]. These 
inspired us to develop new methods without using SNVs as features and considering 
cancer samples as systems with interactions between proteins.

In this paper, we propose a novel deep learning model called DualGCN. It consists of 
dual graph convolutional networks (GCN) [23] and takes drug structures and omics data 
as input to predict cancer drug response. One GCN module learns intrinsic chemical 
features of drugs. Nodes in this module represent atoms of drugs, and edges indicate 
connections between the atoms. Meanwhile, the other GCN module incorporates pro-
tein–protein interactions (PPI) and extracts the underlying biological features of cancer 
samples. Nodes in this module represent proteins, and edges indicate protein–protein 
interactions. In this study, we used gene expression and copy number variation as gene 
features. These features have been demonstrated to be vital to depict cancer cell types 
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in recent single-cell studies [24–28]. We conducted extensive experiments and dem-
onstrated that our method outperforms most state-of-the-art methods while avoiding 
the use of SNVs. In addition, we conducted a case study on clinical cancer patients with 
DualGCN and showed its potential to be extended to clinical and single-cell cancer 
samples.

Results and discussion
Overview of DualGCN

DualGCN takes chemical structure data of drugs and gene features of cancer samples as 
inputs and outputs drug response (IC50). The concept of DualGCN is shown in Fig. 1. 
The top panel of Fig. 1 is a GCN module (named drug-GCN below) used to encode the 
drug chemical structure. Nodes in this module represent atoms of drugs. Edges between 
nodes indicate connections between the atoms of drugs. Features of atoms are learned 
from the previous algorithm [29]. The bottom panel of Fig. 1 is another GCN module 
(named bio-GCN below) used to encode biological features of cancer samples. It is built 
on PPI networks and takes features of cancer-related genes as inputs. We used gene 
expression (Expr.) and copy number variation (CNV) as gene features in this study. These 
gene features were demonstrated to have important roles in decoding cancer cell types 
from recent studies [26–28]. Both GCN modules use ReLU as activation functions and 
adopt batch normalization [30] and dropout [31] strategies to improve model robust-
ness. Two embeddings from the drug-GCN module and the bio-GCN module are then 
concatenated together to be fed into a multilayer perceptron to study the response of the 
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Fig. 1  Overview of DualGCN. DualGCN takes chemical structure information of a drug and gene features 
of a cancer sample as inputs to the (1) drug-GCN module and (2) bio-GCN module, respectively. It outputs 
the response (IC50) of the given drug on the given cancer sample. (1) In the drug-GCN module, drug 
chemical structure data are first transformed using the previous algorithm [29]. The transformed features 
are considered as features of nodes (atoms). Edges between nodes represent connections between atoms 
of drugs. (2) The bio-GCN module is built based on PPI networks where nodes indicate cancer-related 
proteins (genes) and edges represent interactions between proteins. This module takes gene expression and 
copy number variation of cancer-related genes as inputs. Such gene features are considered as features of 
corresponding nodes. Embeddings from the two GCN modules are then concatenated and fed into MLP to 
study cancer drug response
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given drug on the given cancer sample. Detailed settings of the model can be found in 
Additional file 1: Table S1.

Assessment of methods

We evaluated the performance of DualGCN as well as baselines including support vec-
tor machine (SVM), random forest, Lasso regression, ridge regression, CDRscan [7], and 
DeepCDR [8]. The evaluation was conducted on 86,530 drug-cell line pairs. These data 
included 208 drugs and 525 cell lines covering 27 kinds of cancers. Data preparation 
and configurations of baselines are described in the “Methods” section. The evaluation 
was conducted with five-fold cross-validation (CV). We used evaluation metrics includ-
ing Pearson’s correlation coefficient, Spearman’s correlation coefficient, and root mean 
square error (RMSE).

DualGCN achieves strong predictive performance without the use of SNVs. It gained 
Pearson’s correlation = 0.925, Spearman’s correlation = 0.907, and RMSE = 1.079. It sig-
nificantly outperformed traditional methods, including SVM, random forest, Lasso 
regression, and ridge regression (Table 1). Detailed configurations and results of these 
methods can be found in Additional file  1: Table  S5, Additional file  1: Table  S6, and 
Additional file  1: Table  S7. In addition, we also compared DualGCN with deep learn-
ing models. DualGCN had consistent improvements over CDRscan among all evalua-
tion metrics. Improvements in Pearson’s correlation, Spearman’s correlation, and RMSE 
were 0.014, 0.013, and 0.094, respectively. DeepCDR gained higher predictive perfor-
mance than DualGCN. The differences in Pearson’s correlation, Spearman’s correlation, 
and RMSE were 0.003, 0.003, and 0.013, respectively. Such differences needed huge SNV 
information. DeepCDR contains several sub-networks encoding multi-omics data. We 
evaluated its performance without SNV by removing the corresponding sub-network 
and denoted it by DeepCDR (-). Pearson’s correlation, Spearman’s correlation, and RMSE 
of DeepCDR (-) dropped to 0.900, 0.877, and 1.265, respectively. DualGCN gained 
a large margin over it without tens of thousands of SNVs. Improvements in Pearson’s 
correlation, Spearman’s correlation, and RMSE are 0.025, 0.030, and 0.186, respectively. 
There are two major reasons SNV data should be treated with caution. First, different 
projects collected SNVs in different patterns and used different references (human ref-
erence genome or normal tissues) in SNV calling algorithms. Thus, SNVs might not be 
aligned across data from different sources. Second, studying drug responses on in vitro 

Table 1  Performance comparison

Method Pearson’s correlation Spearman’s correlation RMSE

SVM 0.336 ± 0.078 0.230 ± 0.071 3.115 ± 0.053

Random Forest 0.864 ± 0.001 0.839 ± 0.003 1.441 ± 0.008

Lasso 0.893 ± 0.002 0.873 ± 0.002 1.284 ± 0.007

Ridge 0.895 ± 0.002 0.875 ± 0.002 1.268 ± 0.007

DeepCDR (-) 0.900 ± 0.004 0.877 ± 0.004 1.265 ± 0.020

CDRscan 0.911 ± 0.002 0.894 ± 0.002 1.173 ± 0.011

DualGCN 0.925 ± 0.001 0.907 ± 0.002 1.079 ± 0.007

DeepCDR 0.928 ± 0.001 0.910 ± 0.001 1.066 ± 0.004



Page 5 of 13Ma et al. BMC Bioinformatics  2022, 23(Suppl 4):129	

cancer cell lines only cannot fully reveal the mechanisms of drug resistance. Transferring 
knowledge studied from in vitro cancer cell lines to single-cell and clinical data tends to 
be an important direction [14]. However, it is unreliable to call SNVs from clinical and 
single-cell tumor data covering all candidate loci [17–19]. In addition, recent evidence 
shows that whole tumors collectively act on drugs [12]. These studies gradually accumu-
late protein–protein interactions influencing cancer progression and drug response [13]. 
DeepCDR encodes different features of the same unit (gene) separately. It is difficult for 
such encoding systems to further include constantly discovered and important inter-
acting protein pairs. DualGCN encodes genes as basic units. It achieves strong predic-
tive performance without SNV data. Such advances indicate its potential to absorb new 
biological knowledge and to be generalized to studies on clinical data and at single-cell 
resolution.

DualGCN achieves high performance across different types of cancers consistently. 
Pearson’s correlation coefficients on different cancers ranged from 0.942 to 0.893 
(Fig.  2a). The highest and the lowest coefficients were obtained on lung squamous 
cell carcinoma (LUSC) and neuroblastoma (NB), respectively. Scatterplots of these 
two cases are shown in Fig. 2b and Fig. 2c. We also evaluated the performance across 
drugs. Pearson’s correlation coefficients for different drugs varied in a wide range 
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Fig. 2  Performance of DualGCN across cancers and drugs. a Pearson’s correlation on each type of cancer. 
We calculated the average Pearson’s correlation coefficients of samples belonging to each type of cancer 
and sorted the coefficients from large to small (from left to right in the figure). Blue dots indicate the 
mean of Pearson’s correlation across CVs and are denoted by r  . Vertical blue bars represent variances of 
Pearson’s correlation across CVs. n denotes average sample size across CVs. The largest and smallest Pearson’s 
correlation coefficients were obtained on lung squamous cell carcinoma (LUSC) and neuroblastoma 
(NB), respectively. b Scatterplot of correlations between true and predicted IC50 on LUSC. c Scatterplot of 
correlations between true and predicted IC50 on NB. d Pearson’s correlation on each drug. We calculated the 
average Pearson’s correlation coefficients of samples belonging to each drug and sorted the coefficients from 
large to small. The left ten in the figure are drugs with the best predictive performance, and the right ten are 
drugs with the worst predictive performance. Blue dots indicate the mean of Pearson’s correlation across CVs 
and are denoted by r  . Vertical blue bars represent variances of Pearson’s correlation across CVs. n denotes 
average sample size across CVs. The largest and smallest Pearson’s correlation coefficients were obtained on 
CAY10603 and cetuximab, respectively. e Scatterplot of correlations between true and predicted IC50 on 
CAY10603. f Scatterplot of correlations between true and predicted IC50 on cetuximab
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from 0.861 to 0.132 (Fig. 2d). The highest and the lowest coefficients were obtained 
on CAY10603 and cetuximab, respectively. Scatterplots of these two cases are shown 
in Fig. 2e, f. We performed principal component analysis (PCA) on SMILEs of drugs. 
We observed that latent representations of CAY10603 and cetuximab were close in 
low-dimensional space. This result indicates that the structures of these two drugs are 
similar, though the prediction performances on these two drugs were significantly dif-
ferent (Additional file 1: Figure S2). In addition, we found that the IC50 of cetuximab 
was much higher than that of other drugs. These findings indicate that drugs with low 
prediction performances may be affected by their isolation of IC50 from the overall 
distribution.

Ablation analysis

We conducted ablation studies to evaluate the effects of different gene features on 
DualGCN. We studied such effects by taking only one kind of features as the input. 
The results are shown in Table 2. CNV data contributed more than gene expression 
data to our model. In addition, simultaneously taking gene expression and CNV data 
gained higher predictive performance than single kind of features.

A case study on clinical cancer patients

We conducted a case study on clinical BRCA patients using the trained DualGCN 
model. Gene features and drug response annotations of patients were obtained from The 
Cancer Genome Atlas Program (TCGA) [32]. There is a noticeable difference in analyz-
ing drug response from in vitro cancer cell lines and clinical cancer data. Drug response 
annotations of clinical cancer data are qualitatively described as grades. In contrast, 
responses on cancer cell lines are quantitatively depicted by the IC50. We first binarized 
the clinical drug response annotations of patients into “sensitive” and “resistant”. Such 
binary labels were considered as ground truth. Then, we predicted the drug responses 
of patients and calculated the corresponding drug sensitivity score (DSS). A high DSS 
indicates sensitivity, and a low DSS indicates resistance. Detailed descriptions of anno-
tation transformation and definitions of the DSS are given in the “Methods” section. 
We set DSS on cancer samples as discrimination thresholds of the receiver operating 
characteristic (ROC) curve. We observed a modest consistency between the predicted 
drug responses and clinical annotations. The area of the curve (AUC) of the ROC curve 
was 0.661 (95% confidence interval: 0.558 to 0.765, shown in Additional file 1: Figure S3. 
Future studies may need to combine single-cell cancer data and cellular interactions to 
further decode cell-type composition and cancer drug resistance mechanisms.

Table 2  Ablation study on gene features

Pearson’s correlation Spearman’s correlation RMSE

Expr. 0.908 ± 0.005 0.887 ± 0.008 1.191 ± 0.031

CNV 0.911 ± 0.007 0.892 ± 0.007 1.172 ± 0.046

Expr. + CNV 0.925 ± 0.001 0.907 ± 0.002 1.079 ± 0.007
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Conclusions
Anti-cancer drugs have played important roles in cancer treatments. However, resist-
ance to anti-cancer drugs continues to be a serious challenge. Studying drug response 
on tumors is essential to improve the treatment of cancers and guide anti-cancer drug 
design. Cancer cell line models have been widely used for such research. However, 
tumors are heterogeneous and consist of different cell types and complex interactions. 
Studying in  vitro cancer cell lines only cannot fully decode the mechanisms of drug 
resistance. Emerging single-cell technologies are powerful toolkits to explore cell-type 
composition and cellular interactions in tumors. Transferring drug response knowledge 
obtained from cell line models to clinical and single-cell data is an important direction. 
Single nucleotide variants are widely used as features of cancer cell lines in current can-
cer drug response studies. However, detecting SNVs covering all candidate genomic loci 
from clinical tumor data is not always reliable, let alone from single-cell data. Such SNV-
based models are hard to extend to studies on clinical data and at single-cell resolution.

In this study, we developed a unified dual graph convolutional network model, Dual-
GCN, to predict cancer drug response. DualGCN encodes both drugs and cancer sam-
ples using graph convolutional networks with protein–protein interactions embedded. 
We demonstrated that DualGCN gained high predictive abilities without the use of 
SNV data. Such advances indicate its potential to be further extended to clinical and 
single-cell data. Meanwhile, recent single-cell tumor studies have constantly discovered 
important interactions in tumors. DualGCN sets genes as units of the encoding system 
with links across them. Such structures make it easy to absorb newly discovered protein 
interactions essential to tumor progression and drug resistance. We organized a case 
study on analyzing clinical cancer samples using knowledge learned from cell line mod-
els, and observed a modest consistency between the predicted drug responses and clini-
cal annotations.

In addition, we notice limitations of the proposed method. Units of the module encod-
ing cancer samples are genes. Thus, input features are at the gene level. Such structures 
provide a convenient interface to combine interacting protein pairs constantly discov-
ered from cancer research. However, other non-gene level signals, such as histone modi-
fications, are hard to encode into the module directly.

In summary, we introduce a method, DualGCN, that achieves high predictive abili-
ties on cancer drug response without using SNV data. The method could be extended to 
clinical and single-cell data and has the potential to promote the development of preci-
sion medicine.

Methods
Drug and cell line data preparation

Drug data were downloaded from the GDSC (version: GDSC1) [4]. We only kept drugs 
that were recorded in PubChem [33]. In addition, drugs sharing the same PubChem 
identifiers but owning different GDSC identifiers were also filtered out. Finally, we col-
lected 208 drugs. Detailed descriptions of these drugs can be found in Additional file 1: 
Table S2. We then transformed drug chemical structure data to obtain feature vectors 
of atoms of drugs using the previous algorithm [29]. Dimension of these feature vectors 
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was ld = 75 . It has been proved that these feature vectors reflect the intrinsic properties 
of drugs, such as atom type, atom connectivity, and degrees of freedom.

Gene features of cancer cell lines were downloaded from CCLE (version: 19Q2) [2]. 
We filtered out cell lines if (1) either gene expression or CNV data were unavailable, or 
(2) cancer type annotations were missed, or (3) the sample size of the corresponding 
cancer type was less than 10. Finally, we collected 525 cell lines covering 27 kinds of can-
cers. Detailed descriptions of these cell lines can be found in Additional file 1: Table S3. 
Gene expression data were represented as log2(TPM + 1) . CNV data were represented 
as log2(CN + 1) , where CN  represents the relative copy number. We then used z-score 
normalization on these gene features.

Cancer drug response data (IC50) were downloaded from GDSC (version: GDSC1) 
[4]. The IC50 describes the amount of drug needed to inhibit cancer cell growth by half. 
In GDSC, the IC50 is recorded in the scale of µM and is transformed with natural loga-
rithm. Finally, we collected 86,530 drug-cell line pairs.

Construction of drug‑GCN module

Drug-GCN module takes feature and adjacency matrix of drugs as inputs. It considers 
each drug as a graph where nodes represent atoms of the drug and edges indicate con-
nections between atoms. This module extracts intrinsic chemical attributes using the 
graph convolutional network algorithm [23]. Different drugs have different number of 
atoms (from 5 to 96 in this study), so the scales of these raw drug graphs Gd-raw vary. We 
first built a fixed-scale graph Gd , and then embedded the raw drug graph Gd-raw into it. 
Such operations ensure that the drug-GCN module is unified to all drugs. The number 
of nodes Nd of graph Gd is 100.

Mathematically, raw drug graph Gd-raw(i) =
(

Xd-raw(i),Ad-raw(i)

)

 is a sub-graph of the 
fixed-scale graph Gd(i) =

(

Xd(i),Ad(i)

)

 . Additional nodes in Gd(i) are filled with zeros,

where Xd(i) ∈ R
Nd×ld denotes the feature matrix of the fixed-scale graph Gd(i) . 

Ad(i) ∈ R
Nd×Nd denotes binary adjacency matrix of Gd(i) . Similarly, Xd-raw(i) ∈ R

Ni×ld 
and Ad-raw(i) ∈ R

Ni×Ni denote the feature matrix and adjacency matrix of Gd-raw(i) , 
respectively. Ni denotes the number of atoms of drug i . 0c1(i) , 0c2(i) , 0c3(i) , and 0c4(i) are 
zero matrices.

According to the GCN algorithm [23], we have,

where H (l)
d  is the output of layer l , and H (0)

d  is the initial feature matrix Xd . Ãd = Ad + Id 
is a modified adjacency matrix with self-connections. Id is an identity matrix. Diagonal 
matrix D̃d is a degree matrix of Ãd with D̃d[k , k] =

∑

m
Ãd[k ,m] . W (l)

d  represents weights 

of the layer l .
Detailed configurations of the drug-GCN module can be found in Additional file  1: 

Table S1.

Xd(i) =

(

Xd-raw(i)

0c1(i)

)

Ad(i) =

(

Ad-raw(i) 0c2(i)
0c3(i) 0c4(i)

)

(1)H
(l+1)

d = ReLU D̃
− 1

2

d ÃdD̃
− 1

2

d H
(l)
d W

(l)
d
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Construction of bio‑GCN module

Bio-GCN module takes the gene features of cancer samples as inputs. Gene expres-
sion and CNV data were used in this study. These gene features were first fed into 
a two-layer MLP and the latent features were considered as features of genes. The 
module considers each cancer sample as a graph where nodes are proteins (genes) 
and edges indicate interactions between proteins. Such protein–protein interac-
tion information was obtained from the STRING database (version 11.0, Taxonomy 
ID: 9606) [34]. Meanwhile, we only kept proteins that are known to be related to 
cancers. Such cancer-related proteins (genes) were collected from COSMIC [3] and 
TCGA [32]. We finally obtained 697 cancer-related genes (Table  S4 in Additional 
file 1) and 55,140 protein–protein interaction pairs among them.

Mathematically, the biological graph of cancer sample j is denoted by 
Gb(j) =

(

Xb(j),Ab(j)

)

 . Xb(j) ∈ R
Nb×lb and Ab(j) ∈ R

Nb×Nb denote the feature matrix 

and adjacency matrix, respectively. Nb denotes the number of nodes. lb denotes 
dimension of features of genes. Ab(j) is a symmetric binary matrix. 
Ab(j)[k ,m] = Ab(j)[m, k] = 1 if gene k and gene m have interactions in the PPI net-
work. Otherwise, Ab(j)[k ,m] = Ab(j)[m, k] = 0.

Then, the bio-GCN module uses graph convolutional network algorithms to extract 
intrinsic biological features of the cancer sample. The formula is as same as Eq.  (1). 
Detailed configurations of the bio-GCN module can be found in Additional file  1: 
Table S1.

Configurations of baselines

We compared DualGCN with six baselines, including DeepCDR [8], CDRscan [7], 
SVM, random forest, Lasso regression, and ridge regression. We additionally col-
lected SNV data from the CCLE because they were necessary when using some of 
the baselines. We finally collected 27,180 SNVs within the cancer-related genes. We 
encoded the SNV features as binary vectors with one denoting the occurrence of a 
mutation.

DeepCDR [8] encodes multi-omics data using CNN separately. Genomic features 
including SNVs, gene expression, and copy number variation were used. Besides, it 
encodes drug data using graph convolutional networks. Meanwhile, we also tested 
the performance of DeepCDR without using SNV data by removing the correspond-
ing CNN module. This modified version is denoted by DeepCDR (-). CDRscan [7] 
encodes SNVs using CNN. Besides, drugs are represented through one-hot encoding 
on SMILES data. SMILES is a string where characters represent atoms and connec-
tivity relationships. We obtained SMILES (isomeric type) of drugs through parsing 
related XML files from PubChem. In addition, we also tested SVM, random forest, 
Lasso regression, and ridge regression using SNVs as features of cell lines, and drugs 
were represented through one-hot encoding of SMILES. We applied kernels including 
radial basis function (RBF) kernel, polynomial kernel, and sigmoid kernel for SVM. 
We applied multiple number of trees (n = 50, 100, 200) for random forest. We set 
coefficient alpha = 0.01, 0.1, 0.5 for Lasso regression. We set coefficient alpha = 0.1, 
0.5, 1.0, 2.0 for ridge regression.
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Clinical cancer data preparation

We conducted a case study on clinical cancer patients using DualGCN. First, we curated 
data of patients whose drug response information was available in TCGA. Patients 
with breast invasive carcinoma (BRCA) owned the largest scale (195 records) and were 
included in this case study. Then, we downloaded the gene features of these cancer 
patients through Firehose Broad GDAC (http://​gdac.​broad​insti​tute.​org/). Gene expres-
sion data of patients were transformed as log2(TPM + 1) . CNV data were at segment-
level originally. We further transformed these segment-level CNV data into gene-level. 
There are K  segments overlapping some gene, and the length of each overlapped region 
is denoted by ls(s = 1, 2, . . . ,K ) . Length of the gene is denoted by L . The relative copy 
number ratio of each segment is denoted by cs(s = 1, 2, . . . ,K ) . We extracted the loca-
tions of genes from Ensembl (GRCh37) [35]. We transformed segment-level CNV data 
into gene-level and adopted logarithmic transformation using the following formula,

There is a noticeable difference in analyzing drug response from in vitro cancer cell 
lines and clinical cancer data. In clinical cancer data, drug response annotations are 
qualitative rather than quantitative. Drug responses are labeled as four types in TCGA: 
(1) complete response, (2) partial response, (3) clinical progressive disease, and (4) stable 
disease. We binarized such labels into “sensitive” and “resistant”. We considered drugs to 
be sensitive if annotations in TCGA were (1) complete response or (2) partial response. 
We considered drugs to be resistant if annotations were (3) clinical progressive disease 
or (4) stable disease. On the other hand, drug responses on cell lines are quantified 
by IC50. However, the range of IC50 of each drug is different (Figure S1 in Additional 
file 1). We thereby introduced a metric, drug sensitivity score (DSS), to transform drug 
responses into the same scale and to make responses comparable across drugs,

where MSC denotes max screening concentration of the drug. We collected MSC from 
the GDSC. I(·) is indicator function. If IC50 > MSC , I(IC50 > MSC) = 1 . This indi-
cates that the given drug is not sufficient to kill the cancer cells, and the DSS is smaller 
than 0. If IC50 < MSC , I(IC50 > MSC) = 0 . This indicates that the given drug has the 
potential to kill the cancer cells, and the DSS is larger than 0. The larger the DSS is, the 
more sensitive the drug is. Gene features and drug response annotations of clinical sam-
ples are given in Additional file 2: Table S8.

We predicted the IC50 of drugs on clinical cancer patients and calculated the DSS. We 
then adopted the ROC curve to analyze the consistency between our predictions and the 
binary clinical annotations obtained from the TCGA.

Abbreviations
SNV: Single nucleotide variant; CDR: Cancer drug response; IC50: Half-maximal inhibitory concentration; CCLE: Cancer 
Cell Line Encyclopedia; COSMIC: Catalogue of Somatic Mutations in Cancer; GDSC: Genomics of Drug Sensitivity in 
Cancer; SMILES: Simplified molecular-input line-entry system; MLP: Multilayer perceptron; CNN: Convolutional neural 
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