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Background
SNARE (Soluble N-ethylmaleimide sensitive factor Attachment protein Receptor) is a 
protein superfamily involved in the molecular trafficking between the different cellular 
compartments [1]. This protein family includes members from yeasts to mammalian 
cells, evolutionarily conserved. Vesicle-mediated transport is essential for basic cel-
lular processes, such as the secretion of proteins and hormones, the release of neuro-
transmitters, the phagocytosis of pathogens by the immune system and the transport 
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of molecules from one compartment of the cell to another.Vesicular transport involves 
membrane receptors responsible for the vescicles recognition, the activation of the 
membrane fusion and reorganization and the consequent release of the vesicular con-
tent in the extracellular space (exocytosis) or inside the cell (endocytosis). Specifically, 
SNARE complexes mediate membrane fusion during diffusion processes, providing 
bridging bond between SNARE proteins associated with both membranes [2].

SNARE proteins consist of motifs of 60–70 amino acids containing hydrophobic 
heptad repeats which form coiled-coil structures. The core of the SNARE complex is 
represented by 4 α helix bundle, as evidenced by the available crystallographic struc-
tures [3]. The center of the bundle contains 16 stacked layers which are all hydropho-
bic, except the central layer “0”, which is called ionic layer and which contains 3 highly 
conserved glutamines (Q) and a conserved arginine (R) residue (see Fig. 1).

SNARE proteins were initially divided into two categories: vesicle or v-SNARE, which 
are incorporated into the vesicle membranes, and target or t-SNARE, which are associ-
ated with the target membranes. A more recent subdivision is based on their structural 
characteristics by dividing them into R-SNARE and Q-SNARE. The R-SNARE proteins 
contain an arginine residue (R) which contributes to the formation of the complex while 
Q-SNARE proteins contain a glutamine residue (Q) and, according to their position in 
the bundle of four helices, they are classified in turn as Qa , Qb or Qc [4].

In recent years, attention to SNARE proteins has increased due to scientific studies 
which have shown the implication of SNAREs in some neural disorders for their cru-
cial role in the neuronal and neurosensory release at the level of synaptic endings [5]. 
The neurotransmitters release is a temporally and spatially regulated process and it 
occurs thousands of times per minute. In this context, SNARE complexes are contin-
uously subject to tightly regulated assembly and disassembly. Impairment at any stage 
of this release can lead to hypo or hyperactivity of neurotransmitter release causing 
dysfunctions which compromise the balance of synaptic communication. There are 
evidences that these substances seem to be involved in the course of neurodegenera-
tive diseases (such as Alzheimer and Parkinson), in neurodevelopment (autism) and 
in psychiatric disorders (such as bipolar disorder and schizophrenia as well as depres-
sion). Different studies have shown the involvement of mutated or not properly regu-
lated SNARE genes in the development of these disorders [6–11].

Nowadays the protein sequences collection is constantly growing. There is a need to 
have efficient classification systems able to define the functionality of a protein based 

Fig. 1  Visualization of the layers of the bundle of the fusion complex between the 4 parallel α-helices of the 
SNARE: 7 upstream layers (layers from − 1 to − 7) and 8 downstream layers (layers from + 1 to + 8) of the 
ionic layer (the layer 0) [4]
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on its chemical-physical properties and to label the sequence with greater precision. 
The more information we can gather about a certain protein, the better our ability 
to fit it into a more complex biological framework. This is evident and useful espe-
cially when considering a protein with an initially unknown function. The most used 
approach consists in evaluating whether there are functional motifs and domains 
in the protein which allow to characterize it starting from its amino acid sequence 
and evaluating its belonging to a protein family in which the members have similar 
three-dimensional structures, similar functions and significant sequence similarities. 
Knowledge of the protein family representatives is therefore necessary to define their 
role and their mechanisms in a specific physiological and pathological biological path. 
High-throughput sequencing techniques generate lots of big data belonging to dif-
ferent biological domains, including protein sequencing [12]. These huge amounts of 
data (up to petabytes) must be computationally analyzed with ever newer techniques 
for the identification of different genomic and protein regions. The current chal-
lenge is to contribute to this post-sequencing analysis and classification and to ensure 
greater precision in the available protein sequences discrimination.

The importance of the evolutionary SNAREs super-family is strictly connected to their 
role in different cellular functions and different pathological conditions [13, 14], which 
push researchers to deepen their recognition in the biological pathways.

Related works

Since SNARE proteins are involved in numerous biological processes, studies have 
slightly increased in recent decades in order to identify and classify these proteins but 
the papers dealing with this topic are still few. In the literature there are documents that 
are based on different techniques, ranging from statistical models to the use of convolu-
tional neural networks.

Kloepper  et al. [15] have implemented a web-based interface which allows the new 
sequences submission to the Hidden Markov Models (HMM) for the four main groups 
of the SNARE family, in order to classify SNARE proteins based on sequence alignment 
and reconstruction of the phylogenetic tree. For their study, a set of ∼150 SNARE pro-
teins is used in conjunction with the highly conserved motif which is the sequence pat-
tern signature representing the family of SNARE proteins. For SNARE proteins, this 
motif is an extended segment arranged in heptad repeats, a structural motif consisting 
of a seven-amino-acid repeating pattern. The extraction of HMM profiles, which allow 
to identify evolutionary changes in a set of correlated sequences, returns information 
on the occupancy and position-specific frequency of each amino acid in the alignment. 
Using this method, the authors are able to obtain a classification accuracy of at least 95% 
for nineteen of the twenty HMM profiles generated and to perform a cluster analysis 
based on functional subgroups.

Nguyen  et al. [16] have disclosed a model with two-dimensional convolutional net-
work and position-specific scoring matrix profiles for the SNARE proteins identification.
The authors used multiple hidden layers for their models, in particular 2D sub-layers 
such as zero padding, convolutional, max pooling and fully-connected layers with differ-
ent number of filters. Their model achieves a sensitivity of 76.6%, an accuracy of 89.7% 
and a specificity of 93.5%.
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More recently, in 2020, Guilin Li [17] has proposed an hybrid model which combines 
the random forest algorithm with the oversampling filter and 188D feature extraction 
method. His work proposes different combinations of feature extraction methods, filter-
ing methods and classification algorithms such as KNN, RF and AdaBoost for the clas-
sification of SNARE proteins. Since those results are shown only graphically, it is not 
possible to have a clear comparison with our results.

Methods
Dataset preparation

We have constructed two datasets, respectively named DUNI and D128. Both data-
sets were used for the evaluation of each classifier’s robustness in unbalanced and bal-
anced training environment, in order to avoid learning bias into classification training. 
In both datasets, SNARE proteins were downloaded from UNIPROT.1 For this purpose, 
we selected all the proteins with molecular function “SNAP receptor activity”, identi-
fied with the unique GENE Ontology [18] alphanumeric code GO: 0005484. The dataset 
DUNI consists of 276 SNAREs and 806 non-SNAREs. On this unbalanced dataset, we 
applied the subsampling and ovesampling techniques used in [17]. The balanced dataset 
D128 is composed of 64 SNARE from UNIPROT and 64 non-SNARE protein sequences 
downloaded from the PDB database.2

In order to create a balanced and non-redundant dataset and improve the dataset 
quality, all SNARE protein sequences in FASTA format have been processed with the 
CD-HIT (Cluster Database at High Identity with Tolerance)3 program which returns a 
set of non-redundant representative sequences in output. CD-HIT uses an incremen-
tal clustering algorithm. In the first analysis, it sorts the sequences in length descending 
order and creates the first cluster in which the longest sequence is the representative 
one. Then the sequences are compared with the clusters representatives. If the similarity 
with a representative is above a certain threshold, the sequence will be grouped in that 
cluster. Alternatively, a new cluster is created with that sequence as the representative 
[19]. The similarity threshold chosen was 25%. This step is very important, since it allows 
the removal of sequences which exceed the similarity threshold and that could invalidate 
the analysis causing unwanted bias. Sequence similarity is measured by the similar resi-
dues percentage between two sequences. The lower the sequence similarity, the greater 
the likelihood of having representative proteins in the dataset which consequently show 
no redundancy [20].

Feature extraction methods

In order to analyze the data deriving from protein sequences with ML techniques, a 
numerical representation is required for each amino acid in the protein. For this rea-
son, a series of numerical parameters are often used which act as chemical-physical 
and structural descriptors of proteins. The combination of a different set of carefully 

1  https://​www.​unipr​ot.​org/.
2  https://​www.​rcsb.​org/.
3  http://​weizh​ongli-​lab.​org/​cd-​hit/.

https://www.uniprot.org/
https://www.rcsb.org/
http://weizhongli-lab.org/cd-hit/
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chosen descriptors increases classification efficiency and allows predicting functional 
protein families [21].

So there are some feature extraction methods commonly used in machine learning. 
Identifying the right features for machine learning-based protein classification is one 
of the open issues in this field. The right features combination is important to ensure 
greater classifier model accuracy [22].

In the literature, over the years, many indices and features of amino acids have been 
identified for classification methods, such as amino acid composition (AAC), auto-
correlation functions [23] or pseudo amino acid composition (PseAAC) [24].

We chose the following four descriptors to compare our SNARER descriptors with 
those currently used in the SNARE proteins classification.

•	 GAAC (Grouped amino acid composition) groups the 20 amino acids into five 
groups based on their chemical-physical properties and calculates the frequency 
for each of the five groups in a protein sequence. Specifically, the five groups are 
the following: positive charge (K, R, H), negative charge (D, E), aromatic group (F, 
Y, W), aliphatic group (A, G, I, L, M, V) and uncharge (C, N, P, Q, S, T) [25].

•	 CTDT (Composition/Transition/Distribution) represents the amino acid composi-
tion patterns distribution of a specific chemical-physical or structural property in 
the protein sequence. The final T represents the transition between three types of 
patterns (neutral group, hydrophobic group and polar group) of which the per-
centage of occurrence frequency is calculated [25].

•	 CKSAAP are sequence-based features which, given a sequence, count all adjacent 
amino acid pairs, considering k-spaced amino acid pairs. Since there are 20 amino 
acids, for each value of k (from 0 to 5) there are 400 possible pairs of amino acids, 
for a total of 2400 features [26].

•	 188D features constitute a features vector of which the first 20 represent the fre-
quencies of each amino acid while eight types of chemical-physical properties 
(such as hydrophobicity, polarizability, polarity, surface tension, etc) allow us to 
calculate the remaining 168 features. In fact, for each type of property 21 features 
are extracted [27].

For our purpose, we have selected 24 descriptors, 19 of which come from AAindex, 
i.e., the Amino Acid index database [28]. They are extracted manually, on the basis 
of the chemical-physical, electrical and energy charge characteristics of the SNARE 
proteins, according to their principal biological information already known in the lit-
erature. We chose features that consider the propensity of individual amino acids to 
create helixes, sheets and coils. Since there is mainly an helix structure in the SNARE 
proteins, we opted to evaluate features related to this structure. Others features are 
related to solvent accessibility, to the ability to interact with the surrounding environ-
ment and energy effects of amino acid residues in SNARE proteins.

In this work, we opted to choose these subset of descriptors to assess their behavior 
in the presence of features that are already widely used in the literature. The other 
four descriptors (i.e., Steric parameter, polarizability, Volume, Isoelectric point, Helix 
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probability, Sheet probability and Hydrophobicity) are the amino acid parameter sets 
defined by Fauchere et al. [29]. They are all listed in Table 1.

We used iFeature [25] for feature extraction of GAAC, CKSAAP and CTDT and MSF-
Binder [30] for 188D.

Classification algorithms

The work of Guilin Li [17] is based on the descriptors GAAC, CTDT, 188D and CKSAAP 
and subsampling and oversampling methods. This study compared three machine learn-
ing algorithms, AdaBoost, K-Nearest Neighbor classifier and Random Forest to pre-
dict SNARE proteins. They achieve high accuracy in combination with all four feature 
extraction methods. In particular, the Random Forest algorithm with oversampling filter 
and 188D feature extraction approach had the best performance.

Following [17], given the high performances reported, we used the same three clas-
sification algorithms to evaluate how accuracy varies with the SNARER descriptors 
utilization. Thus, we have compared three different ML algorithms: AdaBoost (ADA) 
K-Nearest Neighbor classifier (KNN) and Random Forest (RF).

•	 AdaBoost is a machine learning meta-algorithm used in binary classification. Ada-
Boost is an adaptive algorithm which generates a model that is overall better than the 
single weak classifiers, adapting to the weak hypothesis accuracy and generating one 

Table 1  The SNARER descriptors

Code Description Source

ARGP820102 Signal sequence helical potential% AAindex [28]

CHAM830101 The Chou-Fasman parameter of the coil conformation

CHAM830107 A parameter of charge transfer capability

CHAM830108 A parameter of charge transfer donor capability

CHOP780204-
CHOP780206

Normalized frequency of N-terminal helix-non helical region

CHOP780205-
CHOP780207

Normalized frequency of C-terminal helix-non helical region

EISD860101 Solvation free energy

FAUJ880108 Localized electrical effect

FAUJ880111 Positive charge

FAUJ880112 Negative charge

GUYH850101 Partition energy

JANJ780101 Average accessible surface area

KRIW790101 Side chain interaction parameter

ZIMJ680102 Bulkiness

ONEK900102 Helix formation parameters (delta delta G)

Steric parameter Fauchere et al. [29]

Polarizability

Volume

Isoelectric point

Helix probability

Sheet probability

Hydrophobicity
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weighted majority hypothesis in which the weight of each weak hypothesis is a func-
tion dependent of its accuracy. At each iteration, a new weak classifier is sequentially 
added which corrects its predecessor until a final hypothesis with a low relative error 
is found [31].

•	 KNN is a supervised learning algorithm used for predictive classification and regres-
sion problems. The basis of the operation of this algorithm is to classify an object 
based on the similarity between the data, generally calculated by means of the Euclid-
ean distance. In this way the space is partitioned into regions according to the learn-
ing objects similarity. This algorithm identifies a collection of k objects in the training 
set that are the most similar to the test object. So, a parameter k, chosen arbitrarily, 
allows us to identify the number of nearest neighbors, considering the k minimum 
distances. The prevalence of a certain class in this neighborhood becomes a forecast 
in order to assign a label to the object [32].

•	 RF is a supervised learning algorithm that combines many decision trees into one 
model by aggregation through bagging. The final result of the RF is represented by 
the class returned by the largest number of decision trees. In particular, the random 
forest algorithm learns from a random sample of data and trains on random charac-
teristics subsets by splitting the nodes in each tree [33].

Training and validation sessions

All training sessions were conducted with Weka ML Platform (Waikato Environment for 
Knowledge Analysis), a software environment written in Java which allows the applica-
tion of machine learning and data mining algorithms [34]. In order to speed-up analysis, 
an ad-hoc grid, based on the map/reduce paradigm, were used to distribute the work 
across multiple slaves [35]. Both data sets were used as the input for the training step for 
AdaBoost, KNN and RF classifiers. There were only two possible output classes: SNARE/ 
NON SNARE. Then, for each training session, we used the following cross-validation 
values: the range between 10 to 100 for k-fold and between 20 to 80% for hold out. As 
a result, the ratio of the samples in training and validation set is variable. Moreover, in 
addition to other parameters configured as in [17], we set k = 1 and Euclidean distance 
for the distanceFunction of KNN; for the AdaBoost algorithm, default values are 
weightThreshold = 100 and numIterations = 10, whilst for RF numItera-
tions = 100.

The complete working set was composed of four logical parts: i) DUNI non-filtered; 
ii) DUNI oversampled; iii) DUNI subsampled; iv) D128 non-filtered. For each training 
session, we generated 10 k-fold variants and 7 hold out variants. Then, for each variant 
we computed 100 training sessions of each of the three classifiers for each of the four 
descriptors. Thus, we distributed up to 836.000 training sessions among the distributed 
computing environment.

Performance measurement

We evaluated the ML models (Random Forest, AdaBoost and KNN) on the unbalanced 
dataset DUNI and on the balanced dataset D128. In order to estimate the prediction 
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performance of the three ML algorithms, accuracy (ACC), sensitivity (SN) and specific-
ity (SP) were used. The chosen metrics are described in the equations below:

where TP, TN, FP and FN represent the number of true positives, true negatives, false 
positives and false negatives, respectively. Sensitivity is the percentage of positive enti-
ties correctly identified. Specificity measures the proportion of negative entities that are 
correctly identified.

In a biological sense, having a TP in our experiment means finding that a protein cata-
loged as a SNARE is recognized by the classifier as a SNARE.

The feature extraction methods were initially evaluated separately (GAAC, CKSAAP, 
CTDT and 188D) on the datasets D128 and DUNI, and subsequently these methods 
were extended with the SNARER descriptors addition disclosed in this work, here iden-
tified as extended classes “ext”.

Results and discussion
We used the SNARER descriptors and the three chosen ML algorithms on the unbal-
anced dataset DUNI and on the balanced dataset D128.

We have first considered four feature sets (GAAC, CTDT, CSKAAP and 188D) sepa-
rately and then each one in combination with the SNARER descriptors class, identified 
with “.ext”. The classification performances were evaluated with three metrics: average 
accuracy (ACC), average sensibility (SN) and average specificity (SP).

Results on the unbalanced dataset DUNI

Below, we have reported the experimental results conducted on the DUNI dataset. 
Related to the four protein feature extraction methods GAAC, CTDT, CKSAAP and 
188D, the average ACCs for the ML algorithms are included in a range between 76 
and 94.9%. In Fig. 2, histograms are used for the graphical comparison of the three ML 
techniques.

As shown in Table 2, the introduction of the SNARER class brings a strong improve-
ment in combination with all the considered protein feature extraction methods. Over-
all, the best average accuracy is achieved with the KNN model and with the 188D feature 
set and the SNARER class combination. This combined model achieves also the best 
average SP while the best average SN is obtained with the RF model trained using both 
GAAC and CTDT features separately (see Table 3).

(1)Accuracy =
TP + TN

TN + FP + FN + TP

(2)Sensitivity =
TP

TP + FN

(3)Specificity =
TN

TN + FP
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For RF, SN decreases imperceptibly in the extended classes with the new descriptors, 
remaining unchanged for the CKSAAP method. In contrast, for RF, SP increases with 
the extended classes, notably especially for the GAAC and CTDT extraction methods.

The SN of KNN increases significantly in the extended classes referred to GAAC 
and CTDT and remains substantially unchanged for CKSAAP and 188D. The same 
trend is also shown for the SP of KNN, with a slight improvement of the extended 
188D class. For the AdaBoost algorithm, we observe an increase in SN, mostly for the 
extended GAAC and CTDT classes, which however show a decrease in SP. The SP 

Fig. 2  Comparison between GAAC, CTDT, CKSAAP and 188 D ACC with related extended classes with 
SNARER (on DUNI dataset)

Table 2  Performance of average ACC on the DUNI dataset

The highest values are shown in bold

Accuracy

RF KNN (%) ADA (%)

GAAC​ 76.1 85.1 77.9

GAAC.ext 90.4 91 86.1
CTDT 76.1 83.1 76.7

CTDT.ext 91.5 92.6 81.6
CKSAAP 91.1 90.04 83.7

CKSAAP.ext 91.7 90.02 87.4
188D 93.9 94.8 88.1

188D.ext 94.1 94.9 88.7
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ADA, instead, increases for the extended classes CKSAAP and 188D. Overall, on the 
unbalanced dataset the use of extended classes with our SNARER descriptors results 
in an improvement in accuracy for the GAAC, CTDT, CKSAAP and 188D classes of 
all three ML models, except for KNN trained with CKSAAP. All selected ML algo-
rithms achieve SN greater than 83%, with the best SN of 99.8% RF achieved by GAAC 
and CTDT without extension.

By introducing the SNARER class for all four feature sets, the SN settles in a range 
between 91.1% of the ADA algorithm with the CTDT class and 98% of the KNN algo-
rithm with the extended CKSAAP class. Regarding the SP, without the SNARER’s 
descriptor extension, the range extends from a minimum of 7% of RF and KNN algo-
rithms for the GAAC class to a maximum of 89.5% of KNN trained with the 188D fea-
ture set. With the SNARER class addition, an SN of 54% of ADA with CTDT feature set 
is obtained at a maximum of 90.1% of KNN trained on the dataset with 188D feature set. 
More specifically, the KNN model using the 188D extended class with SNARER descrip-
tors, achieves better performance in all metrics except for SN, where the RF model 
trained with the GAAC features obtains the highest value.

Table 3  Performance for average SN and SP on the DUNI dataset

The highest values are shown in bold

Sensitivity Specificity

RF KNN (%) ADA (%) RF (%) KNN (%) ADA (%)

GAAC​ 99.8 90.3 83.6 7 7 61
GAAC.ext 97.2 94.5 94.8 70.7 80.6 60.6

CTDT 99.8 89.1 83.3 7.1 65.6 57.6
CTDT.ext 96.6 94.6 91.1 76.4 87 54

CKSAAP 97.8 98 89.9 71.7 66.7 65.5

CKSAAP.ext 97.8 98 92 74 66.7 74
188D 97 96.6 92 85 89.5 76.7

188D.ext 96.8 96.5 92.4 86.3 90.1 78

Table 4  Performance of the average ACC on the DUNI dataset with oversampling and subsampling

The highest values are shown in bold

Oversampling Subsampling

RF KNN (%) ADA (%) RF (%) KNN (%) ADA (%)

GAAC​ 94.7 96.3 73.12 75.2 79.2 72.6

GAAC.ext 98.03 98.44 85.02 91.8 86.4 82.6
CTDT 93.9 96.1 70.4 74.6 78.1 71.7

CTDT.ext 98 98 86.3 90.6 89.7 86.4
CKSAAP 99.07 98.67 84 93.1 84.4 83.5

CKSAAP.ext 99.01 98.6 89.1 79 84.2 87.3
188D 98.5 98.90 89.5 93.1 95 86.6

188D.ext 98.5 98.95 89.6 93.5 94 89.3
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In conclusion, on the unbalanced DUNI dataset, the new SNARER descriptors class 
guarantees an improvement in terms of ACC in combination with all four tested features 
sets and a clear improvement of SN and SP of some ML tested algorithms.

Table 5  Performance for average SN and SP on the DUNI dataset with oversampling

The highest values are shown in bold

Sensitivity Specificity

RF (%) KNN (%) ADA (%) RF (%) KNN (%) ADA (%)

GAAC​ 91.9 95 74.9 97.5 97.6 71.3

GAAC.ext 96.6 97.8 88.4 99.4 99.1 81.6
CTDT 88.9 94 68.8 98.8 98.2 72

CTDT.ext 96.4 96.9 78.4 99.5 99.2 94.3
CKSAAP 99 99.2 80.8 99.2 98.2 87.2

CKSAAP.ext 98.7 99.1 86.2 99.3 98.2 92
188D 97.5 98.3 90.2 99.7 99.5 88.8

188D.ext 97.7 98.3 89.4 99.3 99.7 89.9

Table 6  Performance for average SN and SP on the DUNI dataset with subsampling

The highest values are shown in bold

Sensitivity Specificity

RF (%) KNN (%) ADA (%) RF (%) KNN (%) ADA (%)

GAAC​ 75.7 76.1 73.6 74.6 82.2 71.7

GAAC.ext 88.8 85.5 80.8 94.9 87.3 84.4
CTDT 78.3 76.4 73.9 71 79.7 69.6

CTDT.ext 86.6 88.4 81.9 94.6 90.9 90.9
CKSAAP 90.9 98.6 83.3 95.3 70.3 83.7

CKSAAP.ext 76.4 98.2 83.7 81.5 70.3 90.9
188D 90.9 95.3 88 95.3 94.6 85.1

188D.ext 92 93.1 88.8 94.9 94.9 89.9

Table 7  Performance of average ACC for the D128 dataset

The highest values are shown in bold

Accuracy

RF (%) KNN (%) ADA (%)

GAAC​ 71.1 64.2 70

GAAC.ext 84 65.4 84
CTDT 73.4 66.4 70.3

CTDT.ext 88 68.7 84.1
CKSAAP 92.2 72.4 80.7

CKSAAP.ext 92.3 74.1 89.4
188D 95.4 90 90.2
188D.ext 95.3 88.6 90
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Results on the unbalanced dataset DUNI with oversampling and with subsampling

Because the dataset DUNI is unbalanced, we have adopted subsampling and oversam-
pling techniques.

With the oversampling technique on the DUNI dataset, the SNARER class produces 
a strong improvement in accuracy, more for the extended GAAC and CTDT classes 
for the three ML models RF, KNN and ADA, while the contribution to the CKSAPP 
and 188D feature sets remains substantially unchanged (as shown in Table  4). The 
same behavior is common to the average SN and average SP calculated for RF, KNN 
and ADA (see Table  5). Applying the subsampling technique to the DUNI dataset, 
we observe the same trend for SN but with a slight decrease, around 2% -4%, of the 
values when considering the extended classes CKSAAP and 188D. The same decrease 
value is also present for the average SPs of the same classes (see Table 6).

Results on the balanced dataset D128

Below we present the obtained classification results on the balanced dataset D128, with 
and without the addition of the SNARER descriptors. Table 7 reports the average accu-
racy performances of the ML algorithms without considering the SNARER descriptors 
in the balanced D128 dataset. In addition, histograms are depicted graphically in Fig. 3: 
RF varies from a minimum of 71.1% with the use of the GAAC class to a maximum of 
95.4% with the 188D class; KNN settles between a minimum of 64.2% with the use of 
GAAC to a maximum of 90% with the 188D class; ADA varies from a minimum of 70% 
with GAAC to a maximum of 90.2% trained on the 188D class. Extended classes with 

Fig. 3  Comparison between GAAC, CTDT, CKSAAP and 188D ACC with related extended classes with SNARE 
(on D128 dataset)
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SNARER descriptors shift these average ACC rates. In particular, RF varies from a mini-
mum of 84% using the extension with GAAC to a maximum of 95.3% with the 188D 
class. KNN starts from a minimum of 65.4% with the extended GAAC class and reaches 
a maximum of 88.6% with the extended 188D class. ADA varies in a range between 84% 
with the GAAC.ext class to a maximum of 90% with the combined class 188D.

By comparing the evaluated average ACCs, the SNARER class addition improves the 
classification performance in relation to the GAAC, CKSAAP and CTDT feature extrac-
tion methods while there is a slight decrease in the average ACCs for the 188D feature 
extraction class. Further analysis should be conducted to understand the reason for this 
decrease. In particular, the best classification results are obtained with the RF algorithm.

With the extended feature extraction methods, we can note that for the RF algo-
rithm SN increases with GAAC and CTDT while it remains fundamentally unchanged 
for the other two descriptor classes (see Table 8). Also SP increases showing the same 
behavior. For the KNN algorithm, SN decreases for the GAAC and CTDT classes by 
3% and 1% for the 188D class while it increases by 2% for the CKSAAP class. The SP 
of KNN instead increases for all classes except 188D, with a decrease of about 2%. 
ADA improves in terms of SN on all extended classes while it decreases in SP by 0.8% 
when applied on the extended class 188D.

Comparison between the DUNI and the D128 datasets

Carrying out experiments on unbalanced datasets or balanced datasets affects the 
automatic learning of the different ML algorithms. In fact, it has been observed that 
when tests are performed on an unbalanced dataset, greater accuracy is achieved 
since the classification of each test sample towards the majority class prevails [36]. 
Consequently, choosing a balanced dataset for training tests can lead to a higher qual-
ity of classification predictions. In the case of binary classifications, the coefficient of 
correlation between the true class and the expected class can be calculated, dealing 
with them as two binary variables. Since the ACC calculation is sensitive to the imbal-
ance class in order to compare the DUNI and D128 datasets, following the SNARER 
descriptors introduction, we have used the Matthews Correlation Coefficient (MCC) 
[37]. In this context, we started from the hypothesis that the proportion of correct 

Table 8  Performance for average SN and SP on the D128 dataset

The highest values are shown in bold

Sensitivity Specificity

RF (%) KNN (%) ADA (%) RF (%) KNN (%) ADA (%)

GAAC​ 80.1 65.7 74.5 62.2 63 65.4

GAAC.ext 84 62.2 88.6 83.9 69 79.2
CTDT 74.7 70.4 70 72.2 62.3 70.5

CTDT.ext 87.6 64.7 84.7 88.3 73 83.4
CKSAAP 89.7 55.4 80.2 95 89.4 81.3

CKSAAP.ext 90.1 57 89.5 95 91.2 89.4
188D 95.7 89 88.5 95.1 91 92
188D.ext 95.5 88 88.8 95.1 89.2 91.2
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predictions (accuracy) are not useful when the two classes have different sizes. In this 
case the use of MCC is useful. It represents a quality measure also in cases where the 
datasets have different sizes. MCC varies in the range [−1; 1] . When the MCC value is 
1, it indicates a perfect forecast. If it returns a value of -1 it represents a perfect nega-
tive correlation while 0 means that the classifier returns only a forecast no better than 
a random one. So, MCC considers all four values in the confusion matrix (TP, TN, FP 
and FN) and a high value (around 1) indicates that both classes are adequately cov-
ered, even if one is disproportionately under (or over) represented.

In Table  9, we presented the comparison between the MCC metrics for RF, KNN 
and ADA trained on the DUNI and D128 datasets with the extended descriptors 
classes.

The MCC (see Fig.  4) of RF improves on the balanced dataset, except for a 
decrease with the GAAC discriminant features and for no change on the CTDT 
class. The MCC of KNN is lowered for all combined descriptors, significantly for 
GAAC, CTDT and CKSAAP. In contrast, ADA’s MCC is significantly improved in all 
four conditions. As a result, we can see how the values of MCC reflect the quality of 
the classifier input data. Only if the classifier successfully predicted the majority of 
positive data instances and the majority of negative data instances, MCC can gener-
ate a high score. In the presence of DUNI, which is a negatively imbalanced dataset, 
we have high values in terms of ACC, SN and SP compared to the balanced dataset 
(see Tables 2, 3, 7, 8). Since it ignores the proportion of positive and negative items, 
accuracy can produce misleading values for unbalanced datasets [38]. In Table 9, we 
showed how many MCC values are greater when we evaluate the algorithms on a 
balanced dataset with no positive and negative samples imbalance. In some circum-
stances, MCC values remain constant, owing to the classifier’s ability to produce 
accurate predictions regardless of the ratio between classes. The MCC is lower in 
the case of the KNN algorithm, which reflects the worst performance measured by 
other measures.

(4)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 9  Comparison of MCC for the DUNI and D128 datasets

The highest values are shown in bold

Matthews correlation coefficient

Dataset MCC RF MCC KNN MCC ADA

GAAC.ext DUNI 0.74 0.76 0.61

D128 0.69 0.32 0.70
CTDT.ext DUNI 0.77 0.81 0.49

D128 0.77 0.39 0.70
CKSAAP.ext DUNI 0.77 0.73 0.69

D128 0.86 0.53 0.80
188D.ext DUNI 0.84 0.87 0.70

D128 0.91 0.81 0.81
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Area under the receiver operating characteristic (AUC) and Area under the precision-
recall curve (AUPRC) were used to assess the performance of the various folds of the 
conducted experiments. AUC is a metric for evaluating the quality of a classification 

Fig. 4  Graphic visualization of MCC for RF, KNN and ADA algorithms
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algorithm that is used in various applications. As a summary measure of the Receiver 
operating characteristic (ROC) curve, the AUC is widely utilized. It is a value between 
0 and 1, which considers the area under the curve of the plot of SN versus 1-SP across 
thresholds. It represents the probability that the model will rate a random positive case 
higher than a random negative example. AUPRC is the area under the curve of the 
plot of precision versus SN across thresholds. For imbalanced data, this area is more 
informative than the AUC and it is thought to be a good measure in order to evaluate the 

Table 10  Average AUC and AUPRC on the DUNI dataset

The highest values are shown in bold

AUC​ AUPRC

RF KNN ADA RF KNN ADA

GAAC​ 0.84 0.81 0.78 0.93 0.89 0.89

GAAC.ext 0.97 0.88 0.93 0.99 0.93 0.97
CTDT 0.84 0.79 0.79 0.94 0.88 0.89

CTDT.ext 0.97 0.91 0.90 0.99 0.95 0.96
CKSAAP 0.98 0.84 0.89 0.99 0.90 0.96

CKSAAP.ext 0.98 0.84 0.93 0.99 0.90 0.97
188D 0.98 0.94 0.94 0.99 0.96 0.98

188D.ext 0.98 0.94 0.95 0.99 0.96 0.98

Table 11  Average AUC and AUPRC on the D128 dataset

The highest values are shown in bold

AUC​ AUPRC

RF KNN ADA RF KNN ADA

GAAC​ 0.76 0.64 0.75 0.76 0.61 0.74

GAAC.ext 0.91 0.66 0.92 0.92 0.62 0.92
CTDT 0.82 0.66 0.77 0.84 0.62 0.78

CTDT.ext 0.94 0.69 0.93 0.95 0.65 0.94
CKSAAP 0.97 0.72 0.90 0.98 0.70 0.91

CKSAAP.ext 0.97 0.74 0.96 0.98 0.72 0.96
188D 0.99 0.90 0.97 0.99 0.87 0.97

188D.ext 0.99 0.89 0.97 0.99 0.85 0.97

Table 12  Comparison with reference literature

The highest values are shown in bold

Authors Methods ACC​ SP SN

Kloepper et al. HMM 95% – –

Nguyen et al. 2D-CNN 89.7% 93.5% 76.6%

Guilin Li 188D-RF-oversample 90–95% 95–100% 75–80%

Our methods Dataset D128
(highest value) RF-188D.ext 95.3% 95.1% 95.5%

(best value) RF-CKSAAP.ext 92.3% 95% 90.1%
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performance of a classifier. AUPRC varies from 0 to 1. In general, a classifier with a high 
AUC and AUPRC values performs better the given classification task. In Tables 10 and 
11, we reported the average values of Area under the receiver operating characteristic 
(AUC) and Area under the precision-recall curve (AUPRC) for DUNI and D128 data-
sets, respectively. On the DUNI and D128 datasets, we can observe that the AUC and 
AUPRC values for the extended classes are higher. In particular, it is more evident for 
the balanced dataset D128, pointing out the importance of class balance. Furthermore, 
these results reflect what was previously seen, regarding the failure to improve the 188D 
extended class.Area under the receiver operating characteristic (AUC) and Area under 
the precision-recall curve (AUPRC) were used to assess the performance of the various 
folds of the conducted experiments. AUC is a metric for evaluating the quality of a clas-
sification algorithm that is used in various applications. As a summary measure of the 
Receiver operating characteristic (ROC) curve, the AUC is widely utilized. It is a value 
between 0 and 1, which considers the area under the curve of the plot of SN versus 1-SP 
across thresholds. It represents the probability that the model will rate a random posi-
tive case higher than a random negative example. AUPRC is the area under the curve of 
the plot of precision versus SN across thresholds. For imbalanced data, this area is more 
informative than the AUC and it is thought to be a good measure in order to evaluate the 
performance of a classifier. AUPRC varies from 0 to 1. In general, a classifier with a high 
AUC and AUPRC values performs better the given classification task. In Tables 10 and 
11, we reported the average values of Area under the receiver operating characteristic 
(AUC) and Area under the precision-recall curve (AUPRC) for DUNI and D128 data-
sets, respectively. On the DUNI and D128 datasets, we can observe that the AUC and 
AUPRC values for the extended classes are higher. In particular, it is more evident for 
the balanced dataset D128, pointing out the importance of class balance. Furthermore, 
these results reflect what was previously seen, regarding the failure to improve the 188D 
extended class.

Comparison with the state of the art

In Table 12, we presented the comparison between the proposed method and the lit-
erature. The method by [15] is based on Hidden Markov Models (HMM), sequence 
alignment and phylogenetic tree reconstruction in order to classify SNARE proteins. 
Nguyen et al. [16] used a model with 2D-CNN and position-specific scoring matrix 
profiles, while the study of Guilin Li [17] has suggested a hybrid model that incor-
porates the random forest algorithm, the oversampling filter and the 188D feature 
extraction approach. As we can see in Table 7, by comparing the use of all extended 
classes with non extended descriptors, our best result is the combination of SNARER 
descriptors with CKSAAP feature on the dataset D128 with 92.3% of accuracy, 90.1% 
for sensitivity and 95% for specificity with the RF. On the other hand, when we consid-
ered the results achieved on the balanced D128 dataset with the use of our SNARER 
descriptors, our highest performance is achieved by the RF algorithm in combination 
with the 188D features.

188D features include the 20 characteristics about frequencies of each amino acid and 
168 features based on using eight types of chemical-physical properties. These features 
probably strengthen the biological properties of the proteins, allowing to reach high 
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levels of the tested classification algorithms. Further studies are needed to understand 
the intrinsic reasons for the improvement or decay of some parameters when using 
188D features.

Conclusion
In recent decades, following the exponential increase in data from gene sequencing, it 
has become necessary to explore different ML techniques for the protein identification, 
in support of traditional methods [39]. Recent studies on SNARE proteins have shown 
that their complexes are spoken in the release of neurotransmitters and that their dys-
function is the basis of neurodegenerative, neural developmental and neuropsychiatric 
disorders. The importance of recognizing them with increasingly precision has a sig-
nificant biological impact for identifying the aforementioned pathological conditions 
[40]. The aim of classifying these proteins allows researchers to understand the biolog-
ical pathways in which they are involved and by increasing their knowledge, they can 
improve the possible therapeutic approach.

In this work, we tested different feature extraction methods on a balanced and an 
unbalanced dataset, with and without the new contribution of SNARER descriptors 
addition, in order to examine the role of balanced and unbalanced training in the classifi-
cation of SNARE binary proteins. Consequently, we compared the behavior of three ML 
algorithms (RF, KNN and ADA) on the homogeneous and non-homogeneous datasets.

The ML models were evaluated calculating the ACC, SN and SP average values. Our 
results showed that the performance of the ML algorithms, with the extension of the 
SNARER descriptors to the feature sets used, improved on both datasets in terms of 
average ACC. This improvement is greater for RF, KNN and ADA algorithms with the 
combination of SNARER descriptors to the 188D class. In particular, our best results on 
the balanced and non-redundant dataset D128 are 92.3% of ACC, 90.1% for SN and 95% 
for SP with the RF algorithm and with the extended class CKSAAP.ext. By evaluating the 
MCC for RF, KNN and ADA on both datasets trained with extended feature sets, the 
ADA algorithm benefited from better performance applied on the balanced dataset. On 
the contrary, KNN has worsened in terms of performance, reaching a higher value only 
for the 188D class. Specifically, the algorithms trained on the balanced dataset produce a 
better MCC, especially for RF and more for ADA, which recovers both in terms of ACC, 
SP and SN in all the considered tests. KNN, on the contrary, appears to have lower per-
formance in terms of MCC compared to the other algorithms considered.

As future work, it is possible to extend the analysis to also identify the SNARE proteins 
sub-categories based on their structural features, Q-SNAREs and R-SNAREs. Further-
more, it would be useful to explore the use of different classes of descriptors, also com-
bined with each other, which can guarantee a better classification of the proteins under 
examination.
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FP: False positive; GAAC​: Grouped amino acid composition; KNN: K-nearest neighbors; MCC: Matthews correlation coef-
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