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Abstract 

Background:  Chronic cough affects approximately 10% of adults. The lack of ICD 
codes for chronic cough makes it challenging to apply supervised learning methods to 
predict the characteristics of chronic cough patients, thereby requiring the identifica-
tion of chronic cough patients by other mechanisms. We developed a deep clustering 
algorithm with auto-encoder embedding (DCAE) to identify clusters of chronic cough 
patients based on data from a large cohort of 264,146 patients from the Electronic 
Medical Records (EMR) system. We constructed features using the diagnosis within the 
EMR, then built a clustering-oriented loss function directly on embedded features of 
the deep autoencoder to jointly perform feature refinement and cluster assignment. 
Lastly, we performed statistical analysis on the identified clusters to characterize the 
chronic cough patients compared to the non-chronic cough patients.

Results:  The experimental results show that the DCAE model generated three chronic 
cough clusters and one non-chronic cough patient cluster. We found various diag-
noses, medications, and lab tests highly associated with chronic cough patients by 
comparing the chronic cough cluster with the non-chronic cough cluster. Comparison 
of chronic cough clusters demonstrated that certain combinations of medications and 
diagnoses characterize some chronic cough clusters.

Conclusions:  To the best of our knowledge, this study is the first to test the potential 
of unsupervised deep learning methods for chronic cough investigation, which also 
shows a great advantage over existing algorithms for patient data clustering.
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Introduction
Chronic cough (CC), or cough lasting more than 8 weeks, affects approximately 10% 
of adults and is a common outpatient complaint. Affected individuals can cough hun-
dreds or even thousands of times per day [1], seriously impairing their quality of life [2]. 
Common causes of CC include postnasal drip (upper airway cough syndrome), asthma, 
gastroesophageal reflux disease (GERD), infection of the respiratory system, chronic 
obstructive pulmonary disease (COPD), and angiotensin-converting enzyme (ACE) 
inhibitors [3]. Chronic cough can cause a variety of health problems such as sleep dis-
ruption, headache, and dizziness [4]. Chronic cough is often treated empirically, target-
ing common cause(s). Given the multi-factorial etiology of CC, many individuals with 
CC do not respond to treatment [5], highlighting the need to identify such individuals 
for both prospective and retrospective studies. Unlike other diseases, there is no ICD 
diagnosis code for CC, greatly increasing the difficulty of identifying and analyzing 
patients with this chronic disease.

Machine learning methods have been extensively used to analyze EMR data to pre-
dict and classify disease states [6, 7], model disease progression [8, 9], recommend inter-
ventions [8, 10], and predict future risks [11]. Most of this prior research has employed 
supervised learning algorithms, commonly using diagnosis codes as labels. But certain 
diseases, such as CC, do not have a corresponding ICD code. While annotating and labe-
ling can be performed through chart review, such review is costly and time-consuming 
given the large numbers necessary to train machine learning algorithms.

One potential solution is to employ unsupervised clustering analysis to uncover sub-
groups within clinical data [12]. Unsupervised learning requires no labels and targets 
to find structure within the data so that it can discover the hidden patterns in data or 
learn features towards the pattern discovery. This study continues previously conducted 
by Weiner et al. [13], which identified cough and CC patients using a rule-based algo-
rithm. We apply deep learning-based unsupervised learning algorithm—deep clustering 
with the auto-encoder embedding (DCAE) on the data to identify clusters within the 
cough patient population and investigate characteristics of clusters dominated by CC 
patients. The results show that the deep learning-based algorithms have superior perfor-
mance than the traditional k-means algorithm. The statistical analysis shows that unsu-
pervised learning discovers some diagnoses and medications linking to chronic cough 
that match what has been discussed in the literature. To the best of our knowledge, this 
study is the first to test the potential of unsupervised deep learning methods for chronic 
cough investigation, which also shows a great advantage over the existing algorithms for 
patient data clustering.

Study cohort
Using EMRs of a large statewide academic health system and a public county hospital, 
we constructed two cohorts: (1) patients with CC and (2) patients with a cough who did 
not meet the CC criteria. We extracted patients with cough aged 18–85 years with at 
least one outpatient visit between 10-01-2005 and 09-30-2015.

The CC [13] cases are defined as a patient who met the following two criteria: (1) at 
least three instances of cough on at least three separate visits within a 120-day window, 
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which is the study period; (2) first and last instances of cough were required to span 
at least 8  weeks within the study period. The non-chronic cough patients presumably 
had an acute or subacute cough but did not meet the chronic cough criteria. In total, 
we identified 25,881 chronic cough (CC) patients and 238,265 non-chronic cough (Non-
CC) patients from the EMR. Table 1 provides the demographic summary of the cohorts. 
Among these patients, 15,285 chronic cough patients had matched diagnoses, medi-
cations, and lab test data. So, we randomly selected the same number from the non-
chronic cough patients with these structured data for the analysis. There is a total of 
30,570 patients in the analysis cohort.

Results
Generating clusters using both non‑CC and CC data

We first applied the deep clustering algorithm with auto-encoder embedding (DCAE) 
algorithm to generate clusters by using both Non-CC and CC data. The compared meth-
ods include: (1) K-means Clustering: In order to fairly compare with other methods, we 
firstly apply the PCA algorithm to reduce the dimensionality of the original data to 256, 
then use the K-means algorithm for clustering. (2) Hierarchical agglomerative clustering 
(HC): The hierarchical agglomerative clustering algorithm introduced in [14]. (3) Con-
sensus clustering (CC): The consensus clustering algorithm introduced in [15]. (4) Deep 
AutoEncoders (DAE): Utilized the Deep AutoEncoder for feature extraction followed 
by the K-means algorithm for clustering. (5) Deep Clustering (DC): A variant of DCAE 
which overlooks the reconstruction loss. We used two metrics, namely Purity score [16] 
and Silhouette Value [17], to compare the performance of different clustering methods. 
Here, the Silhouette coefficient is a widely used metric for evaluating clustering results 
ranging from − 1 to 1 with 1 being the best. Purity Score indicates the extent of the gen-
erated clusters that are dominated by one category (CC or Non-CC) with 1 being the 
best.

Figure 1 shows that, (1) The deep clustering-based methods (i.e., DC, DCAE) consist-
ently work better than the K-means, HC, CC and DAE methods in terms of Silhouette 
value and Purity score. The reason being that the DC method is an end-to-end cluster-
ing framework that can learn specific features that are useful for the clustering task, and 
the tSNE plots [18] shown in Fig.  2 could also demonstrate the advantage of the DC 

Table 1  Summary of the overall cohort

Category Non-CC (N = 238,265) CC (N = 25,881)

Age Mean (SD) 45.29 (17.81) 54.7 (16.35)

Gender Male 91,768 (38.52%) 8985 (34.72%)

Female 146,491 (61.48%) 16,896 (65.28%)

Unknown 6

Race Black 48,864 (20.51%) 4674 (18.06%)

Other 43,606 (18.3%) 1144 (4.42%)

White 145,795 (61.19%) 20,063 (77.52%)

Urbanicity Rural 21,181 (9.34%) 2848 (12.13%)

Urban 205,484 (90.66%) 20,635 (87.87%)

Unknown 11,600 2398
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and DCAE methods for separating cough patients into different clusters. (2) DCAE can 
achieve superior Purity scores than DC due to the consideration of the local structure 
of the data. These results indicate that another advantage of our DCAE algorithm is 
that it could more effectively separate CC patients from Non-CC patients than the DC 
algorithm.

Fig. 1  The purity and silhouette values of different methods, where the number of clusters k are varied from 
{2, 5, 9, 13, 17, 21}

Fig. 2  Visualization of the clustering results by tSNE [18]. Different colors represent different clusters. CC and 
Non-CC clusters correspond to CC and Non-CC patient dominant clusters
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Finally, we also found that the number of CC dominated clusters (which means over 
50% of the instances in a cluster are CC) are more than Non-CC dominated clusters 
(shown in Table 2). One possible reason is that the CC patients may have more subtypes 
in comparison with the Non-CC patients, and our DCAE has the potential to stratify CC 
patients into different phenotypes that can benefit their personalized treatment design.

Influence of the parameters in DCAE model

Our DCAE model (shown in Eq. (2)) uses the parameter α to balance the importance of 
the clustering and reconstruction loss. In this section, the influence of α in the DCAE 
workflow is discussed. Here, we fixed the cluster number as 21 and the results are shown 
in Fig. 3, where α varies in the range [0,1] with interval 0.1. As can be seen from Fig. 3, 
for both the purity and Silhouette values, most inner intervals of the curve have larger 
values (i.e., better clustering performance) than the leftmost and rightmost vertices, 
which indicate the effectiveness of combining both clustering and reconstruction loss 
for identifying cough patients’ phenotypes. Moreover, the higher performance (when 
α equals 0.3) implies each loss function in the DCAE model has its contribution for 
achieving good clustering performance.

Analysis of the non‑CC versus CC clusters

By applying the DCAE algorithm, we identified four clusters with high purity val-
ues from the results when the number of clusters is set to 21. Three of them are CC 
clusters (shown in Table  3). Among these three CC clusters, CC-1 is the largest with 
4658 CC instances. The other two CC clusters, named CC-2, CC-3, respectively, are 
relatively small, with 1737 and 154 instances. The percentages of CC instances in three 
CC clusters are 83.8%, 73.8%, and 70.0%, respectively. The non-CC cluster has 73.1% 

Table 2  The number of CC dominated clusters (nCCD) for our DCAE method

Cluster number K = 5 K = 9 K = 13 K = 17 K = 21

nCCD 3 7 11 14 18

Fig. 3  The influence of the parameter α in the DCAE model
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non-CC instances. We compared the CC instances in the CC clusters against the Non-
CC instances within the Non-CC cluster using categorized diagnosis, medication, and 
lab tests of interest, such as blood count, sputum culture, Arterial Blood Gas Test (ABG), 
by categorizing them based on Phecode, internal medication, and lab test categorization, 
and the results are listed in Table 3. The values in Table 3 show the percentage of patients 
who have the corresponding diagnosis, medication, or lab tests. Comparing the CC clus-
ters against the Non-CC cluster, we found that about 90% of the patients in the CC clus-
ters have respiratory diagnoses, whereas 23.32% of patients in the Non-CC cluster have 
respiratory diagnoses, reflecting the nature of the CC disease since it is linked to differ-
ent respiratory issues. We also found that more than 55% of patients in the CC clusters 
have either circulatory system diseases or endocrine disorders, whereas less than 20% of 
patients in the Non-CC cluster have either of these two diagnoses.

In addition, all three CC clusters have a higher percentage of symptom diagnosis than 
the Non-CC cluster, which is 27.29%. The diagnosis category symptoms include symp-
toms, signs, abnormal results of clinical or other investigative procedures, and ill-defined 
conditions regarding which no diagnosis classifiable elsewhere is recorded. Specifically, 
the symptoms include ‘R05 cough’ and ‘R06.0 Dyspnea’, related to CC. Except for CC-3 
(46.1%), CC-1 and CC-2 have more than 50% of the patients having symptom diagnoses. 
In addition, over or close to 50% of the patients in CC-1 and CC-2 have mental disor-
ders. The smallest cluster (CC-3) also has 36.36% of patients having mental disorders as 
a diagnosis. Only 11.88% of patients in the Non-CC have mental disorder diagnoses.

From the medication aspect, more than 50% of the patients in the CC clusters were 
prescribed antiasthmatic and bronchodilator medications, whereas only 12.8% of Non-
CC patients in the analysis cohort were prescribed these medications in this category. 
About 40% of the patients in the CC clusters take corticosteroids, whereas only 12.05% 

Table 3    Univariate analysis of the categorized diagnosis, medication, and lab data of the non-CC 
and CC clusters

The p values for the comparison are bracketed in the last column. Only < .0001 was listed in the last column if all p values 
were < .0001

Non-CC (N = 8588) CC-1 (N = 4658) CC-2 (N = 1737) CC-3 (N = 154) p value

Diagnosis

Respiratory 2003 (23.32%) 4300 (92.31%) 1593 (91.71%) 140 (90.91%) < .0001

Endocrine metabolic 1268 (14.76%) 3514 (75.44%) 1026 (59.07%) 88 (57.14%) < .0001

Circulatory system 1687 (19.64%) 3735 (80.18%) 1110 (63.9%) 91 (59.09%) < .0001

Mental disorder 1020 (11.88%) 3133 (67.26%) 857 (49.34%) 56 (36.36%) < .0001

Neurological 805 (9.37%) 2381 (51.12%) 579 (33.33%) 38 (24.68%) < .0001

Digestive 1419 (16.52%) 2889 (62.02%) 767 (44.16%) 60 (38.96%) < .0001

Symptoms 2344 (27.29%) 3335 (71.6%) 943 (54.29%) 71 (46.1%) < .0001

Hematopoietic 336 (3.91%) 2353 (50.52%) 484 (27.86%) 20 (12.99%) < .0001

Medication

Antiasthmatic broncho-
dilator

1099 (12.8%) 2777 (59.62%) 898 (51.7%) 79 (51.3%) < .0001

Minerals electrolytes 1164 (13.55%) 2791 (59.92%) 704 (40.53%) 52 (33.77%) < .0001

Corticosteroids 1035 (12.05%) 2529 (54.29%) 728 (41.91%) 61 (39.61%) < .0001

Ulcer drugs 1714 (19.96%) 2789 (59.88%) 769 (44.27%) 55 (35.71%) < .0001

Lab

Blood count 3437 (40.02%) 4078 (87.55%) 1287 (74.09%) 105 (68.18%) < .0001
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of the Non-CC patients take this type of medication. These three types of drugs are often 
used to treat patients with CC [19–21], chronic nonproductive cough [22], or CC due to 
asthma [23]. There are 59.88%, 44.27%, 35.71% patients in cluster CC-1, CC-2, and CC-3 
taking ulcer drugs, whereas only about 19.96% of the patients in the Non-CC cluster tak-
ing ulcer drugs. In addition, 68.18–87.55% of patients in the CC clusters have had blood 
count lab testing, whereas only about 40.02% of the patients in the Non-CC cluster had 
blood count lab testing.

Given that CC is mainly a type of respiratory disease and the percentage of respira-
tory diagnoses of each CC cluster is over 90%, and there is no specific ICD code for CC, 
we further analyzed the significance of each diagnosis under this respiratory category to 
investigate whether some of the diagnoses are more used for or related to CC. Table 4 
shows the respiratory category diagnoses with a significant difference (p value < 0.0001) 
between the Non-CC and CC clusters. We only listed the diagnoses that have over 10% 
of CC patients in any CC cluster to demonstrate the significance of those diagnoses on 
CC patients. Over 50% of patients in the CC cluster have a diagnosis of ‘Cough’, whereas 
only 3.76% of the patients in the Non-CC cluster have a diagnosis of ‘Cough’. The diag-
noses of ‘Shortness of Breath’ and ‘Other Dyspnea’ are more than 15% in any CC cluster, 
but only less than 2% in the Non-CC cluster.

We further analyzed the significance of diagnoses under categories circulatory system 
diagnosis or endocrine disorders to investigate whether some of the diagnoses are more 
related to CC, with the results are shown in Tables 5 and 6. From Tables 5 and 6, we 
observe the diagnoses with a significant difference between the Non-CC cluster and CC 
clusters, and one of the CC clusters has over 10% of patients with the diagnosis. The 
largest CC cluster (CC-1) has over 35% of patients that have hyperlipidemia, and even 
the smallest CC cluster (CC-3) has 14.94% patients with hyperlipidemia. In contrast, the 
percentage of patients with hyperlipidemia in the Non-CC cluster is only 2.28%. Simi-
larly, the Non-CC cluster has only 4.1% of patients with type 2 diabetes, whereas the CC 
clusters have 13.64–27.31% of patients with type 2 diabetes. The CC clusters also have 
higher percentages of obesity, hypothyroidism, and hypovolemia patients. Table 5 shows 

Table 4  Univariate analysis on respiratory diagnosis between CC and non-CC clusters

Non-CC (N = 8588) CC-1 (N = 4658) CC-2 (N = 1737) CC-3 (N = 154) p value

Chronic airway obstruc-
tion

82 (0.95%) 1376 (29.54%) 318 (18.31%) 25 (16.23%) < .0001

Obstructive chronic 
bronchitis

41 (0.48%) 741 (15.91%) 178 (10.25%) 17 (11.04%) < .0001

Cough 323 (3.76%) 2503 (53.74%) 1001 (57.63%) 79 (51.3%) < .0001

Pneumonia 99 (1.15%) 1143 (24.54%) 279 (16.06%) 13 (8.44%) < .0001

Shortness of breath 121 (1.41%) 1156 (24.82%) 323 (18.6%) 23 (14.94%) < .0001

Other dyspnea 148 (1.72%) 1296 (27.82%) 295 (16.98%) 24 (15.58%) < .0001

Asthma 230 (2.68%) 716 (15.37%) 284 (16.35%) 21 (13.64%) < .0001

Other diseases of lung 55 (0.64%) 559 (12%) 173 (9.96%) 7 (4.55%) < .0001

Acute bronchitis and 
bronchiolitis

99 (1.15%) 597 (12.82%) 248 (14.28%) 19 (12.34%) < .0001

Respiratory Failure 18 (0.21%) 568 (12.19%) 86 (4.95%) 3 (1.95%) < .0001

Pleurisy pleural effusion 27 (0.31%) 533 (11.44%) 102 (5.87%) 6 (3.9%) < .0001
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the p-values for all the differences are < 0.0001, except the difference between CC-3 and 
Non-CC on hypovolemia, which is not significant (0.9293). Table 6 also indicates that 
the largest CC cluster (CC-1) has over 51% of patients having essential hypertension. The 
other two CC clusters have 27.92% and 37.25% of patients with essential hypertension, 
whereas less than 10% of the patients in the Non-CC cluster have essential hypertension. 
The three CC clusters have over or close to 20% of patients diagnosed with nonspecific 
chest pain, whereas the Non-CC cluster has only 5.8%. The Non-CC cluster has very few 
(less than 0.5%) patients taking aspirin long term or currently or diagnosed with con-
gestive heart failure or atrial fibrillation or hypertensive chronic kidney disease. How-
ever, the largest CC cluster has over 10% of patients with one or more of these diseases. 
Even the two small CC clusters have 1.3% to 5.07% of patients having these diseases. The 
p-values in Table 6 show that the differences between these percentages are significant.

Discussions
In this study, CC patients were extracted from the EMR using the rule-based algorithms 
developed by Weiner et  al. [13]. Given the heterogeneity among the patients and dis-
ease etiology, to understand the structure of the patient data and subgroups of the CC 
patients, unsupervised learning can be applied. As demonstrated in this research, when 
we carried out unsupervised clustering of the patients using a deep learning-based 
approach, we were able to identify different clusters that are highly enriched with CC 

Table 5  Univariate analysis on endocrine and metabolic diagnosis between CC and non-CC clusters

The p values are shown in the last column. < .0001 was listed in the last column if all of three p values were < .0001

Non-CC (N = 8588) CC-1 (N = 4658) CC-2 (N = 1737) CC-3 (N = 154) p value

Obesity 99 (1.15%) 491 (10.54%) 103 (5.93%) 7 (4.55%) < .0001

Type 2 diabetes 352 (4.1%) 1272 (27.31%) 294 (16.93%) 21 (13.64%) < .0001

Hyperlipidemia 196 (2.28%) 1650 (35.42%) 423 (24.35%) 23 (14.94%) < .0001

Hypothyroidism 153 (1.78%) 713 (15.31%) 184 (10.59%) 12 (7.79%) < .0001

Hypovolemia 51 (0.59%) 569 (12.22%) 78 (4.49%) 1 (0.65%) (< .0001, < .0001, 
0.9293)

Table 6  Univariate analysis on circulatory system diagnosis between CC and non-CC clusters

Non-CC 
(N = 8588)

CC-1 (N = 4658) CC-2 (N = 1737) CC-3 (N = 154) p value

Essential hyperten-
sion

735 (8.56%) 2400 (51.52%) 647 (37.25%) 43 (27.92%) < .0001

Nonspecific chest 
pain

498 (5.8%) 1201 (25.78%) 330 (19%) 35 (22.73%) < .0001

Long term or cur-
rent use of aspirin

8 (0.09%) 694 (14.9%) 84 (4.84%) 4 (2.6%) < .0001

Congestive heart 
failure

27 (0.31%) 674 (14.47%) 88 (5.07%) 4 (2.6%) < .0001

Atrial fibrillation 25 (0.29%) 572 (12.28%) 79 (4.55%) 2 (1.3%) (< .0001, < .0001, 
0.0255)

Hypertensive 
chronic kidney 
disease

14 (0.16%) 537 (11.53%) 59 (3.4%) 4 (2.6%) < .0001
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patients with different diagnoses. We found that (1) The CC patients have a higher per-
centage of chronic airway obstruction, pneumonia, and asthma diagnoses, which is con-
sistent with the literature [24, 25]. As per CHEST guideline, asthma, gastroesophageal 
reflux disease (GERD), nonasthmatic eosinophilic bronchitis, and Upper Airway Cough 
Syndrome (UACS) are the most common causes of chronic cough. The guideline also 
suggests that initial empirical treatment based on clinical diagnosis of chronic cough 
should be considered as a more targeted approach [26]. Our result also shows that more 
chronic patients have a diagnosis of acute bronchitis and bronchiolitis. Although some 
literature [27] investigated CC related to acute viral bronchiolitis in children, our results 
shed light on future research to investigate the association between acute bronchiolitis 
and CC in adults. (2) More CC patients have obesity and type 2 diabetes. This result is 
consistent with one of the most recent findings in the literature [28], which found that 
CC seems to be more severe in obese patients and that diabetes may also be involved in 
the development of CC. Patients with obesity are more likely to develop hyperlipidemia, 
which might explain why CC patients have a higher rate of hyperlipidemia in the present 
study. (3) The CC patients have more hypothyroidism diagnoses, which is reflected in 
the study of Birring et al. [29, 30]. It might be associated with the idiopathic CC that is 
predominantly female. (4) Over 25% of CC patients in the CC clusters have essential 
hypertension. We thought this might be related to ACE inhibitors taken by the patients 
diagnosed with essential hypertension. Many research show ACE inhibitors are asso-
ciated with CC [31]. Although during the 120-day timeframe, all patients in the study 
cohort did not take the ACE inhibitors. Some might take before the index date. (5) Over 
19% of the CC patients within the three CC clusters have chest pain diagnoses, which 
might be associated with symptoms of some CC, such as gastroesophageal reflux‐related 
cough [32] or excessive coughing that might lead to chest pain.

Comparison across different CC clusters reveals significant differences in comorbidi-
ties and use of medications. These significant differences across different CC clusters 
might be due to the underlying heterogeneity in CC development in different patients. 
A better understanding of the causes of underlying heterogeneity in CC patients and 
disease etiology can be helpful in the development of effective treatment strategies and 
individualized patient care. In this research, due to a large number of features, the unsu-
pervised learning methods are based on the clinical features of diagnosis only. Other 
structured data, such as medication and lab tests, were not explicitly utilized for the 
unsupervised learning even though we showed that there are significant differences in 
medications among these clusters. These observations suggest that there is potential 
to improve the clustering performance if medication and lab test results are utilized 
for cluster generation. On the other hand, the high dimensionality of the features will 
require more innovations in integrative clustering algorithms that are robust to noise. 
Furthermore, since CC is a syndrome that is not coded, the unstructured clinical notes 
may contain more information that can be used. This is the first study to apply deep 
learning based unsupervised learning approach to characterize CC using EMR data. 
This study suggests that deep learning-based unsupervised learning can be used in 
payer databases to estimate the burden of CC and the allocation of healthcare resources. 
Currently, we focus on structured data. However, we are carrying out a parallel study 
on extracting features from the clinical notes of this patient cohort which will allow 
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further comparison of the contribution of unstructured data in patient clustering and 
stratification.

Conclusions
In this paper, we developed and evaluated deep learning-based unsupervised learn-
ing algorithms to identify clusters of CC patients. The proposed DCAE deep learning 
method could better aggregate subjects into different groups than other methods while 
preserving the intrinsic structure of data and minimizing the clustering loss to manip-
ulate the embedded feature space appropriately. We applied statistical analyses on the 
diagnoses data within the EMR to characterize and compare the CC and non-CC patient 
clusters identified using the DCAE. The results indicate that we can identify characteris-
tics of patients within different CC clusters and between CC and non-CC clusters. This 
is the first study to apply deep learning based unsupervised learning approach to char-
acterize CC using EMR data. Because CC is associated with other chronic conditions, 
for future work, further analysis will be carried out to extract the sub-clusters within the 
large CC cluster by considering the combination of diagnosis, medication, and lab tests, 
as well as potential information from unstructured clinical notes.

Methods
Feature engineering and data representation

For the current study, we utilized the structured data within the EMR to explore the clus-
ters of CC and Non-CC cases, defined as positive instances of cough encounters within 
each patient’s study period. Patient features were constructed from the medical history 
of the study period. In this study, we used the diagnoses as clinical features to generate 
clusters of patients for unsupervised learning algorithms. After the clusters are identi-
fied, diagnoses, medication, and lab tests are used to evaluate the differences among the 
patients. The patient diagnosis in our data is encoded with the International Classifica-
tion of Diseases (ICD-10) codes. Considering a large number of distinct ICD codes, we 
used the first three digits of ICD-10. There is a total of 1228 unique three-digit ICD-
10 codes in the study cohort. To construct the data representations, we applied Bag-of-
Word [33], a natural language processing (NLP) text representation method, by treating 
each ICD code’s occurrence as a word and a patient’s records as a text document. Each 
patient was represented by the frequency of each ICD code in the medical history of the 
patient (i.e., term frequency also known as TF).

Deep AutoEncoder

Our clustering method is based on Deep AutoEncoders (DAE) framework [34]. Gen-
erally, DAE is used to learn a new representation of the input data to reduce their 
dimensionality. As shown in Fig. 4, the DAE is comprised of two parts, i.e., the encoder 
network f (.) and decoder network g(.) where the encoder network aims at compress-
ing the data into the hidden space with lower dimensionality and the output network is 
exploited to reconstruct the original input from the hidden layer data. More specifically, 
given the input data X = (x1, x2, …xN)T ∈ RN×d, the objective function of DAE can be for-
mulated as follows:



Page 11 of 14Shao et al. BMC Bioinformatics          (2022) 23:140 	

As shown in Eq.  (1), DAE aims to find a code for each input sample by minimizing 
the mean squared errors between its input and output overall samples. Then, the latent 
representation f (xi) with lower dimensionality will take on the main information of the 
input data, and we can use them for the following learning task in order to capture the 
intrinsic structure of the data.

Deep clustering with AutoEncoder embedding

As discussed in the previous section, the DAE framework can learn compressed but 
meaningful encoding of the input data. Based on the DAE, we proposed a novel end-
to-end deep clustering algorithm with auto-encoder embedding (DCAE) to aggregate 
the cough patients into different clusters. As shown in Fig.  5, the DCAE structure is 
composed of DAE and a clustering function connected to the embedding layer of DAE. 
More specifically, the encoding network of DAE consists of three fully connected layers 

(1)
1

N

N
∑

i=1

∥

∥g
(

f (xi)
)

− xi
∥

∥

2

2

Fig. 4  The framework for deep AutoEncoders (DAE)

Fig. 5  The framework for deep clustering with auto-encoder embedding (DCAE)
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and the node number in each layer is 1024, 512, and 256, respectively. We also adopted 
batch normalization (BN) after each hidden layer and before sigmoid activation in order 
to avoid the vanishing gradient problem. For each sample xi ∈ Rd , we denote its cor-
responding code and reconstruction vector as zi ∈ Rv and x′

i ∈ Rd , respectively. Let 
µj

(

j = 1, 2, 3, . . . ,K
)

 be the center of cluster Cj in the embedding space, and K represents 
the number of clusters to be obtained, then the objective function of DCAE can be for-
mulated as follows:

where I
(

zi,uj
)

 is an indicator function, it equals 1 if uj is the center with the shortest 
distance to the data point zi among all the cluster centers, otherwise I

(

zi,uj
)

= 0 . From 
Eq. (2), we can observe that the first term is the clustering loss function, which aims to 
learn better embedding zi from the original data to minimize the distances among the 
subjects in the same cluster. The second term is the reconstruction loss function in DAE, 
which can preserve the intrinsic structure of the data. α is used to balance the impor-
tance of the clustering and reconstruction losses. After each zi is assigned to a cluster, a 
new center is set to the mean of all data points belonging to that cluster, which is defined 
as:

where 
∣

∣Cj

∣

∣ denotes the cardinality of cluster Cj . It is straightforward that the embedding 
zi and centers uj can be iteratively optimized via mini-batch stochastic gradient descent 
algorithm.

Experimental settings

For parameter settings of our DCAE model, we tune the parameter α in Eq. (2) from 0.1 
to 1 with an interval of 0.1. We adopt the adaptive moment estimation (Adam) to train 
the network with β1 = 0.9 and β2 = 0.999. We randomly select half of the data for model 
training in the training process, and the remaining is used for performance evaluation. 
We fix the learning rate as 1e−4 and the mini-batch size for the stochastic gradient algo-
rithm is set as 100. In order to reduce the risk of overfitting, we also add the L1-norm 
regularization term on the network parameters, and its corresponding regularization 
parameter is fixed as 5e−3. All the programs are executed on a single Nvidia K420 2 GB 
GPU equipped on a desktop computer, with an Intel E5-1603 CPU and 32 GB memory.

Statistical analysis

Descriptive statistics were performed to determine patient characteristics associated 
with different cohorts or clusters. Characteristics of individuals presenting to different 
cohorts or clusters were calculated using mean and standard deviation for continuous 
variables (age), and frequency or proportion for categorical variables. Comparisons 
between the cohorts or clusters were performed using the Chi-square test for categorical 
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N
∑

i=1
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variables. All statistical analyses were performed using SAS version 9.4 (SAS Institute 
Cary, NC).
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